1
|
Guo K, Quan Z, Li G, Li B, Kang F, Wang J. Decomposed FDG PET-based phenotypic heterogeneity predicting clinical prognosis and decision-making in temporal lobe epilepsy patients. Neurol Sci 2024; 45:3961-3969. [PMID: 38457084 DOI: 10.1007/s10072-024-07431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE This study utilized a data-driven Bayesian model to automatically identify distinct latent disease factors represented by overlapping glucose metabolism patterns from 18F-Fluorodeoxyglucose PET (18F-FDG PET) to analyze heterogeneity among patients with TLE. METHODS We employed unsupervised machine learning to estimate latent disease factors from 18F-FDG PET scans, representing whole-brain glucose metabolism patterns in seventy patients with TLE. We estimated the extent to which multiple distinct factors were expressed within each participant and analyzed their relevance to epilepsy burden, including seizure onset, duration, and frequency. Additionally, we established a predictive model for clinical prognosis and decision-making. RESULTS We identified three latent disease factors: hypometabolism in the unilateral temporal lobe and hippocampus (factor 1), hypometabolism in bilateral prefrontal lobes (factor 2), and hypometabolism in bilateral temporal lobes (factor 3), variably co-expressed within each patient. Factor 3 demonstrated the strongest negative correlation with the age of onset and duration (r = - 0.33, - 0.38 respectively, P < 0.05). The supervised classifier, trained on latent disease factors for predicting patient-specific antiepileptic drug (AED) responses, achieved an area under the curve (AUC) of 0.655. For post-surgical seizure outcomes, the AUC was 0.857, and for clinical decision-making, it was 0.965. CONCLUSIONS Decomposing 18F-FDG PET-based phenotypic heterogeneity facilitates individual-level predictions relevant to disease monitoring and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Kun Guo
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhiyong Quan
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Guiyu Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Baojuan Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
2
|
Hyppönen J, Paanila V, Äikiä M, Koskenkorva P, Könönen M, Vanninen R, Mervaala E, Kälviäinen R, Hakumäki J. Progressive myoclonic epilepsy type 1 (EPM1) patients present with abnormal 1H MRS brain metabolic profiles associated with cognitive function. Neuroimage Clin 2023; 39:103459. [PMID: 37541097 PMCID: PMC10412857 DOI: 10.1016/j.nicl.2023.103459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE Progressive myoclonic epilepsy, type 1A (EPM1, Unverricht-Lundborg disease), is a rare neurodegenerative autosomal recessive disorder characterized by stimulus-sensitive and action myoclonus and tonic-clonic epileptic seizures. Patients develop neurological symptoms, including ataxia, intention tremor, and dysarthria, over time, with relatively limited and nonspecific MRI atrophy findings. The effects of the disease on brain metabolism are largely unknown. METHOD Eighteen EPM1 patients (9 M, 9F) underwent clinical evaluation and neuropsychological testing, which included the assessment of intellectual ability, verbal memory, and psychomotor and executive functions. Magnetic resonance spectroscopy (MRS) and imaging (MRI) were performed on a 1.5 T MRI system. 2D MRS chemical shift imaging (CSI) maps (TE = 270) were obtained from the following regions of the brain: basal ganglia, thalamus, insula, splenium, and occipital white and gray matter, and N-acetyl-aspartate (NAA)-, choline (Cho)-, and lactate (Lac)-to-creatine (Cr) ratios were analyzed. Ten healthy age-and sex-matched subjects (5M, 5F) were used as controls for MRS. RESULTS We found significant brain metabolic changes involving lactate, NAA, and choline, which are widespread in the basal ganglia, thalamic nuclei, insula, and occipital areas of EPM1 patients. Changes, especially in the right insula, basal ganglia, and thalamus, were associated with intellectual abilities and impairment of the psychomotor and executive functions of EPM1 patients. CONCLUSION Multiple brain metabolic alterations suggest the presence of neurodegeneration associated with EPM1 progression. The changes in metabolite ratios are associated with the neurocognitive dysfunction caused by the disease. However, the role of MRS findings in understanding pathophysiology of EPM1 warrants further studies.
Collapse
Affiliation(s)
- Jelena Hyppönen
- Department of Clinical Neurophysiology, Epilepsy Center, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Vili Paanila
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Marja Äikiä
- Epilepsy Center, Neurocenter, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Päivi Koskenkorva
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Ritva Vanninen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Esa Mervaala
- Department of Clinical Neurophysiology, Epilepsy Center, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Reetta Kälviäinen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Epilepsy Center, Neurocenter, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Juhana Hakumäki
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland.
