1
|
Inoue T, Nomura S, Yamakawa T, Takara S, Imoto H, Maruta Y, Niwayama M, Suzuki M. Intraoperative evaluation using a multimodality probe of temperature-dependent neurovascular modulation during focal brain cooling. Clin Neurophysiol 2025; 173:31-42. [PMID: 40073587 DOI: 10.1016/j.clinph.2025.02.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/15/2025] [Accepted: 02/09/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVE This study aimed to assess the effects of focal brain cooling (FBC) on human brain tissue through use of multiple sensing techniques by monitoring cerebrovascular activity and brain temperature. METHODS Intraoperative brain activity monitoring using a multimodality probe capable of measuring brain temperature, electrocorticography (ECoG) and changes in cerebral hemoglobin concentration was performed in 13 patients with refractory epilepsy. Brain temperature and neurovascular activity were measured beneath and surrounding the FBC device. Data were categorized into three temperature ranges [low-temperature range (LTR, <18 °C), moderate-temperature range (MTR, 18 °C-28 °C), and high-temperature range (HTR, >28 °C)] for analysis. RESULTS Changes in oxyhemoglobin (ΔO2Hb) and deoxyhemoglobin (ΔHHb) across the temperature ranges showed a U-shape and inverted U-shape pattern, respectively. ΔO2Hb decreased and ΔHHb increased in the MTR, reflecting enhanced neuronal activity and increased oxygen consumption. Conversely, ΔO2Hb increased and ΔHHb decreased in the LTR, indicating suppressed neuronal activity and reduced oxygen consumption. These findings highlight the temperature-dependent modulation of neurovascular activity by FBC, driven by distinct non-linear patterns. CONCLUSIONS FBC selectively influenced brain electrical activity and hemoglobin concentration, highlighting its subtle effects on neurovascular dynamics. SIGNIFICANCE These findings provide critical insights into optimizing cooling strategies for neurological disorders using multimodality probes and FBC devices.
Collapse
Affiliation(s)
- Takao Inoue
- Organization of Research Initiatives, Yamaguchi University, Ube, Japan.
| | - Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Toshitaka Yamakawa
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Sayuki Takara
- Organization of Research Initiatives, Yamaguchi University, Ube, Japan
| | - Hirochika Imoto
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Yuichi Maruta
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Masatsugu Niwayama
- Graduate School of Medical Photonics, Shizuoka University, Hamamatsu, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| |
Collapse
|
2
|
Takara S, Kida H, Inoue T. Development of implantable devices for epilepsy: research with cats, dogs, and macaques in biomedical engineering. Adv Robot 2024; 38:983-1007. [DOI: 10.1080/01691864.2024.2345655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Sayuki Takara
- Research Center for Advanced Science and Innovation, Organization for Research Initiatives, Yamaguchi University, Ube, Japan
| | - Hiroyuki Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takao Inoue
- Research Center for Advanced Science and Innovation, Organization for Research Initiatives, Yamaguchi University, Ube, Japan
| |
Collapse
|
3
|
Hirayama Y, Kida H, Inoue T, Sugimoto K, Oka F, Shirao S, Imoto H, Nomura S, Suzuki M. Focal brain cooling suppresses spreading depolarization and reduces endothelial nitric oxide synthase expression in rats. IBRO Neurosci Rep 2024; 16:609-621. [PMID: 38800086 PMCID: PMC11127172 DOI: 10.1016/j.ibneur.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
This study aimed to investigate the effects of focal brain cooling (FBC) on spreading depolarization (SD), which is associated with several neurological disorders. Although it has been studied from various aspects, no medication has been developed that can effectively control SD. As FBC can reduce neuronal damage and promote functional recovery in pathological conditions such as epilepsy, cerebral ischemia, and traumatic brain injury, it may also potentially suppress the onset and progression of SD. We created an experimental rat model of SD by administering 1 M potassium chloride (KCl) to the cortical surface. Changes in neuronal and vascular modalities were evaluated using multimodal recording, which simultaneously recorded brain temperature (BrT), wide range electrocorticogram, and two-dimensional cerebral blood flow. The rats were divided into two groups (cooling [CL] and non-cooling [NC]). Warm or cold saline was perfused on the surface of one hemisphere to maintain BrT at 37°C or 15°C in the NC and CL groups, respectively. Western blot analysis was performed to determine the effects of FBC on endothelial nitric oxide synthase (eNOS) expression. In the NC group, KCl administration triggered repetitive SDs (mean frequency = 11.57/h). In the CL group, FBC increased the duration of all KCl-induced events and gradually reduced their frequency. Additionally, eNOS expression decreased in the cooled brain regions compared to the non-cooled contralateral hemisphere. The results obtained by multimodal recording suggest that FBC suppresses SD and decreases eNOS expression. This study may contribute to developing new treatments for SD and related neurological disorders.
Collapse
Affiliation(s)
- Yuya Hirayama
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Japan
| | - Hiroyuki Kida
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Japan
| | - Takao Inoue
- Organization of Research Initiatives, Yamaguchi University, Japan
| | - Kazutaka Sugimoto
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Japan
| | - Fumiaki Oka
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Japan
| | - Satoshi Shirao
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Japan
| | - Hirochika Imoto
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Japan
| | - Sadahiro Nomura
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Japan
| |
Collapse
|
4
|
Moriyama H, Nomura S, Imoto H, Inoue T, Fujiyama Y, Haji K, Maruta Y, Ishihara H, Suzuki M. Suppressive Effects of Transient Receptor Potential Melastatin 8 Agonist on Epileptiform Discharges and Epileptic Seizures. Front Pharmacol 2021; 12:766782. [PMID: 34658898 PMCID: PMC8517222 DOI: 10.3389/fphar.2021.766782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 01/12/2023] Open
Abstract
Epilepsy is a relatively common condition, but more than 30% of patients have refractory epilepsy that is inadequately controlled by or is resistant to multiple drug treatments. Thus, new antiepileptic drugs based on newly identified mechanisms are required. A previous report revealed the suppressive effects of transient receptor potential melastatin 8 (TRPM8) activation on penicillin G-induced epileptiform discharges (EDs). However, it is unclear whether TRPM8 agonists suppress epileptic seizures or affect EDs or epileptic seizures in TRPM8 knockout (TRPM8KO) mice. We investigated the effects of TRPM8 agonist and lack of TRPM8 channels on EDs and epileptic seizures. Mice were injected with TRPM8 agonist 90 min after or 30 min before epilepsy-inducer injection, and electrocorticograms (ECoGs) were recorded under anesthesia, while behavior was monitored when awake. TRPM8 agonist suppressed EDs and epileptic seizures in wildtype (WT) mice, but not in TRPM8KO mice. In addition, TRPM8KO mice had a shorter firing latency of EDs, and EDs and epileptic seizures were deteriorated by the epilepsy inducer compared with those in WT mice, with the EDs being more easily propagated to the contralateral side. These findings suggest that TRPM8 activation in epileptic regions has anti-epileptic effects.
