1
|
Liu Z, Liu S, Zhao Y, Wang Q. Biological Mediators and Partial Regulatory Mechanisms on Neuropathic Pain Associated With Chemotherapeutic Agents. Physiol Res 2024; 73:333-341. [PMID: 39027951 PMCID: PMC11299781 DOI: 10.33549/physiolres.935162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 07/27/2024] Open
Abstract
One of the most common issues caused by antineoplastic agents is chemotherapy-induced peripheral neuropathy (CIPN). In patients, CIPN is a sensory neuropathy accompanied by various motor and autonomic changes. With a high prevalence of cancer patients, CIPN is becoming a major problem for both cancer patients and for their health care providers. Nonetheless, there are lacking effective interventions preventing CIPN and treating the CIPN symptoms. A number of studies have demonstrated the cellular and molecular signaling pathways leading to CIPN using experimental models and the beneficial effects of some interventions on the CIPN symptoms related to those potential mechanisms. This review will summarize results obtained from recent human and animal studies, which include the abnormalities in mechanical and temperature sensory responses following chemotherapy such as representative bortezomib, oxaliplatin and paclitaxel. The underlying mechanisms of CIPN at cellular and molecular levels will be also discussed for additional in-depth studies needed to be better explored. Overall, this paper reviews the basic picture of CIPN and the signaling mechanisms of the most common antineoplastic agents in the peripheral and central nerve systems. A better understanding of the risk factors and fundamental mechanisms of CIPN is needed to develop effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Z Liu
- Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | | | | | | |
Collapse
|
2
|
Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front Pharmacol 2022; 13:750507. [PMID: 35418856 PMCID: PMC8996259 DOI: 10.3389/fphar.2022.750507] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Medicine Western Health, University of Melbourne, Melbourne, VIC, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.,Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
3
|
Luciano CA, Caraballo-Cartagena S. Treatment and Management of Infectious, Granulomatous, and Toxic Neuromuscular Disorders. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Ri M, Iida S, Maruyama D, Sakabe A, Kamei R, Nakashima T, Tohkin M, Osaga S, Tobinai K, Fukuhara N, Miyazaki K, Tsukamoto N, Tsujimura H, Yoshimitsu M, Miyamoto K, Tsukasaki K, Nagai H. HLA genotyping in Japanese patients with multiple myeloma receiving bortezomib: An exploratory biomarker study of JCOG1105 (JCOG1105A1). Cancer Sci 2021; 112:5011-5019. [PMID: 34626515 PMCID: PMC8645746 DOI: 10.1111/cas.15158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Bortezomib (Btz) shows robust efficacy in patients with multiple myeloma (MM); however, some patients experience suboptimal responses and show specific toxicities. Therefore, we attempted to identify specific HLA alleles associated with Btz-related toxicities and response to treatment. Eighty-two transplant-ineligible patients with newly diagnosed MM enrolled in a phase II study (JCOG1105) comparing two less intensive melphalan, prednisolone, plus Btz (MPB) regimens were subjected to HLA typing. The frequency of each allele was compared between the groups, categorized based on toxicity grades and responses to MPB therapy. Among 82 patients, the numbers of patients with severe peripheral neuropathy (PN; grade 2 or higher), skin disorders (SD; grade 2 or higher), and pneumonitis were 16 (19.5%), 15 (18.3%), and 6 (7.3%), respectively. Complete response was achieved in 10 (12.2%) patients. Although no significant HLA allele was identified by multiple comparisons, several candidates were identified. HLA-B*40:06 was more prevalent in patients with severe PN than in those with less severe PN (odds ratio [OR] = 6.76). HLA-B*40:06 and HLA-DRB1*12:01 were more prevalent in patients with SD than in those with less severe SD (OR = 7.47 and OR = 5.55, respectively). HLA-DRB1*08:02 clustered in the group of patients with pneumonitis (OR = 11.34). Complete response was achieved in patients carrying HLA-DQB1*03:02, HLA-DQB1*05:01, and HLA-DRB1*01:01 class II alleles. HLA genotyping could help predict Btz-induced toxicity and treatment efficacy in patients with MM, although this needs further validation.
