1
|
Almohaish S, Cook AM, Brophy GM, Rhoney DH. Personalized antiseizure medication therapy in critically ill adult patients. Pharmacotherapy 2023; 43:1166-1181. [PMID: 36999346 DOI: 10.1002/phar.2797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
Precision medicine has the potential to have a significant impact on both drug development and patient care. It is crucial to not only provide prompt effective antiseizure treatment for critically ill patients after seizures start but also have a proactive mindset and concentrate on epileptogenesis and the underlying cause of the seizures or seizure disorders. Critical illness presents different treatment issues compared with the ambulatory population, which makes it challenging to choose the best antiseizure medications and to administer them at the right time and at the right dose. Since there is a paucity of information available on antiseizure medication dosing in critically ill patients, therapeutic drug monitoring is a useful tool for defining each patient's personal therapeutic range and assisting clinicians in decision-making. Use of pharmacogenomic information relating to pharmacokinetics, hepatic metabolism, and seizure etiology may improve safety and efficacy by individualizing therapy. Studies evaluating the clinical implementation of pharmacogenomic information at the point-of-care and identification of biomarkers are also needed. These studies may make it possible to avoid adverse drug reactions, maximize drug efficacy, reduce drug-drug interactions, and optimize medications for each individual patient. This review will discuss the available literature and provide future insights on precision medicine use with antiseizure therapy in critically ill adult patients.
Collapse
Affiliation(s)
- Sulaiman Almohaish
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Pharmacy Practice, Clinical Pharmacy College, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aaron M Cook
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Gretchen M Brophy
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Denise H Rhoney
- Division of Practice Advancement and Clinical Education, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Han H, Mann A, Ekstein D, Eyal S. Breaking Bad: the Structure and Function of the Blood-Brain Barrier in Epilepsy. AAPS JOURNAL 2017; 19:973-988. [DOI: 10.1208/s12248-017-0096-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/28/2017] [Indexed: 12/27/2022]
|
3
|
Angelopoulou C, Veletza S, Heliopoulos I, Vadikolias K, Tripsianis G, Stathi C, Piperidou C. Association of SCN1A gene polymorphism with antiepileptic drug responsiveness in the population of Thrace, Greece. Arch Med Sci 2017; 13:138-147. [PMID: 28144265 PMCID: PMC5206360 DOI: 10.5114/aoms.2016.59737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/13/2015] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The aim was to examine the influence of the SCN1A gene polymorphism IVS5-91 rs3812718 G>A on the response to antiepileptic drugs (AEDs) in monotherapy or polytherapy. MATERIAL AND METHODS Two hundred epilepsy patients and 200 healthy subjects were genotyped for SCN1A IVS5-91 rs3812718 G>A polymorphism using TaqMan assay. Patients were divided into drug-responsive and drug-resistant patients. The drug-responsive group was further studied, comparing monotherapy in maximum and minimum doses and monotherapy-responsive and -resistant groups. RESULTS There were no statistically significant differences in the allelic frequencies and genotype distributions between patients and controls (p = 0.178). The distribution of SCN1A IVS5-91 rs3812718 G>A genotypes was similar between drug-responsive and drug-resistant patients (p = 0.463). The differences in genotype distributions (A/A or A/G vs. G/G) between monotherapy-responsive and -resistant groups were statistically significant (p = 0.021). Within the monotherapy-responsive group, patients with the A/A or A/G genotype needed higher dose AEDs than patients with the G/G genotype (p = 0.032). The relative risk for generalized epilepsy due to A-containing genotypes was of marginal statistical significance when compared with the G/G genotype (p = 0.05). CONCLUSIONS Overall, our findings demonstrate an association of SCN1A IVS5-91 rs3812718 G>A polymorphism with AED responsiveness in monotherapy without evidence of an effect on drug-resistant epilepsy.