Collapse
Affiliation(s)
- Hiroshi Moriyama
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Sadahiro Nomura
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| | - Hirochika Imoto
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| | - Takao Inoue
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Yuichi Fujiyama
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kohei Haji
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Yuichi Maruta
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hideyuki Ishihara
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Michiyasu Suzuki
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| |
Collapse
|
5
|
Csernyus B, Szabó Á, Fiáth R, Zátonyi A, Lázár C, Pongrácz A, Fekete Z. A multimodal, implantable sensor array and measurement system to investigate the suppression of focal epileptic seizure using hypothermia. J Neural Eng 2021; 18. [PMID: 34280911 DOI: 10.1088/1741-2552/ac15e6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022]
Abstract
Objective.Local cooling of the brain as a therapeutic intervention is a promising alternative for patients with epilepsy who do not respond to medication.In vitroandin vivostudies have demonstrated the seizure-suppressing effect of local cooling in various animal models. In our work, focal brain cooling in a bicuculline induced epilepsy model in rats is demonstrated and evaluated using a multimodal micro-electrocorticography (microECoG) device.Approach.We designed and experimentally tested a novel polyimide-based sensor array capable of recording microECoG and temperature signals concurrently from the cortical surface of rats. The effect of cortical cooling after seizure onset was evaluated using 32 electrophysiological sites and eight temperature sensing elements covering the brain hemisphere, where injection of the epileptic drug was performed. The focal cooling of the cortex right above the injection site was accomplished using a miniaturized Peltier chip combined with a heat pipe to transfer heat. Control of cooling and collection of sensor data was provided by a custom designed Arduino based electronic board. We tested the experimental setup using an agar gel modelin vitro, and thenin vivoin Wistar rats.Main results.Spatial variation of temperature during the Peltier controlled cooling was evaluated through calibrated, on-chip platinum temperature sensors. We found that frequency of epileptic discharges was not substantially reduced by cooling the cortical surface to 30 °C, but was suppressed efficiently at temperature values around 20 °C. The multimodal array revealed that seizure-like ictal events far from the focus and not exposed to high drop in temperature can be also inhibited at an extent like the directly cooled area.Significance.Our results imply that not only the absolute drop in temperature determines the efficacy of seizure suppression, and distant cortical areas not directly cooled can be influenced.
Collapse
Affiliation(s)
- B Csernyus
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Á Szabó
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,Roska Tamás Interdisciplinary Doctoral School, Pázmány Péter Catholic University, Budapest, Hungary
| | - R Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - A Zátonyi
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - C Lázár
- Microsystems Laboratory, Institute of Technical Physics and Material Sciences, Center for Energy Research, Budapest, Hungary
| | - A Pongrácz
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
6
|
Nomura S, Inoue T, Imoto H, Sadahiro H, Sugimoto K, Maruta Y, Ishihara H, Suzuki M. A focal brain-cooling device as an alternative to electrical stimulation for language mapping during awake craniotomy: patient series. JOURNAL OF NEUROSURGERY: CASE LESSONS 2021; 2:CASE21131. [PMID: 35854858 PMCID: PMC9265174 DOI: 10.3171/case21131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/14/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND
Functional mapping in awake craniotomy has the potential risk of electrical stimulation-related seizure. The authors have developed a novel mapping technique using a brain-cooling device. The cooling probe is cylindrical in shape with a thermoelectric cooling plate (10 × 10 mm) at the bottom. A proportional integration and differentiation-controlled system adjusts the temperature accurately (Japan patent no. P5688666). The authors used it in two patients with glioblastoma. Broca’s area was identified by electrical stimulation, and then the cooling probe set at 5°C was attempted on it.
OBSERVATIONS
Electrocorticogram was suppressed, and the temperature dropped to 8°C in 50 sec. A positive aphasic reaction was reproduced on Broca’s area at a latency of 7 sec. A negative reaction appeared on the adjacent cortices despite the temperature decrease. The sensitivity and specificity were 60% and 100%, respectively. No seizures or other adverse events related to the cooling were recognized, and no histological damage to the cooled cortex was observed.
LESSONS
The cooling probe suppressed topographical brain function selectively and reversibly. Awake functional mapping based on thermal neuromodulation technology could substitute or compensate for the conventional electrical mapping.
Collapse
Affiliation(s)
| | - Takao Inoue
- Advanced Thermal Neurobiology, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | | | | | | | | | | | - Michiyasu Suzuki
- Advanced Thermal Neurobiology, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
7
|
Ibayashi K, Cardenas AR, Oya H, Kawasaki H, Kovach CK, Howard MA, Long MA, Greenlee JDW. Focal Cortical Surface Cooling is a Novel and Safe Method for Intraoperative Functional Brain Mapping. World Neurosurg 2020; 147:e118-e129. [PMID: 33307258 DOI: 10.1016/j.wneu.2020.11.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Electric cortical stimulation (ECS) has been the gold standard for intraoperative functional mapping in neurosurgery, yet it carries the risk of induced seizures. We assess the safety of focal cortical cooling (CC) as a potential alternative to ECS. METHODS We reviewed 40 patients (13 with tumor and 27 with mesial temporal lobe epilepsy) who underwent intraoperative CC at the University of Iowa Hospital and Clinics (CC group), of whom 38 underwent ECS preceding CC. Intraoperative and postoperative seizure incidence, postoperative neurologic deficits, and new postoperative radiographic findings were collected to assess CC safety. Fifty-five patients who underwent ECS mapping without CC (ECS-alone group) were reviewed as a control cohort. Another 25 patients who underwent anterior temporal lobectomy (ATL) without CC or ECS (no ECS/no CC-ATL group) were also reviewed to evaluate long-term effects of CC. RESULTS Seventy-nine brain sites in the CC group were cooled, comprising inferior frontal gyrus (44%), precentral gyrus (39%), postcentral gyrus (6%), subcentral gyrus (4%), and superior temporal gyrus (6%). The incidence of intraoperative seizure(s) was 0% (CC group) and 3.6% (ECS-alone group). The incidence of seizure(s) within the first postoperative week did not significantly differ among CC (7.9%), ECS-alone (9.0%), and no ECS/no CC-ATL groups (12%). There was no significant difference in the incidence of postoperative radiographic change between CC (7.5%) and ECS-alone groups (5.5%). Long-term seizure outcome (Engel I+II) for mesial temporal epilepsy did not differ among CC (80%), ECS-alone (83.3%), and no ECS/no CC-ATL groups (83.3%). CONCLUSIONS CC when used as an intraoperative mapping technique is safe and may complement ECS.