Collapse
Affiliation(s)
- Masaki Ri
- Department of Hematology and OncologyNagoya City University HospitalNagoyaJapan
| | - Shinsuke Iida
- Department of Hematology and OncologyNagoya City University HospitalNagoyaJapan
| | - Dai Maruyama
- Department of HematologyNational Cancer Center HospitalTokyoJapan
- Department of Hematology OncologyCancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Aya Sakabe
- Department of Regulatory ScienceGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Ryo Kamei
- Department of Regulatory ScienceGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Takuto Nakashima
- Department of Regulatory ScienceGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Masahiro Tohkin
- Department of Regulatory ScienceGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Satoshi Osaga
- Clinical Research Management CenterNagoya City University HospitalNagoyaJapan
| | - Kensei Tobinai
- Department of HematologyNational Cancer Center HospitalTokyoJapan
| | - Noriko Fukuhara
- Department of Hematology and RheumatologyTohoku University HospitalSendaiJapan
| | - Kana Miyazaki
- Department of Hematology and OncologyMie University Graduate School of MedicineTsuJapan
| | | | | | - Makoto Yoshimitsu
- Department of Hematology and ImmunologyKagoshima University HospitalKagoshimaJapan
| | - Kenichi Miyamoto
- JCOG Data Center/Operating OfficeNational Cancer Center HospitalTokyoJapan
| | - Kunihiro Tsukasaki
- Department of HematologyInternational Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Hirokazu Nagai
- Department of HematologyNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| |
Collapse
|
5
|
Carozzi VA, Bolino A, D'Antonio M, Quattrini A, Cavaletti G. Nerve pathology in animal models of neuropathies. J Peripher Nerv Syst 2021; 26 Suppl 2:S61-S68. [PMID: 34498774 DOI: 10.1111/jns.12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/21/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Abstract
To understand the pathology of axonal degeneration and demyelination in peripheral neuropathy, histological investigations in different animal models that mimic some aspects of human peripheral neuropathy are needed. Thus, in the following section of this special issue, the main pathological features of experimental autoimmune neuritis, animal models of chemotherapy-induced peripheral neuropath and of human inherited peripheral neuropathies (IPNs) will be illustrated. When possible, micrographs from animal models and selected human biopsy will be shown side by side.
Collapse
Affiliation(s)
- Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandra Bolino
- Human Inherited Neuropathies Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maurizio D'Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
6
|
Goedee HS, Attarian S, Kuntzer T, Van den Bergh P, Rajabally YA. Iatrogenic immune-mediated neuropathies: diagnostic, epidemiological and mechanistic uncertainties for causality and implications for clinical practice. J Neurol Neurosurg Psychiatry 2021; 92:975-982. [PMID: 34103346 DOI: 10.1136/jnnp-2019-321663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/19/2021] [Indexed: 11/03/2022]
Abstract
Acute and chronic immune-mediated neuropathies have been widely reported with medical intervention. Although causal relationship may be uncertain in many cases, a variety of drugs, several vaccination types, surgical procedures and bone marrow transplants have been reported as possible cause or trigger of a putative immune-mediated response resulting in acute and chronic neuropathies. We conducted a systematic review of the literature from 1966 to 2020 on reported cases of possible iatrogenic immune-mediated neuropathies. We determined in each case the likelihood of causality based on frequency of the association, focusing primarily on clinical presentation and disease course as well as available ancillary investigations (electrophysiology, blood and cerebrospinal fluid and neuropathology). The response to immunotherapy and issue of re-exposure were also evaluated. We also considered hypothesised mechanisms of onset of immune-mediated neuropathy in the specific iatrogenic context. We believe that a likely causal relationship exists for only few drugs, mainly antitumour necrosis factor alpha agents and immune checkpoint inhibitors, but remains largely unsubstantiated for most other suggested iatrogenic causes. Unfortunately, given the lack of an accurate diagnostic biomarker for most immune-mediated neuropathies, clinical assessment will often override ancillary investigations, resulting in lower levels of certainty that may continue to cast serious doubts on reliability of their diagnosis. Consequently, future reports of suspected cases should collect and exhaustively assess all relevant data. At the current time, besides lack of evidence for causality, the practical implications on management of suspected cases is extremely limited and therapeutic decisions appear likely no different to those made in non-iatrogenic cases.
