1
|
Rusu-Zota G, Manole OM, Galeș C, Porumb-Andrese E, Obadă O, Mocanu CV. Kaposi Sarcoma, a Trifecta of Pathogenic Mechanisms. Diagnostics (Basel) 2022; 12:1242. [PMID: 35626397 PMCID: PMC9140574 DOI: 10.3390/diagnostics12051242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 01/10/2023] Open
Abstract
Kaposi's sarcoma is a rare disease with four known variants: classic, epidemic, endemic and iatrogenic (transplant-related), all caused by an oncogenic virus named Human Herpes Virus 8. The viral infection in itself, along with the oncogenic properties of HHV8 and with immune system dysfunction, forms the grounds on which Kaposi's Sarcoma may develop. Infection with HHV8 occurs through saliva via close contacts, blood, blood products, solid organ donation and, rarely, vertical transmission. Chronic inflammation and oncogenesis are promoted by a mix of viral genes that directly promote cell survival and transformation or interfere with the regular cell cycle and cell signaling (of particular note: LANA-1, v-IL6, vBCL-2, vIAP, vIRF3, vGPCR, gB, K1, K8.1, K15). The most common development sites for Kaposi's sarcoma are the skin, mucocutaneous zones, lymph nodes and visceral organs, but it can also rarely appear in the musculoskeletal system, urinary system, endocrine organs, heart or eye. Histopathologically, spindle cell proliferation with slit-like vascular spaces, plasma cell and lymphocyte infiltrate are characteristic. The clinical presentation is heterogenic depending on the variant; some patients have indolent disease and others have aggressive disease. The treatment options include highly active antiretroviral therapy, surgery, radiation therapy, chemotherapy, and immunotherapy. A literature search was carried out using the MEDLINE/PubMed, SCOPUS and Google Scholar databases with a combination of keywords with the aim to provide critical, concise, and comprehensive insights into advances in the pathogenic mechanism of Kaposi's sarcoma.
Collapse
Affiliation(s)
- Gabriela Rusu-Zota
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Oana Mădălina Manole
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania
| | - Cristina Galeș
- Department of Histology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Elena Porumb-Andrese
- Department of Dermatology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Otilia Obadă
- Department of Ophthalmology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Cezar Valentin Mocanu
- Department of Anatomical Pathology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| |
Collapse
|
2
|
Singh H, Nain S, Krishnaraj A, Lata S, Dhole TN. Genetic variation of matrix metalloproteinase enzyme in HIV-associated neurocognitive disorder. Gene 2019; 698:41-49. [PMID: 30825593 DOI: 10.1016/j.gene.2019.02.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 01/13/2023]
Abstract
Matrix metalloproteinases (MMPs) play a key role in several diseases such as rheumatoid arthritis, HIV-associated neurological diseases (HAND), multiple sclerosis, osteoporosis, stroke, Alzheimer's disease, certain viral infections of the central nervous system, cancer, and hepatitis C virus. MMPs have been explained with regards to extracellular matrix remodeling, which occurs throughout life and ranges from tissue morphogenesis to wound healing in various processes. MMP are inhibited by endogenous tissue inhibitors of metalloproteinases (TIMPs). Matrix metalloproteases act as an interface between host's attack by Tat protein of HIV-1 virus and extracellular matrix, which causes breaches in the endothelial barriers by degrading ECM. This process initiates the dissemination of virus in tissues which can lead to an increase HIV-1 infection. MMPs are diverse and are highly polymorphic in nature, hence associated with many diseases. The main objective of this review is to study the gene expression of MMPs in HIV-related diseases and whether TIMPs and MMPs could be related with disease progression, HIV vulnerability and HAND. In this review, a brief description on the classification, regulation of MMP and TIMP, the effect of different MMPs and TIMPs gene polymorphisms and its expression on HIV-associated diseases have been provided. Previous studies have shown that MMPs polymorphism (MMP-1, MMP-2 MMP3, and MMP9) plays an important role in HIV vulnerability, disease progression and HAND. Further research is required to explore their role in pathogenesis and therapeutic perspective.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India.