Collapse
Affiliation(s)
- Kenji Ibayashi
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Araceli R Cardenas
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Christopher K Kovach
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Michael A Long
- Neuroscience Institute, New York University School of Medicine, New York, New York, USA
| | - Jeremy D W Greenlee
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
| |
Collapse
|
8
|
Recent antiepileptic and neuroprotective applications of brain cooling. Seizure 2020; 82:80-90. [PMID: 33011591 DOI: 10.1016/j.seizure.2020.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Hypothermia is a widely used clinical practice for neuroprotection and is a well-established method to mitigate the adverse effects of some clinical conditions such as reperfusion injury after cardiac arrest and hypoxic ischemic encephalopathy in newborns. The discovery, that lowering the core temperature has a therapeutic potential dates back to the early 20th century, but the underlying mechanisms are actively researched, even today. Especially, in the area of neural disorders such as epilepsy and traumatic brain injury, cooling has promising prospects. It is well documented in animal models, that the application of focal brain cooling can effectively terminate epileptic discharges. There is, however, limited data regarding human clinical trials. In this review article, we will discuss the main aspects of therapeutic hypothermia focusing on its use in treating epilepsy. The various experimental approaches and device concepts for focal brain cooling are presented and their potential for controlling and suppressing seizure activity are compared.
Collapse
|
9
|
Nomura S, Kida H, Hirayama Y, Imoto H, Inoue T, Moriyama H, Mitsushima D, Suzuki M. Reduction of spike generation frequency by cooling in brain slices from rats and from patients with epilepsy. J Cereb Blood Flow Metab 2019; 39:2286-2294. [PMID: 30117752 PMCID: PMC6827110 DOI: 10.1177/0271678x18795365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study aimed to understand the mechanism by which brain cooling terminates epileptic discharge. Cortical slices were prepared from rat brains (n = 19) and samples from patients with intractable epilepsy that had undergone temporal lobectomy (n = 7). We performed whole cell current clamp recordings at approximately physiological brain temperature (35℃) and at cooler temperatures (25℃ and 15℃). The firing threshold in human neurons was lower at 25℃ (-32.6 mV) than at 35℃ (-27.0 mV). The resting potential and spike frequency were similar at 25℃ and 35℃. Cooling from 25℃ to 15℃ did not change the firing threshold, but the resting potential increased from -65.5 to -54.0 mV and the waveform broadened from 1.85 to 6.55 ms, due to delayed repolarization. These changes enhanced the initial spike appearance and reduced spike frequency; moreover, spike frequency was insensitive to increased levels of current injections. Similar results were obtained in rat brain studies. We concluded that the reduction in spike frequency at 15℃, due to delayed repolarization, might be a key mechanism by which brain cooling terminates epileptic discharge. On the other hand, spike frequency was not influenced by the reduced firing threshold or the elevated resting potential caused by cooling.
Collapse
Affiliation(s)
- Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.,Epilepsy Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Hiroyuki Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yuya Hirayama
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hirochika Imoto
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.,Epilepsy Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Takao Inoue
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hiroshi Moriyama
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| |
Collapse
|
10
|
Moriyama H, Nomura S, Kida H, Inoue T, Imoto H, Maruta Y, Fujiyama Y, Mitsushima D, Suzuki M. Suppressive Effects of Cooling Compounds Icilin on Penicillin G-Induced Epileptiform Discharges in Anesthetized Rats. Front Pharmacol 2019; 10:652. [PMID: 31263415 PMCID: PMC6585232 DOI: 10.3389/fphar.2019.00652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
More than 30% of patients with epilepsy are refractory and have inadequate seizure control. Focal cortical cooling (FCC) suppresses epileptiform discharges (EDs) in patients with refractory focal cortical epilepsy. However, little is known about the mechanism by which FCC inhibits seizures at 15°C, and FCC treatment is highly invasive. Therefore, new antiepileptic drugs are needed that produce the same effects as FCC but with different mechanisms of action. To address this need, we focused on transient receptor potential melastatin 8 (TRPM8), an ion channel that detects cold, which is activated at 15°C. We examined whether TRPM8 activation suppresses penicillin G (PG)-induced EDs in anesthetized rats. Icilin, a TRPM8 and TRP Ankyrin 1 agonist, was administered after PG injection, and a focal electrocorticogram (ECoG) and cortical temperature were recorded for 4 h. We measured spike amplitude, duration, firing rate, and power density in each band to evaluate the effects of icilin. PG-induced EDs and increased delta, theta, alpha, and beta power spectra were observed in the ECoG. Icilin suppressed EDs while maintaining cortical temperature. In particular, 3.0-mM icilin significantly suppressed PG-induced spike amplitude, duration, and firing rate and improved the increased power density of each band in the EDs to the level of basal activity in the ECoG. These suppressive effects of 3.0-mM icilin on EDs were antagonized by administering N-(3-aminopropyl)-2-[(3-methylphenyl) methoxy]-N-(2-thienylmethyl)-benzamide hydrochloride (AMTB), a selective TRPM8 inhibitor. Our results suggest that TRPM8 activation in epileptic brain regions may be a new therapeutic approach for patients with epilepsy.
Collapse
Affiliation(s)
- Hiroshi Moriyama
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Sadahiro Nomura
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.,Epilepsy Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Hiroyuki Kida
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takao Inoue
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hirochika Imoto
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.,Epilepsy Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Yuichi Maruta
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuichi Fujiyama
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Dai Mitsushima
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
11
|
He Y, Inoue T, Nomura S, Maruta Y, Kida H, Yamakawa T, Hirayama Y, Imoto H, Suzuki M. Limitations of Local Brain Cooling on Generalized Motor Seizures from Unknown Foci in Awake Rats. Neurol Med Chir (Tokyo) 2019; 59:147-153. [PMID: 30890681 PMCID: PMC6465526 DOI: 10.2176/nmc.oa.2018-0112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Local brain cooling of an epileptic focus at 15°C reduces the number of spikes on an electrocorticogram (ECoG), terminates seizures, and maintains neurological functions. In this study, we attempted to suppress generalized motor seizures (GMSs) by cooling a unilateral sensorimotor area. GMSs were induced in rats by intraperitoneal injection of bicuculline methiodide, an antagonist of gamma-aminobutyric acid. While monitoring the ECoG and behavior, the right sensorimotor cortex was cooled for 10 min using an implanted device. The number of spikes recorded from the cooled cortex significantly decreased to 71.2% and 62.5% compared with the control group at temperatures of 15 and 5°C (both P <0.01), respectively. The number of spikes recorded from the contralateral mirror cortex reduced to 61.7% and 62.7% (both P <0.05), respectively. The ECoG power also declined to 85% and 50% in the cooled cortex, and to 94% and 49% in the mirror cortex by the cooling at 15 and 5°C, respectively. The spikes regained in the middle of the cooling period at 15°C and in the late period at 5°C. Seizure-free durations during the 10-min periods of cooling at 15 and 5°C lasted for 4.1 ± 2.2 and 5.9 ± 1.1 min, respectively. Although temperature-dependent seizure alleviation was observed, the effect of local cortical cooling on GMSs was limited compared with the effect of local cooling of the epileptic focus on GSMs.