Collapse
Affiliation(s)
- H Stephan Goedee
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Thierry Kuntzer
- Service of Neurology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Peter Van den Bergh
- Centre de Référence Neuromusculaire, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Yusuf A Rajabally
- Inflammatory Neuropathy Clinic, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK .,Aston Medical School, Aston University, Birmingham, UK
| |
Collapse
|
7
|
Merheb D, Dib G, Zerdan MB, Nakib CE, Alame S, Assi HI. Drug-Induced Peripheral Neuropathy: Diagnosis and Management. Curr Cancer Drug Targets 2021; 22:49-76. [PMID: 34288840 DOI: 10.2174/1568009621666210720142542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023]
Abstract
Peripheral neuropathy comes in all shapes and forms and is a disorder which is found in the peripheral nervous system. It can have an acute or chronic onset depending on the multitude of pathophysiologic mechanisms involving different parts of nerve fibers. A systematic approach is highly beneficial when it comes to cost-effective diagnosis. More than 30 causes of peripheral neuropathy exist ranging from systemic and auto-immune diseases, vitamin deficiencies, viral infections, diabetes, etc. One of the major causes of peripheral neuropathy is drug induced disease, which can be split into peripheral neuropathy caused by chemotherapy or by other medications. This review deals with the latest causes of drug induced peripheral neuropathy, the population involved, the findings on physical examination and various workups needed and how to manage each case.
Collapse
Affiliation(s)
- Diala Merheb
- Department of Internal Medicine, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Georgette Dib
- Department of Internal Medicine, Division of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maroun Bou Zerdan
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Clara El Nakib
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Saada Alame
- Department of Pediatrics, Clemenceau Medical Center, Faculty of Medical Sciences, Lebanese University, Beirut,, Lebanon
| | - Hazem I Assi
- Department of Internal Medicine Naef K. Basile Cancer Institute American University of Beirut Medical Center Riad El Solh 1107 2020 Beirut, Lebanon
| |
Collapse
|
8
|
Laforgia M, Laface C, Calabrò C, Ferraiuolo S, Ungaro V, Tricarico D, Gadaleta CD, Nardulli P, Ranieri G. Peripheral Neuropathy under Oncologic Therapies: A Literature Review on Pathogenetic Mechanisms. Int J Mol Sci 2021; 22:1980. [PMID: 33671327 PMCID: PMC7922628 DOI: 10.3390/ijms22041980] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
Peripheral neurologic complications are frequent adverse events during oncologic treatments and often lead to dose reduction, administration delays with time elongation of the therapeutic plan and, not least, worsening of patients' quality of life. Experience skills are required to recognize symptoms and clinical evidences and the collaboration between different health professionals, in particular oncologists and hospital pharmacists, grants a correct management of this undesirable occurrence. Some classes of drugs (platinates, vinca alkaloids, taxanes) typically develop this kind of side effect, but the genesis of chemotherapy-induced peripheral neuropathy is not linked to a single mechanism. This paper aims from one side at summarizing and explaining all the scattering mechanisms of chemotherapy-induced peripheral neuropathy through a detailed literature revision, on the other side at finding new approaches to possible treatments, in order to facilitate the collaboration between oncologists, hematologists and hospital pharmacists.
Collapse
Affiliation(s)
- Mariarita Laforgia
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Carmelo Laface
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco65, 70124 Bari, Italy; (C.L.); (C.D.G.)
