1
|
Meirinho S, Rodrigues M, Santos AO, Falcão A, Alves G. Intranasal Microemulsion as an Innovative and Promising Alternative to the Oral Route in Improving Stiripentol Brain Targeting. Pharmaceutics 2023; 15:1641. [PMID: 37376089 DOI: 10.3390/pharmaceutics15061641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Stiripentol (STP) is a new-generation antiepileptic only available for oral administration. However, it is extremely unstable in acidic environments and undergoes gastrointestinal slow and incomplete dissolution. Thus, STP intranasal (IN) administration might overcome the high oral doses required to achieve therapeutic concentrations. An IN microemulsion and two variations were herein developed: the first contained a simpler external phase (FS6); the second one 0.25% of chitosan (FS6 + 0.25%CH); and the last 0.25% chitosan plus 1% albumin (FS6 + 0.25%CH + 1%BSA). STP pharmacokinetic profiles in mice were compared after IN (12.5 mg/kg), intravenous (12.5 mg/kg), and oral (100 mg/kg) administrations. All microemulsions homogeneously formed droplets with mean sizes ≤16 nm and pH between 5.5 and 6.2. Compared with oral route, IN FS6 resulted in a 37.4-fold and 110.6-fold increase of STP plasmatic and brain maximum concentrations, respectively. Eight hours after FS6 + 0.25%CH + 1%BSA administration, a second STP brain concentration peak was observed with STP targeting efficiency being 116.9% and direct-transport percentage 14.5%, suggesting that albumin may potentiate a direct STP brain transport. The relative systemic bioavailability was 947% (FS6), 893% (FS6 + 0.25%CH), and 1054% (FS6 + 0.25%CH + 1%BSA). Overall, STP IN administration using the developed microemulsions and significantly lower doses than those orally administrated might be a promising alternative to be clinically tested.
Collapse
Affiliation(s)
- Sara Meirinho
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Márcio Rodrigues
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI-IPG, Center for Potential and Innovation of Natural Resources, Research Unit for Inland Development, Polytechnic of Guarda, 6300-559 Guarda, Portugal
| | - Adriana O Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Amílcar Falcão
- CIBIT/ICNAS, Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
2
|
Rohner S, Gramer M, Wiesweg I, Scherf-Clavel O, Wohlsein P, Schmelz M, Siebert U, Richter F, Gernert M. Present in the Aquatic Environment, Unclear Evidence in Top Predators-The Unknown Effects of Anti-Seizure Medication on Eurasian Otters ( Lutra lutra) from Northern Germany. TOXICS 2023; 11:338. [PMID: 37112566 PMCID: PMC10142713 DOI: 10.3390/toxics11040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Emerging contaminants are produced globally at high rates and often ultimately find their way into the aquatic environment. These include substances contained in anti-seizure medication (ASM), which are currently appearing in surface waters at increasing concentrations in Germany. Unintentional and sublethal, chronic exposure to pharmaceuticals such as ASMs has unknown consequences for aquatic wildlife. Adverse effects of ASMs on the brain development are documented in mammals. Top predators such as Eurasian otters (Lutra lutra) are susceptible to the bioaccumulation of environmental pollutants. Still little is known about the health status of the otter population in Germany, while the detection of various pollutants in otter tissue samples has highlighted their role as an indicator species. To investigate potential contamination with pharmaceuticals, Eurasian otter brain samples were screened for selected ASMs via high-performance liquid chromatography and mass spectrometry. Via histology, brain sections were analyzed for the presence of potential associated neuropathological changes. In addition to 20 wild otters that were found dead, a control group of 5 deceased otters in human care was studied. Even though none of the targeted ASMs were detected in the otters, unidentified substances in many otter brains were measured. No obvious pathology was observed histologically, although the sample quality limited the investigations.
Collapse
Affiliation(s)
- Simon Rohner
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Martina Gramer
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Ivo Wiesweg
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | | | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Martin Schmelz
- Aktion Fischotterschutz e.V, Otter-Zentrum Hankensbüttel, 29386 Hankensbüttel, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Manuela Gernert
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| |
Collapse
|
3
|
Prentice RN, Rizwan SB. Translational Considerations in the Development of Intranasal Treatments for Epilepsy. Pharmaceutics 2023; 15:pharmaceutics15010233. [PMID: 36678862 PMCID: PMC9865314 DOI: 10.3390/pharmaceutics15010233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023] Open
Abstract
Epilepsy is a common and serious neurological disorder, to which a high proportion of patients continue to be considered "drug-resistant", despite the availability of a host of anti-seizure drugs. Investigation into new treatment strategies is therefore of great importance. One such strategy is the use of the nose to deliver drugs directly to the brain with the help of pharmaceutical formulation to overcome the physical challenges presented by this route. The following review explores intranasal delivery of anti-seizure drugs, covering the link between the nose and seizures, pathways from the nose to the brain, current formulations in clinical use, animal seizure models and their proposed application in studying intranasal treatments, and a critical discussion of relevant pre-clinical studies in the literature.