| |
Collapse
|
3
|
Mauri N, Richter H, Steffen F, Zölch N, Beckmann KM. Single-Voxel Proton Magnetic Resonance Spectroscopy of the Thalamus in Idiopathic Epileptic Dogs and in Healthy Control Dogs. Front Vet Sci 2022; 9:885044. [PMID: 35873693 PMCID: PMC9302964 DOI: 10.3389/fvets.2022.885044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022] Open
Abstract
The role of magnetic resonance spectroscopy (MRS) in the investigation of brain metabolites in epileptic syndromes in dogs has not been explored systematically to date. The aim of this study was to investigate metabolites in the thalamus in dogs affected by idiopathic epilepsy (IE) with and without antiepileptic drug treatment (AEDT) and to compare them to unaffected controls. Our hypothesis is that similar to humans with generalized epilepsy and loss of consciousness, N-acetyl aspartate (NAA) would be reduced, and glutamate–glutamine (Glx) would be increased in treated and untreated IE in comparison with the control group. In this prospective case–control study, Border Collie (BC) and Greater Swiss Mountain dog (GSMD) were divided into three groups: (1) healthy controls, IE with generalized tonic–clonic seizures with (2) and without (3) AEDT. A total of 41 BC and GSMD were included using 3 Tesla single-voxel proton MRS of the thalamus (PRESS localization, shortest TE, TR = 2000 ms, NSA = 240). After exclusion of 11 dogs, 30 dogs (18 IE and 12 healthy controls) remained available for analysis. Metabolite concentrations were estimated with LCModel using creatine as reference and compared using Kruskal–Wallis and Wilcoxon rank-sum tests. The Kruskal–Wallis test revealed significant differences in the NAA-to-creatine (p = 0.04) and Glx-to-creatine (p = 0.03) ratios between the three groups. The Wilcoxon rank-sum test further showed significant reduction in the NAA/creatine ratio in idiopathic epileptic dogs under AEDT compared to epileptic dogs without AEDT (p = 0.03) and compared to healthy controls (p = 0.03). In opposite to humans, Glx/creatine ratio was significantly reduced in dogs with IE under AEDT compared to epileptic dogs without AEDT (p = 0.03) and controls (p = 0.02). IE without AEDT and healthy controls did not show significant difference, neither in NAA/creatine (p = 0.60), nor in Glx-to-creatine (p = 0.55) ratio. In conclusion, MRS showed changes in dogs with IE and generalized seizures under AEDT, but not in those without AEDT. Based upon these results, MRS can be considered a useful advanced imaging technique for the evaluation of dogs with IE in the clinical and research settings.
Collapse
Affiliation(s)
- Nico Mauri
- Clinic for Diagnostic Imaging, Department of Diagnostics and Clinical Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Vetimage Diagnostik GmbH, Oberentfelden, Switzerland
| | - Henning Richter
- Clinic for Diagnostic Imaging, Department of Diagnostics and Clinical Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Frank Steffen
- Section of Neurology and Neurosurgery, Small Animal Clinic, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Niklaus Zölch
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Katrin M. Beckmann
- Section of Neurology and Neurosurgery, Small Animal Clinic, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- *Correspondence: Katrin M. Beckmann
| |
Collapse
|
4
|
Xu C, Gong Y, Wang Y, Chen Z. New advances in pharmacoresistant epilepsy towards precise management-from prognosis to treatments. Pharmacol Ther 2021; 233:108026. [PMID: 34718071 DOI: 10.1016/j.pharmthera.2021.108026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Epilepsy, one of the most severe neurological diseases, is characterized by abrupt recurrent seizures. Despite great progress in the development of antiseizure drugs (ASDs) based on diverse molecular targets, more than one third of epilepsy patients still show resistance to ASDs, a condition termed pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy involves serious challenges. In the past decade, promising advances have been made in the use of interdisciplinary techniques involving biophysics, bioinformatics, biomaterials and biochemistry, which allow more precise prognosis and development of drug target for pharmacoresistant epilepsy. Notably, novel experimental tools such as viral vector gene delivery, optogenetics and chemogenetics have provided a framework for promising approaches to the precise treatment of pharmacoresistant epilepsy. In this review, historical achievements especially recent advances of the past decade in the prognosis and treatment of pharmacoresistant epilepsy from both clinical and laboratory settings are presented and summarized. We propose that the further development of novel experimental tools at cellular or molecular levels with both temporal and spatial precision are necessary to make improve the management and drug development for pharmacoresistant epilepsy in the clinical arena.
Collapse
Affiliation(s)
- Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiwei Gong
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Longitudinal analysis of interictal electroencephalograms in patients with temporal lobe epilepsy with hippocampal sclerosis. Seizure 2021; 90:141-144. [DOI: 10.1016/j.seizure.2021.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022] Open
|
6
|
Szewczyk A, Zagaja M, Szala-Rycaj J, Maj M, Andres-Mach M. Effect of Lacosamide and Ethosuximide Chronic Treatment on Neural Precursor Cells and Cognitive Functions after Pilocarpine Induced Status Epilepticus in Mice. Brain Sci 2021; 11:brainsci11081014. [PMID: 34439633 PMCID: PMC8392532 DOI: 10.3390/brainsci11081014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Seizures in about 40% of patients with epilepsy fail to respond to anti-seizure medication (ASM) and may lead to uncontrolled and prolonged seizures often inducing status epilepticus (SE). The aim of the study was to evaluate the impact of a long-term treatment with two different generation ASMs: ethosuximide (ETS, a classic ASM) and lacosamide (LCM, a 3rd generation ASM) on neural stem cells’ (NSCs’) proliferation and learning and memory functions after pilocarpine (PILO)-induced SE in mice. The following drugs were used: LCM (10 mg/kg), ETS (20 mg/kg), and PILO (300 mg/kg). Cell counting was done using confocal microscope and ImageJ software. Cognitive functions were evaluated with the Morris water maze (MWM) test. The level of several selected neurometabolites was measured with magnetic resonance spectroscopy (MRS). Obtained results indicated no significant impact of ETS treatment on the neurogenesis process in PILO mice. Interestingly, LCM significantly decreased the total amount of newborn neurons. The MWM test indicated no significant changes in the time and distance traveled by the ETS and LCM groups compared to PILO control mice, although all measured parameters were more favorable for the PILO mice treated with ASM. Conclusions: The presented results show that long term treatment with LCM and ETS seems to be safe for the cognitive functions and the proper course of neurogenesis in the mouse PILO-induced SE model, although one should remember that LCM administered chronically may act to reduce new neurons’ formation.