| | - Sumitra Nain
- Department of Pharmacy, University of Banasthali, Banasthali Vidyapith, Jaipur 302001, India
| | - Asha Krishnaraj
- Department of Pharmacotherapy, University of Utah, Salt Lake City, UT 84108, USA
| | - Sonam Lata
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India
| | - T N Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
3
|
Oh Y, Lim HW, Huang YH, Kwon HS, Jin CD, Kim K, Lim CJ. Attenuating properties of Agastache rugosa leaf extract against ultraviolet-B-induced photoaging via up-regulating glutathione and superoxide dismutase in a human keratinocyte cell line. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:170-6. [DOI: 10.1016/j.jphotobiol.2016.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/20/2016] [Indexed: 11/29/2022]
|
4
|
Haas DA, Bala K, Büsche G, Weidner-Glunde M, Santag S, Kati S, Gramolelli S, Damas M, Dittrich-Breiholz O, Kracht M, Rückert J, Varga Z, Keri G, Schulz TF. The inflammatory kinase MAP4K4 promotes reactivation of Kaposi's sarcoma herpesvirus and enhances the invasiveness of infected endothelial cells. PLoS Pathog 2013; 9:e1003737. [PMID: 24244164 PMCID: PMC3820715 DOI: 10.1371/journal.ppat.1003737] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/15/2013] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma (KS) is a mesenchymal tumour, which is caused by Kaposi's sarcoma herpesvirus (KSHV) and develops under inflammatory conditions. KSHV-infected endothelial spindle cells, the neoplastic cells in KS, show increased invasiveness, attributed to the elevated expression of metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). The majority of these spindle cells harbour latent KSHV genomes, while a minority undergoes lytic reactivation with subsequent production of new virions and viral or cellular chemo- and cytokines, which may promote tumour invasion and dissemination. In order to better understand KSHV pathogenesis, we investigated cellular mechanisms underlying the lytic reactivation of KSHV. Using a combination of small molecule library screening and siRNA silencing we found a STE20 kinase family member, MAP4K4, to be involved in KSHV reactivation from latency and to contribute to the invasive phenotype of KSHV-infected endothelial cells by regulating COX-2, MMP-7, and MMP-13 expression. This kinase is also highly expressed in KS spindle cells in vivo. These findings suggest that MAP4K4, a known mediator of inflammation, is involved in KS aetiology by regulating KSHV lytic reactivation, expression of MMPs and COX-2, and, thereby modulating invasiveness of KSHV-infected endothelial cells. Kaposi's sarcoma (KS) is a tumour caused by Kaposi's sarcoma herpesvirus (KSHV) and dysregulated inflammation. Both factors contribute to the high angiogenicity and invasiveness of KS. Various cellular kinases have been reported to regulate the KSHV latent-lytic switch and thereby virus pathogenicity. In this study, we have identified a STE20 kinase family member – MAP4K4 – as a modulator of KSHV lytic cycle and invasive phenotype of KSHV-infected endothelial cells. Moreover, we were able to link MAP4K4 to a known mediator of inflammation and invasiveness, cyclooxygenase-2, which also contributes to KSHV lytic replication. Finally, we could show that MAP4K4 is highly expressed in KS lesions, suggesting an important role for this kinase in tumour development and invasion.
Collapse
Affiliation(s)
- Darya A Haas
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lohberger B, Rinner B, Stuendl N, Kaltenegger H, Steinecker-Frohnwieser B, Bernhart E, Bonyadi Rad E, Weinberg AM, Leithner A, Bauer R, Kretschmer N. Sesquiterpene lactones downregulate G2/M cell cycle regulator proteins and affect the invasive potential of human soft tissue sarcoma cells. PLoS One 2013; 8:e66300. [PMID: 23799090 PMCID: PMC3682952 DOI: 10.1371/journal.pone.0066300] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/03/2013] [Indexed: 11/20/2022] Open
Abstract
Soft tissue sarcomas (STS) represent a rare group of malignant tumors that frequently exhibit chemotherapeutic resistance and increased metastatic potential. Many studies have demonstrated the great potential of plant-derived agents in the treatment of various malignant entities. The present study investigates the effects of the sesquiterpene lactones costunolide and dehydrocostus lactone on cell cycle, MMP expression, and invasive potential of three human STS cell lines of various origins. Both compounds reduced cell proliferation in a time- and dose-dependent manner. Dehydrocostus lactone significantly inhibited cell proliferation, arrested the cells at the G2/M interface and caused a decrease in the expression of the cyclin-dependent kinase CDK2 and the cyclin-dependent kinase inhibitor p27Kip1. In addition, accumulation of cells at the G2/M phase transition interface resulted in a significant decrease in cdc2 (CDK1) together with cyclin B1. Costunolide had no effect on the cell cycle. Based on the fact that STS tend to form daughter cell nests and metastasize, the expression levels of matrix metalloproteinases (MMPs), which play a crucial role in extracellular matrix degradation and metastasis, were investigated by Luminex® technology and real-time RT-PCR. In the presence of costunolide, MMP-2 and -9 levels were significantly increased in SW-982 and TE-671 cells. Dehydrocostus lactone treatment significantly reduced MMP-2 and -9 expression in TE-671 cells, but increased MMP-9 level in SW-982 cells. In addition, the invasion potential was significantly reduced after treatment with both sesquiterpene lactones as investigated by the HTS FluoroBlock™ insert system.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedic Surgery, Medical University of Graz, Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Matrix metalloproteinases, a group of over 26 zinc-dependent enzymes, share a similar structure to each other and functionally are capable of degrading almost every component of the extracellular matrix. They are essential to normal development during embryogenesis and extracellular matrix remodeling and, given this, understandably enough have been implicated in multiple pathologic processes that encompass the inflammatory and neoplastic spectrum of disease. This review attempts to define roles of matrix metalloproteinases of relevance in normal skin and to elucidate their roles in inflammatory dermatoses and benign and malignant neoplasms.