Collapse
Affiliation(s)
- Yeting He
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University
| | - Takao Inoue
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University
| | - Sadahiro Nomura
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University.,Epilepsy Center, Yamaguchi University Hospital
| | - Yuichi Maruta
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University
| | - Hiroyuki Kida
- Department of Physiology, Graduate School of Medicine, Yamaguchi University
| | - Toshitaka Yamakawa
- Department of Computer Science and Electrical Engineering, Graduate School of Science and Technology, Kumamoto University.,Priority Organization for Innovation and Excellence, Kumamoto University
| | - Yuya Hirayama
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University
| | - Hirochika Imoto
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University.,Epilepsy Center, Yamaguchi University Hospital
| | - Michiyasu Suzuki
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University
| |
Collapse
|
12
|
Yamakawa T, Inoue T, Niwayama M, Oka F, Imoto H, Nomura S, Suzuki M. Implantable Multi-Modality Probe for Subdural Simultaneous Measurement of Electrophysiology, Hemodynamics, and Temperature Distribution. IEEE Trans Biomed Eng 2019; 66:3204-3211. [PMID: 30835208 DOI: 10.1109/tbme.2019.2902189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The purpose of this paper is to demonstrate how the integration of the multi-channel measurement capabilities of near-infrared spectroscopy (NIRS), electrocorticography (ECoG), and negative temperature coefficient thermistor sensors into a single device compact enough for subdural implantation can provide beneficial information on various aspects of brain cortical activity and prove a powerful medical modality for pre-, intra-, and post-operative diagnoses in neurosurgery. METHODS The development of a flexible multi-modal multi-channel probe for the simultaneous measurement of the NIRS, ECoG, and surficial temperature obtained from the cerebral cortex was carried out. Photoelectric bare chips for NIRS channels, miniature temperature-coefficient thermistors for measuring localized temperature variation, and 3-mm-diameter platinum plates for ECoG recording were assembled on a polyimide-based flexible printed circuit to create six channels for each modality. A conformal coating of Parylene-C was applied on all the channels except the ECoG to make the probe surface biocompatible. RESULTS As a first-in-human study, the simultaneous measurement capability of the multi-modality probe, with sufficient signal-to-noise ratio and accuracy, to observe pathological neural activities in subjects during surgery and post-operative monitoring, with no complications two weeks since the implantation, was confirmed. CONCLUSION The feasibility of using a single device to assess the dynamic pathological activity from three different aspects was determined for human patients. SIGNIFICANCE The simultaneous and accurate multi-channel recording of electrical, hemodynamic, and thermographic cortical activities in a single device small enough for subdural implantation is likely to have major implications in neurosurgery and neuroscience.
Collapse
|
13
|
Hata K, Fujiwara K, Inoue T, Abe T, Kubo T, Yamakawa T, Nomura S, Imoto H, Suzuki M, Kano M. Epileptic Seizure Suppression by Focal Brain Cooling With Recirculating Coolant Cooling System: Modeling and Simulation. IEEE Trans Neural Syst Rehabil Eng 2019; 27:162-171. [PMID: 30624219 DOI: 10.1109/tnsre.2019.2891090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A focal brain cooling system for treatment of refractory epilepsy that is implantable and wearable may permit patients with this condition to lead normal daily lives. We have developed such a system for cooling of the epileptic focus by delivery of cold saline to a cooling device that is implanted cranially. The outflow is pumped for circulation and cooled by a Peltier device. Here, we describe the design of the system and evaluate its feasibility by simulation. Mathematical models were constructed based on equations of fluid dynamics and data from a cat model. Computational fluid dynamics simulations gave the following results: 1) a cooling device with a complex channel structure gives a more uniform temperature in the brain; 2) a cooling period of <10 min is required to reach an average temperature of 25.0°Cat 2 mm below the brain surface, which is the target temperature for seizure suppression. This time is short enough for cooling of the brain before seizure onset after seizure prediction by an intracranial electroencephalogram-based algorithm; and 3) battery charging would be required once every several days for most patients. These results suggest that the focal brain cooling system may be clinically applicable.
Collapse
|
14
|
Tauchi M, Tejada de Rink MM, Fujioka H, Okayama S, Nakamura KI, Dietel B, Achenbach S, Kollmar R, Schwab S, Ushijima K, Harada H. Targeted Temperature Management: Peltier's Element-Based Focal Brain Cooling Protects Penumbra Neurons from Progressive Damage in Experimental Cerebral Ischemia. Ther Hypothermia Temp Manag 2018; 8:225-233. [DOI: 10.1089/ther.2017.0055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Miyuki Tauchi
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Molecular Neurology, and Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Medicine 2–Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maria Mercedes Tejada de Rink
- Department of Anesthesiology, Kurume University School of Medicine, Kurume, Japan
- Neuroanesthesia Research Laboratory, Cognitive and Molecular Institute of Brain Diseases, Kurume University School of Medicine, Kurume, Japan
| | - Hiroshi Fujioka
- Department of Neurosurgery, Kanmon Medical Center, National Hospital Organization (NHO), Yamaguchi, Japan
| | - Satoko Okayama
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Kei-ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Barbara Dietel
- Department of Medicine 2–Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stephan Achenbach
- Department of Medicine 2–Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Kollmar
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefan Schwab
- Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kazuo Ushijima
- Department of Anesthesiology, Kurume University School of Medicine, Kurume, Japan
| | - Hideki Harada
- Department of Anesthesiology, Kurume University School of Medicine, Kurume, Japan
- Neuroanesthesia Research Laboratory, Cognitive and Molecular Institute of Brain Diseases, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
15
|
Tokiwa T, Zimin L, Inoue T, Nomura S, Suzuki M, Yamakawa T. Detailed spectral profile analysis of electrocorticograms during freezing against penicillin-induced epileptiform discharges in the anesthetized rat. Epilepsy Res 2018; 143:27-32. [DOI: 10.1016/j.eplepsyres.2018.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/30/2018] [Accepted: 03/28/2018] [Indexed: 11/17/2022]
|
16
|
Fernandes J, Vendramini E, Miranda AM, Silva C, Dinis H, Coizet V, David O, Mendes PM. Design and Performance Assessment of a Solid-State Microcooler for Thermal Neuromodulation. MICROMACHINES 2018; 9:mi9020047. [PMID: 30393323 PMCID: PMC6187761 DOI: 10.3390/mi9020047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 01/06/2023]
Abstract
It is well known that neural activity can be modulated using a cooling device. The applications of this technique range from the treatment of medication-resistant cerebral diseases to brain functional mapping. Despite the potential benefits of such technique, its use has been limited due to the lack of suitable thermal modulators. This paper presents the design and validation of a solid-state cooler that was able to modulate the neural activity of rodents without the use of large and unpractical water pipes. A miniaturized thermal control solution based exclusively on solid-state devices was designed, occupying only 5 mm × 5 mm × 3 mm, and featuring the potential for wireless power and communications. The cold side of the device was cooled to 26 °C, while the hot side was kept below 43 °C. This range of temperatures is compatible with brain cooling and efficient enough for achieving some control of neural activity.