Collapse
Affiliation(s)
- Aleksandra Szewczyk
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Joanna Szala-Rycaj
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland;
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
- Correspondence: ; Tel.: +48-81-718-4488
| |
Collapse
|
7
|
Bryant L, McKinnon ET, Taylor JA, Jensen JH, Bonilha L, de Bezenac C, Kreilkamp BAK, Adan G, Wieshmann UC, Biswas S, Marson AG, Keller SS. Fiber ball white matter modeling in focal epilepsy. Hum Brain Mapp 2021; 42:2490-2507. [PMID: 33605514 PMCID: PMC8090772 DOI: 10.1002/hbm.25382] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Multicompartment diffusion magnetic resonance imaging (MRI) approaches are increasingly being applied to estimate intra‐axonal and extra‐axonal diffusion characteristics in the human brain. Fiber ball imaging (FBI) and its extension fiber ball white matter modeling (FBWM) are such recently described multicompartment approaches. However, these particular approaches have yet to be applied in clinical cohorts. The modeling of several diffusion parameters with interpretable biological meaning may offer the development of new, noninvasive biomarkers of pharmacoresistance in epilepsy. In the present study, we used FBI and FBWM to evaluate intra‐axonal and extra‐axonal diffusion properties of white matter tracts in patients with longstanding focal epilepsy. FBI/FBWM diffusion parameters were calculated along the length of 50 white matter tract bundles and statistically compared between patients with refractory epilepsy, nonrefractory epilepsy and controls. We report that patients with chronic epilepsy had a widespread distribution of extra‐axonal diffusivity relative to controls, particularly in circumscribed regions along white matter tracts projecting to cerebral cortex from thalamic, striatal, brainstem, and peduncular regions. Patients with refractory epilepsy had significantly greater markers of extra‐axonal diffusivity compared to those with nonrefractory epilepsy. The extra‐axonal diffusivity alterations in patients with epilepsy observed in the present study could be markers of neuroinflammatory processes or a reflection of reduced axonal density, both of which have been histologically demonstrated in focal epilepsy. FBI is a clinically feasible MRI approach that provides the basis for more interpretive conclusions about the microstructural environment of the brain and may represent a unique biomarker of pharmacoresistance in epilepsy.
Collapse
Affiliation(s)
- Lorna Bryant
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Emilie T McKinnon
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James A Taylor
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jens H Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christophe de Bezenac
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Barbara A K Kreilkamp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK.,Department of Clinical Neurophysiology, University Medicine Göttingen, Göttingen, Germany
| | - Guleed Adan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| | | | | | - Anthony G Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
8
|
He C, Liu P, Wu Y, Chen H, Song Y, Yin J. Gamma-aminobutyric acid (GABA) changes in the hippocampus and anterior cingulate cortex in patients with temporal lobe epilepsy. Epilepsy Behav 2021; 115:107683. [PMID: 33360398 DOI: 10.1016/j.yebeh.2020.107683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 01/25/2023]
Abstract
PURPOSE To explore the changes of gamma-aminobutyric acid (GABA) levels in the bilateral hippocampus and anterior cingulate cortex (ACC) of healthy control subjects and patients with temporal lobe epilepsy (TLE) and the correlation of GABA levels with the clinical symptoms by quantitative magnetic resonance spectroscopy (MRS). METHODS N-acetylaspartate (NAA), creatine (Cr) as well as choline (Cho) and GABA levels in the bilateral hippocampus and ACC were measured in 40 patients with TLE and 26 healthy control (NC) subjects with quantitative Meshcher-Garwood point resolved spectroscopy (MEGA-PRESS). The NAA/(Cho + Cr) and GABA/Cr ratios were compared between the NC and TLE groups. Comparisons were also made between the subgroups with lateralization (left TLE, right TLE and uncertain), short (<10 years) and longer (≥10 years) clinical seizure history (CSH), low (<1/month) and higher (≥1/month) seizure frequency (SF), with and without cognitive impairment (CI) in the patients with TLE, and by antiepileptic medications. Further analyses of the clinical information and metabolite ratios between the patients with TLE with and without CI were preformed. RESULTS The GABA/Cr ratio was significantly decreased in the bilateral hippocampus (left: P = 0.028, right: P = 0.035), while the NAA/(Cho + Cr) ratio was decreased only in the right hippocampus (RH) (P = 0.004) in patients with TLE compared with that of the NCs. Whereas the NAA/(Cho + Cr) ratio showed a consistent decreasing trend in bilateral hippocampus during the CSH, it only showed a significant difference in the RH. The GABA changes in the hippocampal and ACC regions were not consistent during different stages of the disease. In the bilateral hippocampus, the GABA/Cr ratio was decreased in the short seizure history (<10 years) patients with TLE compared with NCs (left: P = 0.018, right: P = 0.012), whereas the long seizure history (≥10 years) patients with TLE showed no difference with the NCs. However, in the ACC, the GABA/Cr ratio of the CI group was significantly decreased compared with that of NCs (P = 0.015). Further analysis showed that the patients with TLE with CI had obvious atrophy of the gray matter volume (GMV) and total parenchymal brain volume (PBV); GABA/Cr ratio was decreased in ACC, but increased in bilateral hippocampus compared with that of the no cognitive impairment (NOCI) group. CONCLUSION The GABA/Cr ratio was more valuable than the NAA/(Cho + Cr) ratio in evaluating the dynamic metabolite changes in patients with TLE. Importantly, the GABA changes in the hippocampal and ACC regions were not consistent during different stages of the disease. In the bilateral hippocampus, the GABA/Cr ratio was decreased at the early stage, but recovered to normal levels later. The decreased GABA/Cr ratio in the ACC might indicate more cerebral cortex was involved, resulting in more CI in patients with TLE.