Collapse
|
4
|
Prentice RN, Younus M, Rizwan SB. A sensitive LC-MS/MS method for quantification of phenytoin and its major metabolite with application to in vivo investigations of intravenous and intranasal phenytoin delivery. J Sep Sci 2022; 45:2529-2542. [PMID: 35588117 PMCID: PMC9545894 DOI: 10.1002/jssc.202200025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022]
Abstract
Phenytoin is a powerful antiseizure drug with complex pharmacokinetic properties, making it an interesting model drug to use in preclinical in vivo investigations, especially with regards to formulations aiming to improve drug delivery to the brain. Moreover, it has a major metabolite, 5‐(4‐hydroxyphenyl)‐5‐phenylhydantoin, which can be simultaneously studied to achieve a better assessment of its behaviour in the body. Here, we describe the development and validation of a sensitive LCMS/MS method for quantification of phenytoin and 5‐(4‐hydroxyphenyl)‐5‐phenylhydantoin in rat plasma and brain which can be used in such preclinical studies. Calibration curves produced covered a range of 7.81 to 250 ng/mL (plasma) and 23.4 to 750 ng/g (brain tissue) for both analytes. The method was validated for specificity, sensitivity, accuracy, and precision and found to be within the acceptable limits of ±15% over this range in both tissue types. The method when applied in two in vivo investigations: validation of a seizure model and to study the behaviour of a solution of intranasally administered phenytoin as a foundation for future studies into direct nose‐to‐brain delivery of phenytoin using specifically developed particulate systems, was highly sensitive for detecting phenytoin and 5‐(4‐hydroxyphenyl)‐5‐phenylhydantoin in rat plasma and brain.
Collapse
|
5
|
Johne M, Römermann K, Hampel P, Gailus B, Theilmann W, Ala-Kurikka T, Kaila K, Löscher W. Phenobarbital and midazolam suppress neonatal seizures in a noninvasive rat model of birth asphyxia, whereas bumetanide is ineffective. Epilepsia 2020; 62:920-934. [PMID: 33258158 DOI: 10.1111/epi.16778] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Neonatal seizures are the most frequent type of neurological emergency in newborn infants, often being a consequence of prolonged perinatal asphyxia. Phenobarbital is currently the most widely used antiseizure drug for treatment of neonatal seizures, but fails to stop them in ~50% of cases. In a neonatal hypoxia-only model based on 11-day-old (P11) rats, the NKCC1 inhibitor bumetanide was reported to potentiate the antiseizure activity of phenobarbital, whereas it was ineffective in a human trial in neonates. The aim of this study was to evaluate the effect of clinically relevant doses of bumetanide as add-on to phenobarbital on neonatal seizures in a noninvasive model of birth asphyxia in P11 rats, designed for better translation to the human term neonate. METHODS Intermittent asphyxia was induced for 30 minutes by exposing the rat pups to three 7 + 3-minute cycles of 9% and 5% O2 at constant 20% CO2 . Drug treatments were administered intraperitoneally either before or immediately after asphyxia. RESULTS All untreated rat pups had seizures within 10 minutes after termination of asphyxia. Phenobarbital significantly blocked seizures when applied before asphyxia at 30 mg/kg but not 15 mg/kg. Administration of phenobarbital after asphyxia was ineffective, whereas midazolam (0.3 or 1 mg/kg) exerted significant antiseizure effects when administered before or after asphyxia. In general, focal seizures were more resistant to treatment than generalized convulsive seizures. Bumetanide (0.3 mg/kg) alone or in combination with phenobarbital (15 or 30 mg/kg) exerted no significant effect on seizure occurrence. SIGNIFICANCE The data demonstrate that bumetanide does not increase the efficacy of phenobarbital in a model of birth asphyxia, which is consistent with the negative data of the recent human trial. The translational data obtained with the novel rat model of birth asphyxia indicate that it is a useful tool to evaluate novel treatments for neonatal seizures.