Collapse
Affiliation(s)
- José Fernandes
- CMEMS, University of Minho, 4800-058 Guimarães, Portugal.
| | - Estelle Vendramini
- Grenoble Institut des Neurosciences, U1216 Inserm, Université Grenoble Alpes, 38400 Grenoble, France.
| | - Ana M Miranda
- CMEMS, University of Minho, 4800-058 Guimarães, Portugal.
| | | | - Hugo Dinis
- CMEMS, University of Minho, 4800-058 Guimarães, Portugal.
| | - Veronique Coizet
- Grenoble Institut des Neurosciences, U1216 Inserm, Université Grenoble Alpes, 38400 Grenoble, France.
| | - Olivier David
- Grenoble Institut des Neurosciences, U1216 Inserm, Université Grenoble Alpes, 38400 Grenoble, France.
| | | |
Collapse
|
17
|
Sone D, Ikegaya N, Takahashi A, Sumida K, Ota M, Saito T, Kimura Y, Matsuda H, Sato N. Noninvasive detection of focal brain hyperthermia related to continuous epileptic activities using proton MR spectroscopy. Epilepsy Res 2017; 138:1-4. [DOI: 10.1016/j.eplepsyres.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 09/03/2017] [Accepted: 10/01/2017] [Indexed: 10/18/2022]
|
18
|
Soriano J, Kubo T, Inoue T, Kida H, Yamakawa T, Suzuki M, Ikeda K. Differential temperature sensitivity of synaptic and firing processes in a neural mass model of epileptic discharges explains heterogeneous response of experimental epilepsy to focal brain cooling. PLoS Comput Biol 2017; 13:e1005736. [PMID: 28981509 PMCID: PMC5628798 DOI: 10.1371/journal.pcbi.1005736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Experiments with drug-induced epilepsy in rat brains and epileptic human brain region reveal that focal cooling can suppress epileptic discharges without affecting the brain's normal neurological function. Findings suggest a viable treatment for intractable epilepsy cases via an implantable cooling device. However, precise mechanisms by which cooling suppresses epileptic discharges are still not clearly understood. Cooling experiments in vitro presented evidence of reduction in neurotransmitter release from presynaptic terminals and loss of dendritic spines at post-synaptic terminals offering a possible synaptic mechanism. We show that termination of epileptic discharges is possible by introducing a homogeneous temperature factor in a neural mass model which attenuates the post-synaptic impulse responses of the neuronal populations. This result however may be expected since such attenuation leads to reduced post-synaptic potential and when the effect on inhibitory interneurons is less than on excitatory interneurons, frequency of firing of pyramidal cells is consequently reduced. While this is observed in cooling experiments in vitro, experiments in vivo exhibit persistent discharges during cooling but suppressed in magnitude. This leads us to conjecture that reduction in the frequency of discharges may be compensated through intrinsic excitability mechanisms. Such compensatory mechanism is modelled using a reciprocal temperature factor in the firing response function in the neural mass model. We demonstrate that the complete model can reproduce attenuation of both magnitude and frequency of epileptic discharges during cooling. The compensatory mechanism suggests that cooling lowers the average and the variance of the distribution of threshold potential of firing across the population. Bifurcation study with respect to the temperature parameters of the model reveals how heterogeneous response of epileptic discharges to cooling (termination or suppression only) is exhibited. Possibility of differential temperature effects on post-synaptic potential generation of different populations is also explored.
Collapse
Affiliation(s)
- Jaymar Soriano
- Mathematical Informatics Laboratory, Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Computer Science, University of the Philippines - Diliman, Quezon City, Philippines
| | - Takatomi Kubo
- Mathematical Informatics Laboratory, Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Takao Inoue
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroyuki Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Toshitaka Yamakawa
- Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kazushi Ikeda
- Mathematical Informatics Laboratory, Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
19
|
Ren G, Yan J, Tao G, Gan Y, Li D, Yan X, Fu Y, Wang L, Wang W, Zhang Z, Yue F, Yang X. Rapid focal cooling attenuates cortical seizures in a primate epilepsy model. Exp Neurol 2017; 295:202-210. [PMID: 28601605 DOI: 10.1016/j.expneurol.2017.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 05/25/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Rapid focal cooling is an attractive nondestructive strategy to control and possibly prevent focal seizures. However, the temperature threshold necessary to abort seizures in primates is still unknown. Here, we explored this issue in a primate epilepsy model and observed the effect of rapid cooling on different electroencephalogram frequency bands, aiming at providing necessary experimental data for future clinical translational studies and exploring the mechanism of focal cooling in terminating seizures. We induced focal neocortical seizures using microinjection of 4-aminopyridine into premotor cortex in five anesthetized cynomolgus monkeys. The rapid focal cooling was implemented by using a thermoelectric (Peltier) device. As a result, the average durations of seizures and interictal intervals before cooling were 94.3±4.0s and 62.3±6.9s, respectively. When the cortex was cooled to 20°C or 18°C, there was no effect on seizure duration (109.4±30.0s, 91.3±19.3s) or interictal duration (99.4±26.8s, 83.2±11.5s, P>0.05). But when the cortex was cooled to 16°C, the seizure duration was reduced to 54.1±4.9s and the interictal duration was extended to 175.0±16.7s (P<0.05). Electroencephalogram spectral analysis showed that the power of delta, alpha, beta, gamma and ripples bands in seizures were significantly reduced at 20°C and 18°C. At 16°C, the power of theta band in seizures was also significantly reduced along with the other bands. Our data reveal that the temperature threshold in rapid focal cooling required to significantly shorten neocortical seizures in nonhuman primates is 16°C, and inhibition of electroencephalogram broadband spectrum power, especially power of theta band, may be the underlying mechanism to control seizures.