Collapse
Affiliation(s)
| | - Stavroula Veletza
- Department of Neurology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Heliopoulos
- Department of Neurology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Grigorios Tripsianis
- Department of Neurology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Chrysa Stathi
- Department of Neurology, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
4
|
Rubinchik-Stern M, Shmuel M, Eyal S. Antiepileptic drugs alter the expression of placental carriers: An in vitro study in a human placental cell line. Epilepsia 2015; 56:1023-32. [DOI: 10.1111/epi.13037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Miriam Rubinchik-Stern
- Institute for Drug Research; School of Pharmacy; The Hebrew University; Jerusalem Israel
| | - Miri Shmuel
- Institute for Drug Research; School of Pharmacy; The Hebrew University; Jerusalem Israel
| | - Sara Eyal
- Institute for Drug Research; School of Pharmacy; The Hebrew University; Jerusalem Israel
| |
Collapse
|
5
|
Abstract
Epilepsy affects 50 million persons worldwide, a third of whom continue to experience debilitating seizures despite optimum anti-epileptic drug (AED) treatment. Twelve-month remission from seizures is less likely in female patients, individuals aged 11-36 years and those with neurological insults and shorter time between first seizure and starting treatment. It has been found that the presence of multiple seizures prior to diagnosis is a risk factor for pharmacoresistance and is correlated with epilepsy type as well as intrinsic severity. The key role of neuroinflammation in the pathophysiology of resistant epilepsy is becoming clear. Our work in this area suggests that high-mobility group box 1 isoforms may be candidate biomarkers for treatment stratification and novel drug targets in epilepsy. Furthermore, transporter polymorphisms contributing to the intrinsic severity of epilepsy are providing robust neurobiological evidence on an emerging theory of drug resistance, which may also provide new insights into disease stratification. Some of the rare genetic epilepsies enable treatment stratification through testing for the causal mutation, for example SCN1A mutations in patients with Dravet's syndrome. Up to 50% of patients develop adverse reactions to AEDs which in turn affects tolerability and compliance. Immune-mediated hypersensitivity reactions to AED therapy, such as toxic epidermal necrolysis, are the most serious adverse reactions and have been associated with polymorphisms in the human leucocyte antigen (HLA) complex. Pharmacogenetic screening for HLA-B*15:02 in Asian populations can prevent carbamazepine-induced Stevens-Johnson syndrome. We have identified HLA-A*31:01 as a potential risk marker for all phenotypes of carbamazepine-induced hypersensitivity with applicability in European and other populations. In this review, we explore the currently available key stratification approaches to address the therapeutic challenges in epilepsy.
Collapse
Affiliation(s)
- L E Walker
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - N Mirza
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - V L M Yip
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - A G Marson
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - M Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
6
|
Gidal BE. P-glycoprotein Expression and Pharmacoresistant Epilepsy: Cause or Consequence? Epilepsy Curr 2014; 14:136-8. [PMID: 24940157 PMCID: PMC4038278 DOI: 10.5698/1535-7597-14.3.136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
7
|
|
8
|
Disease Influence on BBB Transport in Neurodegenerative Disorders. DRUG DELIVERY TO THE BRAIN 2014. [DOI: 10.1007/978-1-4614-9105-7_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Di Ianni ME, Enrique AV, Palestro PH, Gavernet L, Talevi A, Bruno-Blanch LE. Several new diverse anticonvulsant agents discovered in a virtual screening campaign aimed at novel antiepileptic drugs to treat refractory epilepsy. J Chem Inf Model 2012. [PMID: 23181365 DOI: 10.1021/ci300423q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A virtual screening campaign was conducted in order to discover new anticonvulsant drug candidates for the treatment of refractory epilepsy. To this purpose, a topological discriminant function to identify antiMES drugs and a sequential filtering methodology to discriminate P-glycoprotein substrates and nonsubstrates were jointly applied to ZINC 5 and DrugBank databases. The virtual filters combine an ensemble of 2D classifiers and docking simulations. In the light of the results, 10 structurally diverse compounds were acquired and tested in animal models of seizure and the rotorod test. All 10 candidates showed some level of protection against MES test.