Collapse
Affiliation(s)
- Marie Johne
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Philip Hampel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Björn Gailus
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Wiebke Theilmann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Tommi Ala-Kurikka
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
6
|
Metcalf CS, Huff J, Thomson KE, Johnson K, Edwards SF, Wilcox KS. Evaluation of antiseizure drug efficacy and tolerability in the rat lamotrigine-resistant amygdala kindling model. Epilepsia Open 2019; 4:452-463. [PMID: 31440726 PMCID: PMC6698678 DOI: 10.1002/epi4.12354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/09/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The lamotrigine-resistant amygdala kindling model uses repeated administration of a low dose of lamotrigine during the kindling process to produce resistance to lamotrigine, which also extends to some other antiseizure drugs (ASDs). This model of pharmacoresistant epilepsy has been incorporated into the testing scheme utilized by the Epilepsy Therapy Screening Program (ETSP). Although some ASDs have been evaluated in this model, a comprehensive evaluation of ASD prototypes has not been reported. METHODS Following depth electrode implantation and recovery, rats were exposed to lamotrigine (5 mg/kg, i.p.) prior to each stimulation during the kindling development process (~3 weeks). A test dose of lamotrigine was used to confirm that fully kindled rats were lamotrigine-resistant. Efficacy (unambiguous protection against electrically elicited convulsive seizures) was defined as a Racine score < 3 in the absence of overt compound-induced side effects. Various ASDs, comprising several mechanistic classes, were administered to fully kindled, lamotrigine-resistant rats. Where possible, multiple doses of each drug were administered in order to obtain median effective dose (ED50) values. RESULTS Five sodium channel blockers tested (eslicarbazepine, lacosamide, lamotrigine, phenytoin, and rufinamide) were either not efficacious or effective only at doses that were not well-tolerated in this model. In contrast, compounds targeting either GABA receptors (clobazam, clonazepam, phenobarbital) or GABA-uptake proteins (tiagabine) produced dose-dependent efficacy against convulsive seizures. Compounds acting to modulate Ca2+ channels show differential activity: Ethosuximide was not effective, whereas gabapentin was moderately efficacious. Ezogabine and valproate were also highly effective, whereas topiramate and levetiracetam were not effective at the doses tested. SIGNIFICANCE These results strengthen the conclusion that the lamotrigine-resistant amygdala kindling model demonstrates pharmacoresistance to certain ASDs, including, but not limited to, sodium channel blockers, and supports the utility of the model for helping to identify compounds with potential efficacy against pharmacoresistant seizures.
Collapse
Affiliation(s)
- Cameron S. Metcalf
- Anticonvulsant Drug Development Program, Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Jennifer Huff
- Anticonvulsant Drug Development Program, Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Kyle E. Thomson
- Anticonvulsant Drug Development Program, Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Kristina Johnson
- Anticonvulsant Drug Development Program, Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Sharon F. Edwards
- Anticonvulsant Drug Development Program, Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| | - Karen S. Wilcox
- Anticonvulsant Drug Development Program, Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
7
|
Buffel I, Meurs A, Portelli J, Raedt R, De Herdt V, Poppe L, De Meulenaere V, Wadman W, Bihel F, Schmitt M, Vonck K, Bourguignon JJ, Simonin F, Smolders I, Boon P. The effect of neuropeptide FF in the amygdala kindling model. Acta Neurol Scand 2016; 134:181-8. [PMID: 26503695 DOI: 10.1111/ane.12526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Neuropeptide FF (NPFF) and its receptors (NPFF1 R and NPFF2 R) are differentially distributed throughout the central nervous system. NPFF reduces cortical excitability in rats when administered intracerebroventricularly (i.c.v.), and both NPFF and NPFF1 R antagonists attenuate pilocarpine-induced limbic seizures. In this study, our aim was to determine whether NPFF exerts anticonvulsant or anti-epileptogenic effects in the rat amygdala kindling model for temporal lobe seizures. METHODS Male Wistar rats were implanted with a recording/stimulation electrode in the right amygdala and a cannula in the left lateral ventricle. In a first group of animals, the afterdischarge threshold (ADT) was determined after a single i.c.v. infusion of saline (n = 8) or NPFF (1 nmol/h for 2 h; n = 10). Subsequently, daily infusion of saline (n = 8) or NPFF (1 nmol/h for 2 h; i.c.v.; n = 9) was performed, followed by a kindling stimulus (ADT+200 μA). Afterdischarge duration and seizure severity were evaluated after every kindling stimulus. A second group of rats (n = 7) were fully kindled, and the effect of saline or a high dose of NPFF (10 nmol/h for 2 h, i.c.v.) on ADT and the generalized seizure threshold (GST) was subsequently determined. RESULTS In naive rats, NPFF significantly increased the ADT compared to control (435 ± 72 μA vs 131 ± 23 μA [P < 0.05]). When rats underwent daily stimulations above the ADT, NPFF did not delay or prevent kindling acquisition. Furthermore, a high dose of NPFF did not alter ADT or GST in fully kindled rats. CONCLUSIONS I.c.v. administration of NPFF reduced excitability in the amygdala in naive, but not in fully kindled rats, and had no effect on kindling acquisition.