Collapse
Affiliation(s)
- Guoping Ren
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, China
| | - Guoxian Tao
- Wincon TheraCells Biotechnologies Co., Ltd, Nanning, Guangxi, China
| | - Yunmeng Gan
- Wincon TheraCells Biotechnologies Co., Ltd, Nanning, Guangxi, China
| | - Donghong Li
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Xi Yan
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Yongjuan Fu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Leiming Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weimin Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiming Zhang
- Department of Anatomy and Neurobiology, University of Kentucky Chandler Medical Center, Lexington, KY, USA
| | - Feng Yue
- Wincon TheraCells Biotechnologies Co., Ltd, Nanning, Guangxi, China
| | - Xiaofeng Yang
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China; Center of Epilepsy, Center for Brain Disorders Research, Capital Medical University, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
20
|
Therapeutic dormancy to delay postsurgical glioma recurrence: the past, present and promise of focal hypothermia. J Neurooncol 2017; 133:447-454. [DOI: 10.1007/s11060-017-2471-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/07/2017] [Indexed: 01/06/2023]
|
21
|
Inoue T, Fujii M, Kida H, Yamakawa T, Maruta Y, Tokiwa T, He Y, Nomura S, Owada Y, Yamakawa T, Suzuki M. Epidural focal brain cooling abolishes neocortical seizures in cats and non-human primates. Neurosci Res 2017; 122:35-44. [PMID: 28450153 DOI: 10.1016/j.neures.2017.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 02/07/2017] [Accepted: 04/07/2017] [Indexed: 11/24/2022]
Abstract
Focal brain cooling (FBC) is under investigation in preclinical trials of intractable epilepsy (IE), including status epilepticus (SE). This method has been studied in rodents as a possible treatment for epileptic disorders, but more evidence from large animal studies is required. To provide evidence that FBC is a safe and effective therapy for IE, we investigated if FBC using a titanium cooling plate can reduce or terminate focal neocortical seizures without having a significant impact on brain tissue. Two cats and two macaque monkeys were chronically implanted with an epidural FBC device over the somatosensory and motor cortex. Penicillin G was delivered via the intracranial cannula for induction of local seizures. Repetitive FBC was performed using a cooling device implanted for a medium-term period (FBC for 30min at least twice every week; 3 months total) in three of the four animals. The animals exhibited seizures with repetitive epileptiform discharges (EDs) after administration of penicillin G, and these discharges decreased at less than 20°C cooling with no adverse histological effects. The results of this study suggest that epidural FBC is a safe and effective potential treatment for IE and SE.
Collapse
Affiliation(s)
- Takao Inoue
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan.
| | - Masami Fujii
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Hiroyuki Kida
- Department of Physiology, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Toshitaka Yamakawa
- Department of Electrical and Electronics Engineering, Shizuoka University, Hamamatsu, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Yuichi Maruta
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Tatsuji Tokiwa
- Department of Brain Science and Engineering, Kyushu Institute of Technology, Kyushu, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Yeting He
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Yuji Owada
- Department of Organ Anatomy, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Takeshi Yamakawa
- Department of Brain Science and Engineering, Kyushu Institute of Technology, Kyushu, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| |
Collapse
|
22
|
Korogod SM, Demianenko LE. Temperature Deactivation of the Depolarizing TRP Current as a Mechanism of Hypothermia-Related Inhibition of Neuronal Activity: a Model Study. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9605-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Nomura S, Inoue T, Imoto H, Suehiro E, Maruta Y, Hirayama Y, Suzuki M. Effects of focal brain cooling on extracellular concentrations of neurotransmitters in patients with epilepsy. Epilepsia 2017; 58:627-634. [PMID: 28225164 DOI: 10.1111/epi.13704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Brain hypothermia controls epileptic discharge and reduces extracellular concentrations of glutamate (Glu), an excitatory neurotransmitter. We aimed to determine the effects of focal brain cooling (FBC) on levels of γ-aminobutyric acid (GABA), which is a major inhibitory neurotransmitter. The relationship between Glu or GABA concentrations and the severity of epileptic symptoms was also analyzed. METHODS Patients with intractable epilepsy underwent FBC at lesionectomized (n = 11) or hippocampectomized (n = 8) regions at 15°C for 30 min using custom-made cooling devices. Concentrations of Glu (n = 18) and GABA (n = 12) were measured in extracellular fluid obtained through microdialysis using high-performance liquid chromatography (HPLC). The reduction rate of neurotransmitter levels and its relationship with electrocorticography (ECoG) signal changes in response to FBC were measured. RESULTS We found no relationship between the concentrations of Glu or GABA and seizure severity. There was a significant decrease in the concentration of Glu to 66.3% of control levels during the cooling period (p = 0.001). This rate of reduction correlated with ECoG power (r2 = 0.68). Cortical and hippocampal GABA levels significantly (p = 0.02) and nonsignificantly decreased to 47.7% and 32.4% of control levels, respectively. However, the rate of this reduction did not correlate with ECoG (r2 = 0.11). SIGNIFICANCE Although the decrease in hippocampal GABA levels was not significant due to wide variations in its concentration, the levels of cortical GABA and Glu were decreased following FBC. FBC suppresses epileptic discharge and the release of both excitatory and inhibitory neurotransmitters. The reduction in Glu levels further contributes to the reduction in epileptic discharge. However, the reduction in the levels of GABA has no impact on ECoG.
Collapse
Affiliation(s)
- Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| | - Takao Inoue
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Hirochika Imoto
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| | - Eiichi Suehiro
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Yuichi Maruta
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Yuya Hirayama
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| |
Collapse
|
24
|
Luan G, Wang X. Nondrug Treatment for Refractory Status Epilepticus. REFRACTORY STATUS EPILEPTICUS 2017:247-273. [DOI: 10.1007/978-981-10-5125-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Zheng Y, Wang G, Wang J. Is Using Threshold-Crossing Method and Single Type of Features Sufficient to Achieve Realistic Application of Seizure Prediction? Clin EEG Neurosci 2016; 47:305-316. [PMID: 26055162 DOI: 10.1177/1550059415588658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 04/20/2015] [Indexed: 11/16/2022]
Abstract
Objective This study aims to verify whether the simple threshold-crossing method can work well enough to achieve the realistic application of seizure prediction on the basis of a large public database, and examines how a more complex classifier can improve prediction performance. It also verified whether the combination of multiple types of features with a complex classifier can improve prediction performance. Method Phase synchronization and spectral power features were extracted from electroencephalogram recordings. The threshold-crossing method and a support vector machine (SVM) were used to identify preictal and interictal samples. Based on the type of selected features and the manner of classification, 5 different methods were conducted on 19 patients. The performances of these methods were directly compared and tested using a random predictor. In-sample optimization problems were avoided in the feature and parameter selection procedure to obtain credible results. Results The threshold-crossing method could only obtain satisfying prediction results for approximately half of the selected patients. The SVM classifier could significantly improve prediction performance compared with the threshold-crossing method for both types of features. Although the average performance was further improved when both types of features were combined with the SVM classifier, the improvement was insignificant. Conclusion A complex classifier, such as the SVM, is recommended in a realistic prediction device, although it will increase the complexity of the device. Indeed, the simple threshold-crossing method performs well enough for some of the patients. The combination of phase synchronization and spectral power features is unnecessary because of the increased computation complexity.