Collapse
Affiliation(s)
- Mauricio E Di Ianni
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata, 47 & 115, La Plata B1900AJI, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
10
|
Delivery of P-glycoprotein substrates using chemosensitizers and nanotechnology for selective and efficient therapeutic outcomes. J Control Release 2012; 161:50-61. [DOI: 10.1016/j.jconrel.2012.04.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 12/13/2022]
|
11
|
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Therapeutics, Ludwig-Maximilians-University, Munich, Germany.
| | | |
Collapse
|
12
|
Syvänen S, Luurtsema G, Molthoff CFM, Windhorst AD, Huisman MC, Lammertsma AA, Voskuyl RA, de Lange EC. (R)-[11C]verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus. BMC Med Imaging 2011; 11:1. [PMID: 21199574 PMCID: PMC3022839 DOI: 10.1186/1471-2342-11-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 01/03/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Increased functionality of efflux transporters at the blood-brain barrier may contribute to decreased drug concentrations at the target site in CNS diseases like epilepsy. In the rat, pharmacoresistant epilepsy can be mimicked by inducing status epilepticus by intraperitoneal injection of kainate, which leads to development of spontaneous seizures after 3 weeks to 3 months. The aim of this study was to investigate potential changes in P-glycoprotein (P-gp) expression and functionality at an early stage after induction of status epilepticus by kainate. METHODS (R)-[11C]verapamil, which is currently the most frequently used positron emission tomography (PET) ligand for determining P-gp functionality at the blood-brain barrier, was used in kainate and saline (control) treated rats, at 7 days after treatment. To investigate the effect of P-gp on (R)-[11C]verapamil brain distribution, both groups were studied without or with co-administration of the P-gp inhibitor tariquidar. P-gp expression was determined using immunohistochemistry in post mortem brains. (R)-[11C]verapamil kinetics were analyzed with approaches common in PET research (Logan analysis, and compartmental modelling of individual profiles) as well as by population mixed effects modelling (NONMEM). RESULTS All data analysis approaches indicated only modest differences in brain distribution of (R)-[11C]verapamil between saline and kainate treated rats, while tariquidar treatment in both groups resulted in a more than 10-fold increase. NONMEM provided most precise parameter estimates. P-gp expression was found to be similar for kainate and saline treated rats. CONCLUSIONS P-gp expression and functionality does not seem to change at early stage after induction of anticipated pharmacoresistant epilepsy by kainate.
Collapse
Affiliation(s)
- Stina Syvänen
- Division of Pharmacology, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine & Molecular Imaging, Groningen University Medical Center, P.O. Box 30.001 9700 RB Groningen, The Netherlands
| | - Carla FM Molthoff
- Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Marc C Huisman
- Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Rob A Voskuyl
- Division of Pharmacology, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Epilepsy Institute of The Netherlands Foundation (SEIN), P.O. Box 21, 2100 AA, Heemstede, The Netherlands
| | - Elizabeth C de Lange
- Division of Pharmacology, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
13
|
Rogawski MA, Johnson MR. Intrinsic severity as a determinant of antiepileptic drug refractoriness. Epilepsy Curr 2010; 8:127-30. [PMID: 18852835 DOI: 10.1111/j.1535-7511.2008.00272.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
For the most part, resistance to medications in epilepsy is independent of the choice of antiepileptic drug. This simple clinical observation constrains the possible biological mechanisms for drug refractory epilepsy by imposing a requirement to explain resistance for a diverse set of chemical structures that act on an even more varied group of molecular targets. To date, research on antiepileptic drug refractoriness has been guided by the "drug transporter overexpression" and the "reduced drug-target sensitivity" hypotheses. These concepts posit that drug refractoriness is a condition separate from the underlying epilepsy. Inadequacies in both hypotheses mandate a fresh approach to the problem. In this article, we propose a novel approach that considers epilepsy pharmacoresistance in terms of intrinsic disease severity. We suggest that neurobiological factors that confer increased disease severity lead to drug intractability. The occurrence of frequent seizures at disease onset is an important factor that signals increased severity.