Collapse
Affiliation(s)
- I. Buffel
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - A. Meurs
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - J. Portelli
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
- Center for Neurosciences; Department of Pharmaceutical Chemistry; Drug Analysis & Drug information; University of Brussels; Brussels Belgium
| | - R. Raedt
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - V. De Herdt
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - L. Poppe
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - V. De Meulenaere
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - W. Wadman
- Swammerdam Institute of Life Sciences; Department of Neurobiology; University of Amsterdam; Amsterdam The Netherlands
| | - F. Bihel
- Therapeuthic Innovation Laboratory; Faculty of Pharmacy; UMR 7200; CNRS; University of Strasbourg; Illkirch Graffenstaden France
| | - M. Schmitt
- Therapeuthic Innovation Laboratory; Faculty of Pharmacy; UMR 7200; CNRS; University of Strasbourg; Illkirch Graffenstaden France
| | - K. Vonck
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - J.-J. Bourguignon
- Therapeuthic Innovation Laboratory; Faculty of Pharmacy; UMR 7200; CNRS; University of Strasbourg; Illkirch Graffenstaden France
| | - F. Simonin
- Research Institute of ESBS; CNRS; UMR7242; University of Strasbourg; Illkirch France
| | - I. Smolders
- Center for Neurosciences; Department of Pharmaceutical Chemistry; Drug Analysis & Drug information; University of Brussels; Brussels Belgium
| | - P. Boon
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| |
Collapse
|
8
|
Serralheiro A, Alves G, Fortuna A, Falcão A. Intranasal administration of carbamazepine to mice: a direct delivery pathway for brain targeting. Eur J Pharm Sci 2014; 60:32-9. [PMID: 24813112 DOI: 10.1016/j.ejps.2014.04.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 01/16/2023]
Abstract
The currently available antiepileptic drugs are typically administered via oral or intravenous (IV) routes which commonly exhibit high systemic distribution into non-targeted tissues, leading to peripheral adverse effects and limited brain uptake. In order to improve the efficacy and tolerability of the antiepileptic drug therapy, alternative administration strategies have been investigated. The purpose of the present study was to assess the pharmacokinetics of carbamazepine administered via intranasal (IN) and IV routes to mice, and to investigate whether a direct transport of the drug from nose to brain could be involved. The similar pharmacokinetic profiles obtained in all matrices following both administration routes indicate that, after IN delivery, carbamazepine reaches quickly and extensively the bloodstream, achieving the brain predominantly via systemic circulation. However, the uneven biodistribution of carbamazepine through the brain regions with higher concentrations in the olfactory bulb and frontal cortex following IN instillation, in comparison with the homogenous brain distribution pattern after IV injection, strongly suggests the involvement of a direct transport of carbamazepine from nose to brain. Therefore, it seems that IN delivery represents a suitable and promising alternative route to administer carbamazepine not only for the chronically use of the drug but also in emergency conditions.