Collapse
Affiliation(s)
- Yang Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an, China
| | - Gang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China .,National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an, China
| |
Collapse
|
26
|
Esaki S, Yamakawa T, Niwayama M. Development of NIRS probe based on LED sensing that enables multimodal integration. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:7946-9. [PMID: 26738135 DOI: 10.1109/embc.2015.7320235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We propose LED sensing which provides the miniaturization and symmetrization for NIRS sensor system. In order to make it into practical application, the spectral responses of LEDs were investigated and then formula for calculating changes in hemoglobin concentrations were established. In blood phantom experiment, temporal changes in hemoglobin concentration were observed by CW-NIRS using LED sensing.
Collapse
|
27
|
Tokiwa T, Zimin L, Ishizuka S, Inoue T, Fujii M, Ishiguro H, Kajigaya H, Owada Y, Suzuki M, Yamakawa T. The Palm-Sized Cryoprobe System Based on Refrigerant Expansion and Boiling and Its Application to an Animal Model of Epilepsy. IEEE Trans Biomed Eng 2015; 62:1949-58. [PMID: 25730822 DOI: 10.1109/tbme.2015.2407692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
GOAL The purpose of this study is to propose the palm-sized cryoprobe system based on a new concept and to suggest that the freezing technique could be used for treatment of epilepsy. METHODS We propose herein a cryoprobe system based on the boiling effect that uses a specific refrigerants with a boiling point higher than that of liquid nitrogen yet low enough to result in cell necrosis. To evaluate and verify the effectiveness of the proposed system, cooling characteristics are investigated in agar. In addition, the system is applied to a Wistar rat brain-model, in which the epileptic activities are induced in advance by a potent epileptogenic substance. RESULTS The design concept yielded the following benefits: 1) the selected refrigerant promotes sealing in the tank; 2) the tank can be made as compact as possible, limited only by the volume required for the refrigerant; 3) because the tank and probe units can be separated by a nonconducting, flexible, and high-pressure tube, the tank unit can be manipulated without disturbing the probe tip with mechanical vibrations and electrical noise. Although the agar experiments, we verified that the proposed system can uniquely and reproducibly create an ice ball. Moreover, in the rat experiments in vivo, it was confirmed that penicillin G-induced epileptic activities disappeared on freezing with the proposed system. CONCLUSIONS The palm-sized system has desired characteristics and can apply for an animal model of epilepsy. SIGNIFICANCE Results of in vivo experiments suggest that cryosurgery may be an effective treatment for epilepsy.
Collapse
|
28
|
Yang X, Wang X. Potential mechanisms and clinical applications of mild hypothermia and electroconvulsive therapy on refractory status epilepticus. Expert Rev Neurother 2014; 15:135-44. [DOI: 10.1586/14737175.2015.992415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Yamakawa T, Inoue T, He Y, Fujii M, Suzuki M, Niwayama M. Development of an implantable flexible probe for simultaneous near-infrared spectroscopy and electrocorticography. IEEE Trans Biomed Eng 2014; 61:388-95. [PMID: 23996535 DOI: 10.1109/tbme.2013.2279888] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A combination of near-infrared spectroscopy (NIRS) and electrocorticography (ECoG) provides beneficial information on cortical activity from different aspects. Integration of such multimodal measurement capability into a single apparatus and the direct measurement of cortical activity during chronic subdural implantation may be a powerful means for clinical diagnosis and neuroscience. However, an optical fiber-based NIRS probe cannot be miniaturized for implantation into the brain, and the light-scattering effect of ECoG electrodes in NIRS measurements is unknown. We describe here the development of a flexible probe, small enough for chronic subdural implantation, for simultaneous NIRS and ECoG. Two light-emitting diodes of different wavelengths and two photodiodes were mounted on a polyimide-based flexible substrate, and ECoG electrodes were formed with a design minimizing artifacts in NIRS recording. The fabricated probe measured ECoGs at sufficient spatial resolution and submicromolar changes in hemoglobin concentrations in in vivo experiments with acute implantation into a rat. Comparison of measured changes in hemoglobin concentrations for different source-detector distances reveals the reliability of the measured values and the practicality of the simulation model. The proposed intracranial multimodality probe may provide beneficial evidence for pre- and intrasurgical assessment of neurosurgery and reveal the interaction of electrophysiology and hemodynamics at high spatial resolution without artifacts due to scalp blood flow.
Collapse
|
30
|
Nomura S, Fujii M, Inoue T, He Y, Maruta Y, Koizumi H, Suehiro E, Imoto H, Ishihara H, Oka F, Matsumoto M, Owada Y, Yamakawa T, Suzuki M. Changes in glutamate concentration, glucose metabolism, and cerebral blood flow during focal brain cooling of the epileptogenic cortex in humans. Epilepsia 2014; 55:770-776. [PMID: 24779587 DOI: 10.1111/epi.12600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Recently, focal brain cooling (FBC) was proposed as a method for treating refractory epilepsy. However, the precise influence of cooling on the molecular basis of epilepsy has not been elucidated. Thus the aim of this study was to assess the effect of FBC on glutamate (Glu) concentration, cerebral blood flow (CBF), and glucose metabolism in patients with intractable epilepsy. METHODS Nine patients underwent FBC at 15°C for 30 min prior to cortical resection (n = 6) or hippocampectomy (n = 3). Measurement of metabolites and CBF, as well as electrocorticography (ECoG), was performed. RESULTS Epileptic discharge (ED), as observed by ECoG, disappeared in the cooling period and reappeared in the rewarming period. Glu concentrations were high during the precooling period and were reduced to 51.2% during the cooling period (p = 0.025). Glycerol levels showed a similar decrease (p = 0.028). Lactate concentration was high during the precooling period and was reduced during the cooling period (21.3% decrease; p = 0.005). Glucose and pyruvate levels were maintained throughout the procedure. Changes in CBF were parallel to those observed by ECoG. SIGNIFICANCE FBC reduced EDs and concentrations of Glu and glycerol. This demonstrates the neuroprotective effect of FBC. Our findings confirm that FBC is a reasonable and optimal treatment option for patients with intractable epilepsy.