Collapse
Affiliation(s)
- Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, USA.
| | | |
Collapse
|
14
|
Potschka H. Modulating P-glycoprotein regulation: future perspectives for pharmacoresistant epilepsies? Epilepsia 2010; 51:1333-47. [PMID: 20477844 DOI: 10.1111/j.1528-1167.2010.02585.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Enhanced brain efflux of antiepileptic drugs by the blood-brain barrier transporter P-glycoprotein is discussed as one mechanism contributing to pharmacoresistance of epilepsies. P-glycoprotein overexpression has been proven to occur as a consequence of seizure activity. Therefore, blocking respective signaling events should help to improve brain penetration and efficacy of P-glycoprotein substrates. A series of recent studies revealed key signaling factors involved in seizure-associated transcriptional activation of P-glycoprotein. These data suggested several interesting targets, including the N-methyl-d-aspartate (NMDA) receptor, the inflammatory enzyme cyclooxygenase-2, and the prostaglandin E2 EP1 receptor. These targets have been further evaluated in rodent models, demonstrating that targeting these factors can control P-glycoprotein expression, improve antiepileptic drug brain penetration, and help to overcome pharmacoresistance. In general, the approach offers particular advantages over transporter inhibition as it preserves basal transporter function. In this review the different strategies for blocking P-glycoprotein upregulation, including their therapeutic promise and drawbacks are discussed. Moreover, pros and cons of the approach are compared to those of alternative strategies to overcome transporter-associated resistance. Regarding future perspectives of the novel approach, there is an obvious need to more clearly define the clinical relevance of transporter overexpression. In this context current efforts are discussed, including the development of imaging tools that allow an evaluation of P-glycoprotein function in individual patients.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
15
|
Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci 2010; 31:246-54. [PMID: 20417575 DOI: 10.1016/j.tips.2010.03.003] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 02/06/2023]
Abstract
ATP-binding cassette (ABC) transporters are important selective elements of the blood-brain barrier. They line the luminal plasma membrane of the brain capillary endothelium, facing the vascular space, and both protect the central nervous system from entry of neurotoxicants and limit the access of therapeutic drugs to the brain parenchyma. Recent studies highlight the multiple signaling pathways through which the expression and activity of P-glycoprotein and other ABC transporters are modulated in response to xenobiotics, stress and disease. The results show that increased transporter expression occurs in response to signals that activate specific transcription factors, including pregnane-X receptor, constitutive androstane receptor, nuclear factor-kappaB and activator protein-1, and that reduced transporter activity occurs rapidly and reversibly in response to signaling through Src kinase, protein kinase C and estrogen receptors. A detailed understanding of such regulation can provide the basis for improved neuroprotection and enhanced therapeutic drug delivery to the brain.
Collapse
|
16
|
Potschka H. Targeting regulation of ABC efflux transporters in brain diseases: a novel therapeutic approach. Pharmacol Ther 2009; 125:118-27. [PMID: 19896502 DOI: 10.1016/j.pharmthera.2009.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/16/2009] [Indexed: 01/16/2023]
Abstract
Blood-brain barrier efflux transporters limit the brain penetration and efficacy of various central nervous system drugs. In several CNS diseases, therapy- or pathophysiology-associated transcriptional activation of efflux transporters further strengthens the barrier function. Targeting the regulatory pathways that drive efflux transporter expression in different diseases represents an intriguing approach for prevention of these events thereby promoting delivery to the brain and enhancing or restoring drug efficacy. In particular, the approach holds the promise to preserve basal transporter expression and activity, which is of specific relevance in view of the protective function of efflux transport. The elucidation of the signaling cascades involved in transporter regulation is a major presupposition for the development of preventive strategies. Orphan nuclear receptors as well as the Wnt/beta-catenin signaling pathway have been implicated in drug-induced changes in transporter expression. Targeting these xenobiotic sensors is therefore discussed as a means to optimize brain delivery and therapeutic outcome. Relevant progress has also been made with the identification of key signaling events that drive P-glycoprotein expression in response to pathophysiological mechanisms. In the epileptic brain, complex signaling events involving cyclooxygenase-2 activity trigger P-glycoprotein expression in response to glutamate release and activation of endothelial NMDA receptors. Moreover, reactive oxygen species and inflammatory cytokines have been identified as regulatory factors which might affect P-glycoprotein in several CNS diseases. Recent data substantiated several interesting targets in the respective signaling cascades thereby rendering a basis for the ongoing development of innovative approaches to optimize central nervous system drug brain penetration and efficacy.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstr. 16, D-80539 Munich, Germany.