Collapse
Affiliation(s)
- Ana Serralheiro
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - Gilberto Alves
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| |
Collapse
|
9
|
Potschka H. Role of CNS efflux drug transporters in antiepileptic drug delivery: overcoming CNS efflux drug transport. Adv Drug Deliv Rev 2012; 64:943-52. [PMID: 22210135 DOI: 10.1016/j.addr.2011.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 01/16/2023]
Abstract
Experimental support for the transporter hypothesis of drug resistance in epilepsies has triggered efforts developing and validating approaches to overcome enhanced blood-brain barrier efflux transport. Testing in rodent models has rendered proof-of-concept for an add-on therapy with antiepileptic drugs. However, further development of the approach would require tolerability considerations as efflux transporters serve an important protective function throughout the body limiting distribution of harmful xenobiotics. Relevant progress has been made in the elucidation of mechanisms driving up-regulation of the multidrug transporter P-glycoprotein in response to seizure activity. Based on this knowledge, novel strategies have been evaluated targeting the signaling cascade that regulates P-glycoprotein in the epileptic brain. Further concepts might include by-passing blood-brain barrier transporters by intracerebral administration or by encapsulation of antiepileptic drugs in nano-sized carrier systems. It is important to note that the future perspectives of respective approaches are still questionable based on the limited evidence for a clinical relevance of transporter expression. Thus, techniques are urgently needed for non-invasive assessment of blood-brain barrier transporter function. Respective techniques would allow testing for a clinical correlation between pharmacosensitivity and transporter function, validating therapeutic strategies targeting efflux transporters and selecting patients with transporter over-expression for respective clinical trials. Provided that further clinical data render support for the transporter hypothesis, the main question remains whether patients exist in which transporter over-expression is the predominant mechanism of drug resistance and in which overcoming drug efflux is equivalent with overcoming drug resistance. Imaging techniques might provide a tool to address these questions in clinical epileptology. However, the complex pharmacological interactions between antiepileptic drugs, radiotracers, and transporter modulators used in these approaches as well as interindividual differences in the brain pathology might hamper clear-cut conclusions and limit the diagnostic significance.
Collapse
|
10
|
Potschka H. Modulating P-glycoprotein regulation: future perspectives for pharmacoresistant epilepsies? Epilepsia 2010; 51:1333-47. [PMID: 20477844 DOI: 10.1111/j.1528-1167.2010.02585.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Enhanced brain efflux of antiepileptic drugs by the blood-brain barrier transporter P-glycoprotein is discussed as one mechanism contributing to pharmacoresistance of epilepsies. P-glycoprotein overexpression has been proven to occur as a consequence of seizure activity. Therefore, blocking respective signaling events should help to improve brain penetration and efficacy of P-glycoprotein substrates. A series of recent studies revealed key signaling factors involved in seizure-associated transcriptional activation of P-glycoprotein. These data suggested several interesting targets, including the N-methyl-d-aspartate (NMDA) receptor, the inflammatory enzyme cyclooxygenase-2, and the prostaglandin E2 EP1 receptor. These targets have been further evaluated in rodent models, demonstrating that targeting these factors can control P-glycoprotein expression, improve antiepileptic drug brain penetration, and help to overcome pharmacoresistance. In general, the approach offers particular advantages over transporter inhibition as it preserves basal transporter function. In this review the different strategies for blocking P-glycoprotein upregulation, including their therapeutic promise and drawbacks are discussed. Moreover, pros and cons of the approach are compared to those of alternative strategies to overcome transporter-associated resistance. Regarding future perspectives of the novel approach, there is an obvious need to more clearly define the clinical relevance of transporter overexpression. In this context current efforts are discussed, including the development of imaging tools that allow an evaluation of P-glycoprotein function in individual patients.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
11
|
Clinckers R, Smolders I, Vermoesen K, Michotte Y, Danhof M, Voskuyl R, Della Pasqua O. Prediction of antiepileptic drug efficacy: the use of intracerebral microdialysis to monitor biophase concentrations. Expert Opin Drug Metab Toxicol 2009; 5:1267-77. [PMID: 19611404 DOI: 10.1517/17425250903146903] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Biophase concentrations of antiepileptic drugs can differ significantly from pharmacokinetics in plasma. A crucial determinant in the disposition of antiepileptic drugs to the brain is represented by the blood-brain barrier. There is growing evidence that this barrier can alter the availability of antiepileptic drugs at the target site. The permeability of the blood-brain barrier becomes particularly relevant in epileptic conditions and in drug refractory situations. In vivo, intracerebral microdialysis is a valuable technique to determine biophase drug concentrations as it enables investigation of antiepileptic drug transport and distribution in the brain as a function of time. The present review illustrates that intracerebral microdialysis is an indispensable tool for the assessment of the pharmacokinetics of antiepileptic drugs. In addition, we demonstrate how microdialysis data can be used in conjunction with mechanism-based pharmacokinetic/pharmacodynamic modeling for dose selection and optimization of the therapeutic regimen for novel compounds.
Collapse
Affiliation(s)
- Ralph Clinckers
- Vrije Universiteit Brussel (VUB), Pharmaceutical Institute, Research Group Experimental Pharmacology, Department of Pharmaceutical Chemistry and Drug Analysis (labo FASC), Laarbeeklaan 103, Building G, 1090 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|