Collapse
Affiliation(s)
- Che He
- Tianjin Medical University, Tianjin, China
| | - Pei Liu
- Tianjin Medical University, Tianjin, China
| | - Yalin Wu
- Tianjin Medical University, Tianjin, China
| | - Hong Chen
- Tianjin Medical University, Tianjin, China
| | - Yijun Song
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Street, Tianjin 300052, China.
| | - Jianzhong Yin
- Department of Radiology, Tianjin First Central Hospital, 24 Fukang Road, Tianjin 300192, China.
| |
Collapse
|
9
|
Faheem MH, Dabour AS, Abdelhaie OM. Diagnostic and prognostic role of proton single-voxel spectroscopy (SVS) in non-lesional epilepsy pediatric patients: prospective controlled study. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2020. [DOI: 10.1186/s43055-020-00251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
We aimed to verify the diagnostic and prognostic role of proton single-voxel spectroscopy (SVS) in children with non-lesional epilepsy and its add-on value to conventional MR. The prospective controlled study carried out on the epileptic patients who were regularly following in the pediatric neurology clinic in our university hospital, over the period from July 2017 to July 2018. It compared SVS findings (NAA/Cr, NAA/Cho, and NAA/Cho+Cr ratios) between the case (50 patients) and control group (20 children), between the cases with different seizures semiology and between the patients with intractable and non-intractable epilepsy.
Results
NAA/Cr ratio showed a significant difference between the patients with intractable and non-intractable epilepsy in the basal ganglia (P value 0.005) and white matter (P value 0.043) with cutoff values of 1.5 and 1.9 respectively. A significant difference of NAA/Cho ratio was found between generalized seizures cases and other seizures semiology in basal ganglia (P value 0.012) and cortex (P value <.001). There was no significant difference between the patient and control groups or between generalized seizures cases and the control group.
Conclusion
Proton SVS has limited diagnostic value in non-lesional epilepsy pediatric patients, in differentiation between generalized seizures and other seizure types, but, it has a good prognostic role in predicting patients who will develop intractable epilepsy.
Collapse
|
10
|
Leek NJ, Neason M, Kreilkamp BAK, de Bezenac C, Ziso B, Elkommos S, Das K, Marson AG, Keller SS. Thalamohippocampal atrophy in focal epilepsy of unknown cause at the time of diagnosis. Eur J Neurol 2020; 28:367-376. [PMID: 33012040 DOI: 10.1111/ene.14565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Patients with chronic focal epilepsy may have atrophy of brain structures important for the generation and maintenance of seizures. However, little research has been conducted in patients with newly diagnosed focal epilepsy (NDfE), despite it being a crucial point in time for understanding the underlying biology of the disorder. We aimed to determine whether patients with NDfE show evidence of volumetric abnormalities of subcortical structures. METHODS Eighty-two patients with NDfE and 40 healthy controls underwent magnetic resonance imaging scanning using a standard clinical protocol. Volume estimation of the left and right hippocampus, thalamus, caudate nucleus, putamen and cerebral hemisphere was performed for all participants and normalised to whole brain volume. Volumes lower than two standard deviations below the control mean were considered abnormal. Volumes were analysed with respect to patient clinical characteristics, including treatment outcome 12 months after diagnosis. RESULTS Volume of the left hippocampus (p(FDR-corr) = 0.04) and left (p(FDR-corr) = 0.002) and right (p(FDR-corr) = 0.04) thalamus was significantly smaller in patients relative to controls. Relative to the normal volume limits in controls, 11% patients had left hippocampal atrophy, 17% had left thalamic atrophy and 9% had right thalamic atrophy. We did not find evidence of a relationship between volumes and future seizure control or with other clinical characteristics of epilepsy. CONCLUSIONS Volumetric abnormalities of structures known to be important for the generation and maintenance of focal seizures are established at the time of epilepsy diagnosis and are not necessarily a result of the chronicity of the disorder.
Collapse
Affiliation(s)
- N J Leek
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Neason
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - B A K Kreilkamp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - C de Bezenac
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - B Ziso
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - S Elkommos
- St. George's University Hospitals NHS Foundation Trust, London, UK
| | - K Das
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - A G Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - S S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
11
|
Pimentel-Silva LR, Casseb RF, Cordeiro MM, Campos BAG, Alvim MKM, Rogerio F, Yasuda CL, Cendes F. Interactions between in vivo neuronal-glial markers, side of hippocampal sclerosis, and pharmacoresponse in temporal lobe epilepsy. Epilepsia 2020; 61:1008-1018. [PMID: 32347553 DOI: 10.1111/epi.16509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/01/2020] [Accepted: 03/29/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To evaluate the interactions of metabolic neuronal-glial changes with the presence and hemispheric-side of hippocampal sclerosis (HS) and its potential role in predicting pharmacoresistance in temporal lobe epilepsy (TLE). METHODS We included structural magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (1 H-MRS) metabolic data for 91 patients with unilateral TLE and 50 healthy controls. We measured the values of total N-acetyl aspartate/total creatine (tNAA/tCr), glutamate/tCr (Glu/tCr), and myo-inositol/tCr (mIns/tCr). To assess the influence of the pharmacoresponse and hemispheric-side of HS on metabolic data, the relationship between clinical and MRI data, and the predictive value of NAA/Cr, we used analysis of variance/covariance and built a logistic regression model. We used bootstrap simulations to evaluate reproducibility. RESULTS Bilateral tNAA/tCr reduction was associated with pharmacoresistance and with left HS, a decrease of Glu/tCr ipsilateral to the seizure focus was associated with pharmacoresistance, and ipsilateral mIns/tCr increase was related to pharmacoresistance and the presence of left HS. The logistic regression model containing clinical and 1 H-MRS data discriminated pharmacoresistance (area under the curve [AUC] = 0.78). However, the reduction of tNAA/tCr was the main predictor, with the odds 2.48 greater for pharmacoresistance. SIGNIFICANCE Our study revealed a spectrum of neuronal-glial changes in TLE, which was associated with pharmacoresistance, being more severe in left-sided HS and less severe in MRI-negative TLE. These noninvasive, in vivo biomarkers provide valuable additional information about the interhemispheric differences in metabolic dysfunction, seizure burden, and HS, and may help to predict pharmacoresistance.