Collapse
Affiliation(s)
- Sadahiro Nomura
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tokiwa T, Inoue T, Fujii M, Ishizuka S, Aou S, Kida H, Maruta Y, Yamakawa T, Nomura S, Suzuki M, Yamakawa T. Penicillin-induced epileptiform activity elevates focal brain temperature in anesthetized rats. Neurosci Res 2013; 76:257-60. [DOI: 10.1016/j.neures.2013.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/09/2013] [Accepted: 05/01/2013] [Indexed: 11/24/2022]
|
32
|
Inamura A, Adachi Y, Inoue T, He Y, Tokuda N, Nawata T, Shirao S, Nomura S, Fujii M, Ikeda E, Owada Y, Suzuki M. Cooling treatment transiently increases the permeability of brain capillary endothelial cells through translocation of claudin-5. Neurochem Res 2013; 38:1641-7. [PMID: 23653089 DOI: 10.1007/s11064-013-1066-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 01/24/2023]
Abstract
The blood-brain-barrier (BBB) is formed by different cell types, of which brain microvascular endothelial cells are major structural constituents. The goal of this study was to examine the effects of cooling on the permeability of the BBB with reference to tight junction formation of brain microendothelial cells. The sensorimotor cortex above the dura mater in adult male Wistar rats was focally cooled to a temperature of 5 °C for 1 h, then immunostaining for immunoglobulin G (IgG) was performed to evaluate the permeability of the BBB. Permeability produced by cooling was also evaluated in cultured murine brain endothelial cells (bEnd3) based on measurement of trans-epithelial electric resistance (TEER). Immunocytochemistry and Western blotting of proteins associated with tight junctions in bEnd3 were performed to determine protein distribution before and after cooling. After focal cooling of the rat brain cortex, diffuse immunostaining for IgG was observed primarily around the small vasculature and in the extracellular spaces of parenchyma of the cortex. In cultured bEnd3, TEER significantly decreased during cooling (15 °C) and recovered to normal levels after rewarming to 37 °C. Immunocytochemistry and Western blotting showed that claudin-5, a critical regulatory protein for tight junctions, was translocated from the membrane to the cytoplasm after cooling in cultured bEnd3 cells. These results suggest that focal brain cooling may open the BBB transiently through an effect on tight junctions of brain microendothelial cells, and that therapeutically this approach may allow control of BBB function and drug delivery through the BBB.
Collapse
Affiliation(s)
- Akinori Inamura
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Motamedi GK, Lesser RP, Vicini S. Therapeutic brain hypothermia, its mechanisms of action, and its prospects as a treatment for epilepsy. Epilepsia 2013; 54:959-70. [PMID: 23551057 DOI: 10.1111/epi.12144] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 11/30/2022]
Abstract
Cooling the core body temperature to 32-35°C, is almost standard practice for conditions such as cardiac arrest in adults, and perinatal hypoxic ischemic encephalopathy in neonates. Limited clinical data, and more extensive animal experiments, indicate that hypothermia could help control seizures, and could be applied directly to the brain using implantable devices. These data have fostered further research to evaluate whether cooling would be a viable means to treat refractory epilepsy. Although the effect of temperature on cellular physiology has long been recognized, with possibly dual effects on pyramidal cells and interneurons, the exact mechanisms underlying its beneficial effects, in particular in epilepsy, are yet to be discovered. This article reviews currently available clinical and laboratory data with a focus on cellular mechanisms of action and prospects of hypothermia as a treatment for intractable seizures.
Collapse
Affiliation(s)
- Gholam K Motamedi
- Department of Neurology, Georgetown University Hospital, Washington, District of Columbia 20007, USA.
| | | | | |
Collapse
|
34
|
He Y, Fujii M, Inoue T, Nomura S, Maruta Y, Oka F, Shirao S, Owada Y, Kida H, Kunitsugu I, Yamakawa T, Tokiwa T, Yamakawa T, Suzuki M. Neuroprotective effects of focal brain cooling on photochemically-induced cerebral infarction in rats: Analysis from a neurophysiological perspective. Brain Res 2013; 1497:53-60. [DOI: 10.1016/j.brainres.2012.11.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/20/2012] [Accepted: 11/22/2012] [Indexed: 11/25/2022]
|
35
|
D'Ambrosio R, Eastman CL, Darvas F, Fender JS, Verley DR, Farin FM, Wilkerson HW, Temkin NR, Miller JW, Ojemann J, Rothman SM, Smyth MD. Mild passive focal cooling prevents epileptic seizures after head injury in rats. Ann Neurol 2012; 73:199-209. [PMID: 23225633 DOI: 10.1002/ana.23764] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Post-traumatic epilepsy is prevalent, often difficult to manage, and currently cannot be prevented. Although cooling is broadly neuroprotective, cooling-induced prevention of chronic spontaneous recurrent seizures has never been demonstrated. We examined the effect of mild passive focal cooling of the perilesional neocortex on the development of neocortical epileptic seizures after head injury in the rat. METHODS Rostral parasagittal fluid percussion injury in rats reliably induces a perilesional, neocortical epileptic focus within weeks after injury. Epileptic seizures were assessed by 5-electrode video-electrocorticography (ECoG) 2 to 16 weeks postinjury. Focal cooling was induced with ECoG headsets engineered for calibrated passive heat dissipation. Pathophysiology was assessed by glial fibrillary acidic protein immunostaining, cortical sclerosis, gene expression of inflammatory cytokines interleukin (IL)-1α and IL-1β, and ECoG spectral analysis. All animals were formally randomized to treatment groups, and data were analyzed blind. RESULTS Cooling by 0.5 to 2°C inhibited the onset of epileptic seizures in a dose-dependent fashion. The treatment induced no additional pathology or inflammation, and normalized the power spectrum of stage N2 sleep. Cooling by 2°C for 5.5 weeks beginning 3 days after injury virtually abolished ictal activity. This effect persisted through the end of the study, >10 weeks after cessation of cooling. Rare remaining seizures were shorter than in controls. INTERPRETATION These findings demonstrate potent and persistent prevention and modification of epileptic seizures after head injury with a cooling protocol that is neuroprotective, compatible with the care of head injury patients, and conveniently implemented. The required cooling can be delivered passively without Peltier cells or electrical power.
Collapse
Affiliation(s)
- Raimondo D'Ambrosio
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kida H, Fujii M, Inoue T, He Y, Maruta Y, Nomura S, Taniguchi K, Ichikawa T, Saito T, Yamakawa T, Suzuki M. Focal brain cooling terminates the faster frequency components of epileptic discharges induced by penicillin G in anesthetized rats. Clin Neurophysiol 2012; 123:1708-13. [DOI: 10.1016/j.clinph.2012.02.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/17/2012] [Accepted: 02/19/2012] [Indexed: 11/29/2022]
|