| |
Collapse
|
17
|
Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther 2009; 123:80-104. [PMID: 19393264 DOI: 10.1016/j.pharmthera.2009.03.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 03/20/2009] [Indexed: 12/24/2022]
Abstract
There is considerable interest in the therapeutic and adverse outcomes of drug interactions at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). These include altered efficacy of drugs used in the treatment of CNS disorders, such as AIDS dementia and malignant tumors, and enhanced neurotoxicity of drugs that normally penetrate poorly into the brain. BBB- and BCSFB-mediated interactions are possible because these interfaces are not only passive anatomical barriers, but are also dynamic in that they express a variety of influx and efflux transporters and drug metabolizing enzymes. Based on studies in rodents, it has been widely postulated that efflux transporters play an important role at the human BBB in terms of drug delivery. Furthermore, it is assumed that chemical inhibition of transporters or their genetic ablation in rodents is predictive of the magnitude of interaction to be expected at the human BBB. However, studies in humans challenge this well-established paradigm and claim that such drug interactions will be lesser in magnitude but yet may be clinically significant. This review focuses on current known mechanisms of drug interactions at the blood-brain and blood-CSF barriers and the potential impact of such interactions in humans. We also explore whether such drug interactions can be predicted from preclinical studies. Defining the mechanisms and the impact of drug-drug interactions at the BBB is important for improving efficacy of drugs used in the treatment of CNS disorders while minimizing their toxicity as well as minimizing neurotoxicity of non-CNS drugs.
Collapse
Affiliation(s)
- Sara Eyal
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
18
|
Miller DS, Bauer B, Hartz AMS. Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 2008; 60:196-209. [PMID: 18560012 PMCID: PMC2634288 DOI: 10.1124/pr.107.07109] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pharmacotherapy of central nervous system (CNS) disorders (e.g., neurodegenerative diseases, epilepsy, brain cancer, and neuro-AIDS) is limited by the blood-brain barrier. P-glycoprotein, an ATP-driven, drug efflux transporter, is a critical element of that barrier. High level of expression, luminal membrane location, multispecificity, and high transport potency make P-glycoprotein a selective gatekeeper of the blood-brain barrier and thus a primary obstacle to drug delivery into the brain. As such, P-glycoprotein limits entry into the CNS for a large number of prescribed drugs, contributes to the poor success rate of CNS drug candidates, and probably contributes to patient-to-patient variability in response to CNS pharmacotherapy. Modulating P-glycoprotein could therefore improve drug delivery into the brain. Here we review the current understanding of signaling mechanisms responsible for the modulation of P-glycoprotein activity/expression at the blood-brain barrier with an emphasis on recent studies from our laboratories. Using intact brain capillaries from rats and mice, we have identified multiple extracellular and intracellular signals that regulate this transporter; several signaling pathways have been mapped. Three pathways are triggered by elements of the brain's innate immune response, one by glutamate, one by xenobiotic-nuclear receptor (pregnane X receptor) interactions, and one by elevated beta-amyloid levels. Signaling is complex, with several pathways sharing common signaling elements [tumor necrosis factor (TNF) receptor 1, endothelin (ET) B receptor, protein kinase C, and nitric-oxide synthase), suggesting a regulatory network. Several pathways include autocrine/paracrine elements, involving release of the proinflammatory cytokine, TNF-alpha, and the polypeptide hormone, ET-1. Finally, several steps in signaling are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the clinic.
Collapse
Affiliation(s)
- David S Miller
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|