Collapse
Affiliation(s)
| | - Raphael F Casseb
- Department of Neurology, University of Campinas, Campinas, Brazil
| | | | - Bruno A G Campos
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Marina K M Alvim
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Fábio Rogerio
- Department of Pathology, University of Campinas, Campinas, Brazil
| | | | - Fernando Cendes
- Department of Neurology, University of Campinas, Campinas, Brazil
| |
Collapse
|
12
|
Tan Q, Sun H, Wang W, Wu X, Hao N, Su X, Yang X, Zhang S, Su J, Yue Q, Gong Q. Quantitative MR spectroscopy reveals metabolic changes in the dorsolateral prefrontal cortex of patients with temporal lobe epilepsy. Eur Radiol 2018; 28:4496-4503. [DOI: 10.1007/s00330-018-5443-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/25/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
|
13
|
Abstract
Pharmaco-electroencephalography (pharmaco-EEG) has never gained great popularity in epilepsy research. Nevertheless, the electroencephalogram (EEG) is the most important neurological examination technique in this patient population. Development and investigation of antiepileptic drugs (AEDs) involves EEG for diagnosis and outcome evaluation. In contrast to the common use of the EEG for documenting the effect of AEDs on the presence of interictal epileptiform activities or seizures, quantitative analysis of drug responses in the EEG are not yet standard in pharmacological studies. We provide an overview of dedicated pharmaco-EEG studies with AEDs in humans. A systematic search in PubMed yielded 43 articles, which were reviewed for their relevance. After excluding studies according to our exclusion criteria, nine studies remained. These studies plus the retrieved references from the bibliographies of the identified studies yielded 37 studies to be included in the review. The most prominent method in pharmaco-EEG research for AEDs was analysis of the frequency content in response to drug intake, often with quantitative methods such as spectral analysis. Despite documenting the effect of the drug on brain activity, some studies were conducted in order to document treatment response, detect neurotoxic effects, and measure reversibility of AED-induced changes. There were some attempts to predict treatment response or side effects. We suggest that pharmaco-EEG deserves more attention in AED research, specifically because the newest drugs and techniques have not yet been subject to investigation.
Collapse
Affiliation(s)
- Yvonne Höller
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Ignaz Harrer Str. 79, 5020, Salzburg, Austria. .,Department of Psychology, University of Akureyri, Norðurslóð 2, 600, Akureyri, Iceland.
| | - Christoph Helmstaedter
- 0000 0001 2240 3300grid.10388.32Department of Epileptology, University of Bonn, Sigmund Freud Straße 25, 53105 Bonn, Germany
| | - Klaus Lehnertz
- 0000 0001 2240 3300grid.10388.32Department of Epileptology, University of Bonn, Sigmund Freud Straße 25, 53105 Bonn, Germany ,0000 0001 2240 3300grid.10388.32Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany
| |
Collapse
|
14
|
Keller SS. Brain atrophy in seizure-free temporal lobe epilepsy: Implications for predicting pharmacoresistance. Epilepsia 2016; 57:855-6. [PMID: 27160802 DOI: 10.1111/epi.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simon S Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom. .,Department of Neuroradiology, Walton Centre NHS Foundation Trust, Liverpool, United Kingdom. .,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
15
|
Rincon SP, Blitstein MBK, Caruso PA, González RG, Thibert RL, Ratai EM. The Use of Magnetic Resonance Spectroscopy in the Evaluation of Pediatric Patients With Seizures. Pediatr Neurol 2016; 58:57-66. [PMID: 26948493 DOI: 10.1016/j.pediatrneurol.2016.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND The objective was to determine if it is useful to routinely add magnetic resonance spectroscopy (MRS) to magnetic resonance imaging (MRI) in the evaluation of seizure in the pediatric patient. Specifically, how often does MRS contribute information to conventional MRI? METHODS A retrospective search, over a period of 3 years, of patients <18 years of age who underwent both MRI and MRS as part of the evaluation of seizures yielded a total of 233 cases in 216 patients. The medical records were reviewed to determine how many patients carried a diagnosis relevant to seizures. The MRIs and MRSs were reviewed by two neuroradiologists and an MR physicist/spectroscopist who determined by consensus in how many cases MRS contributed information regarding management, diagnosis, or prognosis, in addition to the findings on MRI alone. RESULTS In 100 of 233 cases (43%), MRS contributed information additional to MRI. In 40 cases, MRS contributed information relevant to patient management by prompting an evaluation for an underlying inborn error of metabolism. MRS contributed information relevant to diagnosis in 24 of 100 cases (e.g., neoplasm versus dysplasia). MRS contributed information relevant to prognosis in 36 cases (e.g., hypoxic-ischemic injury). MRS added more information in cases where the patients had a diagnosis relevant to seizure before imaging. Interestingly, in 25 cases where the MRI was normal, MRS was found to be abnormal, which prompted evaluation for an inborn error of metabolism. CONCLUSIONS These results suggest that MRS is a useful evaluation tool in addition to MRI for children undergoing imaging for the evaluation of seizures.