Collapse
|
7
|
Abstract
Cutaneous sarcomas are a rare subset of soft tissue sarcomas. These tumors are primarily managed with definitive surgical resection; however, upon unresectable recurrence or metastatic spread, systemic therapy is warranted. As with other sarcomas, these treatments have classically included cytotoxic chemotherapy programs that were associated with variable response rates and poor overall survival. Recently, major advances have been made in the understanding of the molecular biology of these tumors, and treatment paradigms are changing. Multiple pathways have been documented to be important in the growth of cutaneous sarcomas, including receptor tyrosine kinases such as platelet-derived growth factor receptor, insulin-like growth factor receptor and KIT. Dysregulated angiogenesis, through vascular endothelial growth factor (VEGF) and other pathways, is also associated with the growth of these tumors. In this review, we discuss the current standard therapies of cutaneous sarcoma and the recent advances and ongoing investigations into cutaneous sarcoma biology.
Collapse
|
8
|
Mao XW, Mekonnen T, Kennedy AR, Gridley DS. Differential expression of oxidative stress and extracellular matrix remodeling genes in low- or high-dose-rate photon-irradiated skin. Radiat Res 2011; 176:187-97. [PMID: 21574862 DOI: 10.1667/rr2493.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Changes in the expression of genes implicated in oxidative stress and in extracellular matrix (ECM) remodeling and selected protein expression profiles in mouse skin were examined after exposure to low-dose-rate or high-dose-rate photon irradiation. ICR mice received whole-body γ rays to total doses of 0, 0.25, 0.5 and 1 Gy at dose rates of 50 cGy/h or 50 cGy/min. Skin tissues were harvested for characterization at 4 h after irradiation. For oxidative stress after low-dose-rate exposure, 0.25, 0.5 and 1 Gy significantly altered 27, 23 and 25 genes, respectively, among 84 genes assessed (P < 0.05). At doses as low as 0.25 Gy, many genes responsible for regulating the production of reactive oxygen species (ROS) were significantly altered, with changes >2-fold compared to 0 Gy. For an ECM profile, 18-20 out of 84 genes were significantly up- or downregulated after low-dose-rate exposure. After high-dose-rate irradiation, of 84 genes associated with oxidative stress, 16, 22 and 22 genes were significantly affected after 0.25, 0.5 and 1 Gy, respectively. Compared to low-dose-rate radiation, high-dose-rate exposure resulted in different ECM gene expression profiles. The most striking changes after low-dose-rate or high-dose-rate exposure on ECM profiles were on genes encoding matrix metalloproteinases (MMPs), e.g., Mmp2 and Mmp15 for low dose rate and Mmp9 and Mmp11 for high dose rate. Immunostaining for MMP-2 and MMP-9 proteins showed radiation dose rate-dependent differences. These data revealed that exposure to low total doses with low-dose-rate or high-dose-rate photon radiation induced oxidative stress and ECM-associated alterations in gene expression profiles. The expression of many genes was differentially regulated by different total dose and/or dose-rate regimens.
Collapse
Affiliation(s)
- Xiao Wen Mao
- Department of Radiation Medicine, Radiation Research Laboratories, Loma Linda University Medical Center, Loma Linda, California 92354, USA.
| | | | | | | |
Collapse
|