Collapse
Affiliation(s)
- Sandra P Rincon
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Marisa B K Blitstein
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Paul A Caruso
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - R Gilberto González
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ronald L Thibert
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eva-Maria Ratai
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
16
|
van Veenendaal TM, IJff DM, Aldenkamp AP, Hofman PAM, Vlooswijk MCG, Rouhl RPW, de Louw AJ, Backes WH, Jansen JFA. Metabolic and functional MR biomarkers of antiepileptic drug effectiveness: A review. Neurosci Biobehav Rev 2015; 59:92-9. [PMID: 26475992 DOI: 10.1016/j.neubiorev.2015.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022]
Abstract
As a large number of patients with epilepsy do not respond favorably to antiepileptic drugs (AEDs), a better understanding of treatment failure and the cause of adverse side effects is required. The working mechanisms of AEDs also alter neurotransmitter concentrations and brain activity, which can be measured using MR spectroscopy and functional MR imaging, respectively. This review presents an overview of clinical research of MR spectroscopy and functional MR imaging studies to the effects of AEDs on the brain. Despite the scarcity of studies associating MR findings to the effectiveness of AEDs, the current research shows clear potential regarding this matter. Several GABAergic AEDs have been shown to increase the GABA concentration, which was related to seizure reductions, while language problems due to topiramate have been associated with altered activation patterns measured with functional MR imaging. MR spectroscopy and functional MR imaging provide biomarkers that may predict individual treatment outcomes, and enable the assessment of mechanisms of treatment failure and cognitive side effects.
Collapse
Affiliation(s)
- Tamar M van Veenendaal
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Dominique M IJff
- School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands
| | - Albert P Aldenkamp
- School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands; Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; Department of Neurology, Gent University Hospital, De Pintelaan 185, 9000 Gent, Belgium; Faculty of Electrical Engineering, University of Technology Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Paul A M Hofman
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands
| | - Marielle C G Vlooswijk
- School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands; Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Rob P W Rouhl
- School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands; Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands; Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Anton J de Louw
- Epilepsy Center Kempenhaeghe, PO Box 61, 5590 AB Heeze, The Netherlands; Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; Faculty of Electrical Engineering, University of Technology Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Walter H Backes
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Departments of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
17
|
Bonilha L, Keller SS. Quantitative MRI in refractory temporal lobe epilepsy: relationship with surgical outcomes. Quant Imaging Med Surg 2015; 5:204-24. [PMID: 25853080 DOI: 10.3978/j.issn.2223-4292.2015.01.01] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/07/2015] [Indexed: 11/14/2022]
Abstract
Medically intractable temporal lobe epilepsy (TLE) remains a serious health problem. Across treatment centers, up to 40% of patients with TLE will continue to experience persistent postoperative seizures at 2-year follow-up. It is unknown why such a large number of patients continue to experience seizures despite being suitable candidates for resective surgery. Preoperative quantitative MRI techniques may provide useful information on why some patients continue to experience disabling seizures, and may have the potential to develop prognostic markers of surgical outcome. In this article, we provide an overview of how quantitative MRI morphometric and diffusion tensor imaging (DTI) data have improved the understanding of brain structural alterations in patients with refractory TLE. We subsequently review the studies that have applied quantitative structural imaging techniques to identify the neuroanatomical factors that are most strongly related to a poor postoperative prognosis. In summary, quantitative imaging studies strongly suggest that TLE is a disorder affecting a network of neurobiological systems, characterized by multiple and inter-related limbic and extra-limbic network abnormalities. The relationship between brain alterations and postoperative outcome are less consistent, but there is emerging evidence suggesting that seizures are less likely to remit with surgery when presurgical abnormalities are observed in the connectivity supporting brain regions serving as network nodes located outside the resected temporal lobe. Future work, possibly harnessing the potential from multimodal imaging approaches, may further elucidate the etiology of persistent postoperative seizures in patients with refractory TLE. Furthermore, quantitative imaging techniques may be explored to provide individualized measures of postoperative seizure freedom outcome.
Collapse
Affiliation(s)
- Leonardo Bonilha
- 1 Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA ; 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK ; 3 Department of Radiology, The Walton Centre NHS Foundation Trust, Liverpool, UK ; 4 Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simon S Keller
- 1 Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA ; 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK ; 3 Department of Radiology, The Walton Centre NHS Foundation Trust, Liverpool, UK ; 4 Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
18
|
Laxer KD, Trinka E, Hirsch LJ, Cendes F, Langfitt J, Delanty N, Resnick T, Benbadis SR. The consequences of refractory epilepsy and its treatment. Epilepsy Behav 2014; 37:59-70. [PMID: 24980390 DOI: 10.1016/j.yebeh.2014.05.031] [Citation(s) in RCA: 469] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 12/12/2022]
Abstract
Seizures in some 30% to 40% of patients with epilepsy fail to respond to antiepileptic drugs or other treatments. While much has been made of the risks of new drug therapies, not enough attention has been given to the risks of uncontrolled and progressive epilepsy. This critical review summarizes known risks associated with refractory epilepsy, provides practical clinical recommendations, and indicates areas for future research. Eight international epilepsy experts from Europe, the United States, and South America met on May 4, 2013, to present, review, and discuss relevant concepts, data, and literature on the consequences of refractory epilepsy. While patients with refractory epilepsy represent the minority of the population with epilepsy, they require the overwhelming majority of time, effort, and focus from treating physicians. They also represent the greatest economic and psychosocial burdens. Diagnostic procedures and medical/surgical treatments are not without risks. Overlooked, however, is that these risks are usually smaller than the risks of long-term, uncontrolled seizures. Refractory epilepsy may be progressive, carrying risks of structural damage to the brain and nervous system, comorbidities (osteoporosis, fractures), and increased mortality (from suicide, accidents, sudden unexpected death in epilepsy, pneumonia, vascular disease), as well as psychological (depression, anxiety), educational, social (stigma, driving), and vocational consequences. Adding to this burden is neuropsychiatric impairment caused by underlying epileptogenic processes ("essential comorbidities"), which appears to be independent of the effects of ongoing seizures themselves. Tolerating persistent seizures or chronic medicinal adverse effects has risks and consequences that often outweigh risks of seemingly "more aggressive" treatments. Future research should focus not only on controlling seizures but also on preventing these consequences.
Collapse
Affiliation(s)
- Kenneth D Laxer
- Sutter Pacific Epilepsy Program, California Pacific Medical Center, San Francisco, CA, USA.
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria; Centre for Cognitive Neuroscience, Salzburg, Austria
| | - Lawrence J Hirsch
- Division of Epilepsy and EEG, Department of Neurology, Yale Comprehensive Epilepsy Center, New Haven, CT, USA
| | - Fernando Cendes
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | - John Langfitt
- Department of Neurology, University of Rochester School of Medicine, Rochester, NY, USA; Department Psychiatry, University of Rochester School of Medicine, Rochester, NY, USA; Strong Epilepsy Center, University of Rochester School of Medicine, Rochester, NY, USA
| | - Norman Delanty
- Epilepsy Service and National Epilepsy Surgery Programme, Beaumont Hospital, Dublin, Ireland
| | - Trevor Resnick
- Comprehensive Epilepsy Program, Miami Children's Hospital, Miami, FL, USA
| | - Selim R Benbadis
- Comprehensive Epilepsy Program, University of South Florida, Tampa, FL, USA
| |
Collapse
|
19
|
Park KM, Hur Y, Kim HY, Ji KH, Hwang TG, Shin KJ, Ha SY, Park J, Kim SE. Initial response to antiepileptic drugs in patients with newly diagnosed epilepsy. J Clin Neurosci 2014; 21:923-6. [DOI: 10.1016/j.jocn.2013.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/14/2013] [Accepted: 10/27/2013] [Indexed: 12/18/2022]
|
20
|
Abstract
Magnetic resonance spectroscopy (MRS) is indicated in the imaging protocol of the patient with epilepsy to screen for metabolic derangements such as inborn errors of metabolism and to characterize masses that may be equivocal on conventional magnetic resonance imaging for dysplasia versus neoplasia. Single-voxel MRS with echo time of 35 milliseconds may be used for this purpose as a quick screening tool in the epilepsy imaging protocol. MRS is useful in the evaluation of both focal and generalized epilepsy.
Collapse
|
21
|
Casseb RF, D'Abreu A, Ruocco HH, Lopes-Cendes I, Cendes F, Castellano G. Thalamic metabolic abnormalities in patients with Huntington's disease measured by magnetic resonance spectroscopy. Braz J Med Biol Res 2013; 46:722-7. [PMID: 23969973 PMCID: PMC3854413 DOI: 10.1590/1414-431x20132332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 05/14/2012] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease (HD) is a neurologic disorder that is not completely understood; its fundamental physiological mechanisms and chemical effects remain somewhat unclear. Among these uncertainties, we can highlight information about the concentrations of brain metabolites, which have been widely discussed. Concentration differences in affected, compared to healthy, individuals could lead to the development of useful tools for evaluating the progression of disease, or to the advance of investigations of different/alternative treatments. The aim of this study was to compare the thalamic concentration of metabolites in HD patients and healthy individuals using magnetic resonance spectroscopy. We used a 2.0-Tesla magnetic field, repetition time of 1500 ms, and echo time of 135 ms. Spectra from 40 adult HD patients and 26 control subjects were compared. Quantitative analysis was performed using the LCModel method. There were statistically significant differences between HD patients and controls in the concentrations of N-acetylaspartate+N-acetylaspartylglutamate (NAA+NAAG; t-test, P<0.001), and glycerophosphocholine+phosphocholine (GPC+PCh; t-test, P=0.001) relative to creatine+phosphocreatine (Cr+PCr). The NAA+NAAG/Cr+PCr ratio was decreased by 9% and GPC+PCh/Cr+PCr increased by 17% in patients compared with controls. There were no correlations between the concentration ratios and clinical features. Although these results could be caused by T1 and T2 changes, rather than variations in metabolite concentrations given the short repetition time and long echo time values used, our findings point to thalamic dysfunction, corroborating prior evidence.
Collapse
Affiliation(s)
- R F Casseb
- Universidade Estadual de Campinas, Departamento de Raios Cósmicos e Cronologia, Instituto de Física "Gleb Wataghin", CampinasSP, Brasil
| | | | | | | | | | | |
Collapse
|
22
|
Coan AC, Cendes F. Multimodal neuroimaging: potential biomarkers for response to antiepileptic drugs? Epilepsia 2013; 54 Suppl 2:67-70. [PMID: 23646975 DOI: 10.1111/epi.12188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuroimaging techniques in epilepsy are used widely for definition of the epileptogenic lesion and surgical decision. However, its applications extend to the knowledge of epileptic mechanisms and include the identification of prognostic features that can help our decisions on the appropriate type of treatment on an individual basis. Structural neuroimaging may be able to identify patients more likely to respond to antiepileptic drug (AED) treatment and also patients who are better candidates for earlier surgical treatment. In the past decades, quantitative analyses have also improved our knowledge about epileptogenic lesions and networks as well as the following prognoses: seizure control, cognitive outcome, and comorbidities. New advanced neuroimaging techniques such as functional magnetic resonance imaging (MRI) and the development biotracers that could be associated with inflammation and specific genetic patterns will add further knowledge to the development of epilepsy treatments.
Collapse
Affiliation(s)
- Ana C Coan
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
23
|
Pohlmann-Eden B, Crocker CE, Schmidt MH. A conceptual framework for the use of neuroimaging to study and predict pharmacoresistance in epilepsy. Epilepsia 2013; 54 Suppl 2:75-9. [DOI: 10.1111/epi.12190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Candice E. Crocker
- Division of Neurology; Dalhousie University; Halifax; Nova Scotia; Canada
| | | |
Collapse
|
24
|
Yasuda CL, Cendes F. Neuroimaging for the prediction of response to medical and surgical treatment in epilepsy. ACTA ACUST UNITED AC 2012; 6:295-308. [PMID: 23480740 DOI: 10.1517/17530059.2012.683408] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Approximately 30% of patients with epilepsy do not respond to adequate medication and are candidates for surgical treatment. Outcome predictors can improve the selection of more suitable treatment options for each patient. Therefore, the authors aimed to review the role of neuroimaging studies in predicting outcomes for both clinical and surgical treatment of epilepsy. AREAS COVERED This review analyzes studies that investigated different neuroimaging techniques as predictors of clinical and surgical treatment outcome in epilepsy. Studies involving both structural (i.e., T1-weighted images and diffusion tensor images) and functional MRI (fMRI) were identified, as well as other modalities such as spectroscopy, PET, SPECT and MEG. The authors also evaluated the importance of fMRI in predicting memory outcome after surgical resections in temporal lobe epilepsy. EXPERT OPINION The identification of reliable biomarkers to predict response to medical and surgical treatments are much needed in order to provide more adequate patient counseling about prognosis and treatment options individually. Different neuroimaging techniques may provide combined measurements that potentially may become these biomarkers in the near future.
Collapse
Affiliation(s)
- Clarissa Lin Yasuda
- University of Campinas/UNICAMP, Department of Neurology, Neuroimaging Laboratory , Cidade Universitária Zeferino Vaz, Rua Tessália Vieira de Camargo, 126. Cx postal 6111, Campinas, SP. CEP 13083-970 , Brazil
| | | |
Collapse
|
25
|
Pittau F, Grova C, Moeller F, Dubeau F, Gotman J. Patterns of altered functional connectivity in mesial temporal lobe epilepsy. Epilepsia 2012; 53:1013-23. [PMID: 22578020 DOI: 10.1111/j.1528-1167.2012.03464.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE In mesial temporal lobe epilepsy (MTLE) the epileptogenic area is confined to the mesial temporal lobe, but other cortical and subcortical areas are also affected and cognitive and psychiatric impairments are usually documented. Functional connectivity methods are based on the correlation of the blood oxygen level dependent (BOLD) signal between brain regions, which exhibit consistent and reproducible functional networks from resting state data. The aim of this study is to compare functional connectivity of patients with MTLE during the interictal period with healthy subjects. We hypothesize that patients show reduced functional connectivity compared to controls, the interest being to determine which regions show this reduction. METHODS We selected electroencephalography-functional magnetic resonance imaging (EEG-fMRI) resting state data without EEG spikes from 16 patients with right and 7 patients with left MTLE. EEG-fMRI resting state data of 23 healthy subjects matched for age, sex, and manual preference were selected as controls. Four volumes of interest in the left and right amygdalae and hippocampi (LA, RA, LH, and RH) were manually segmented in the anatomic MRI of each subject. The averaged BOLD time course within each volume of interest was used to detect brain regions with BOLD signal correlated with it. Group differences between patients and controls were estimated. KEY FINDINGS In patients with right MTLE, group difference functional connectivity maps (RMTLE - controls) showed for RA and RH decreased connectivity with the brain areas of the default mode network (DMN), the ventromesial limbic prefrontal regions, and contralateral mesial temporal structures; and for LA and LH, decreased connectivity with DMN and contralateral hippocampus. Additional decreased connectivity was found between LA and pons and between LH and ventromesial limbic prefrontal structures. In patients with left MTLE, functional connectivity maps (LMTLE - controls) showed for LA and LH decreased connectivity with DMN, contralateral hippocampus, and bilateral ventromesial limbic prefrontal regions; no change in connectivity was detected for RA; and for RH, there was decreased connectivity with DMN, bilateral ventromesial limbic prefrontal regions, and contralateral amygdala and hippocampus. SIGNIFICANCE In unilateral MTLE, amygdala and hippocampus on the affected and to a lesser extent on the healthy side are less connected, and are also less connected with the dopaminergic mesolimbic and the DMNs. Changes in functional connectivity between mesial temporal lobe structures and these structures may explain cognitive and psychiatric impairments often found in patients with MTLE.
Collapse
Affiliation(s)
- Francesca Pittau
- Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | | | | | | | | |
Collapse
|
26
|
Hippocampal sclerosis in children younger than 2 years. Pediatr Radiol 2011; 41:1239-45. [PMID: 21735179 DOI: 10.1007/s00247-011-2166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 05/19/2011] [Accepted: 05/25/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hippocampal sclerosis (HS) is rarely considered as a diagnosis in children younger than 2 years. OBJECTIVE To describe imaging features in conjunction with clinical information in patients with hippocampal sclerosis who are younger than 2 years. MATERIALS AND METHODS We retrospectively reviewed MR brain imaging and clinical information in five children in whom the diagnosis of HS was made both clinically and by MRI prior to 2 years of age. RESULTS Imaging features establishing the diagnosis of hippocampal sclerosis were bright T2 signal and volume loss, while the internal architecture of the hippocampal formation was preserved in almost all children. Clinically, all children had an infectious trigger. CONCLUSION It is necessary for radiologists to consider HS in children with certain clinical features to plan an MRI protocol that is appropriate for detection of hippocampal pathology.
Collapse
|
27
|
|