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy
| | - Concetta Calabrò
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Simona Ferraiuolo
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Valentina Ungaro
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy;
| | - Cosmo Damiano Gadaleta
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco65, 70124 Bari, Italy; (C.L.); (C.D.G.)
| | - Patrizia Nardulli
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco65, 70124 Bari, Italy; (C.L.); (C.D.G.)
| |
Collapse
|
9
|
Geisler S. Vincristine- and bortezomib-induced neuropathies - from bedside to bench and back. Exp Neurol 2021; 336:113519. [PMID: 33129841 PMCID: PMC11160556 DOI: 10.1016/j.expneurol.2020.113519] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Vincristine and bortezomib are effective chemotherapeutics widely used to treat hematological cancers. Vincristine blocks tubulin polymerization, whereas bortezomib is a proteasome inhibitor. Despite different mechanisms of action, the main non-hematological side effect of both is peripheral neuropathy that can last long after treatment has ended and cause permanent disability. Many different cellular and animal models of various aspects of vincristine and bortezomib-induced neuropathies have been generated to investigate underlying molecular mechanisms and serve as platforms to develop new therapeutics. These models revealed that bortezomib induces several transcriptional programs in dorsal root ganglia that result in the activation of different neuroinflammatory pathways and secondary central sensitization. In contrast, vincristine has direct toxic effects on the axon, which are accompanied by changes similar to those observed after nerve cut. Axon degeneration following both vincristine and bortezomib is mediated by a phylogenetically ancient, genetically encoded axon destruction program that leads to the activation of the Toll-like receptor adaptor SARM1 (sterile alpha and TIR motif containing protein 1) and local decrease of nicotinamide dinucleotide (NAD+). Here, I describe current in vitro and in vivo models of vincristine- and bortezomib induced neuropathies, present discoveries resulting from these models in the context of clinical findings and discuss how increased understanding of molecular mechanisms underlying different aspects of neuropathies can be translated to effective treatments to prevent, attenuate or reverse vincristine- and bortezomib-induced neuropathies. Such treatments could improve the quality of life of patients both during and after cancer therapy and, accordingly, have enormous societal impact.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, MO, USA.
| |
Collapse
|
10
|
Pancheri E, Guglielmi V, Wilczynski GM, Malatesta M, Tonin P, Tomelleri G, Nowis D, Vattemi G. Non-Hematologic Toxicity of Bortezomib in Multiple Myeloma: The Neuromuscular and Cardiovascular Adverse Effects. Cancers (Basel) 2020; 12:cancers12092540. [PMID: 32906684 PMCID: PMC7563977 DOI: 10.3390/cancers12092540] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is a still uncurable tumor of mainly elderly patients originating from the terminally differentiated B cells. Introduction to the treatment of MM patients of a new class of drugs called proteasome inhibitors (bortezomib followed by carfilzomib and ixazomib) significantly improved disease control. Proteasome inhibitors interfere with the major mechanism of protein degradation in a cell leading to the severe imbalance in the protein turnover that is deadly to MM cells. Currently, these drugs are the mainstream of MM therapy but are also associated with an increased rate of the injuries to multiple organs and tissues. In this review, we summarize the current knowledge on the molecular mechanisms of the first-in-class proteasome inhibitor bortezomib-induced disturbances in the function of peripheral nerves and cardiac and skeletal muscle. Abstract The overall approach to the treatment of multiple myeloma (MM) has undergone several changes during the past decade. and proteasome inhibitors (PIs) including bortezomib, carfilzomib, and ixazomib have considerably improved the outcomes in affected patients. The first-in-class selective PI bortezomib has been initially approved for the refractory forms of the disease but has now become, in combination with other drugs, the backbone of the frontline therapy for newly diagnosed MM patients, as well as in the maintenance therapy and relapsed/refractory setting. Despite being among the most widely used and highly effective agents for MM, bortezomib can induce adverse events that potentially lead to early discontinuation of the therapy with negative effects on the quality of life and outcome of the patients. Although peripheral neuropathy and myelosuppression have been recognized as the most relevant bortezomib-related adverse effects, cardiac and skeletal muscle toxicities are relatively common in MM treated patients, but they have received much less attention. Here we review the neuromuscular and cardiovascular side effects of bortezomib. focusing on the molecular mechanisms underlying its toxicity. We also discuss our preliminary data on the effects of bortezomib on skeletal muscle tissue in mice receiving the drug.
Collapse
Affiliation(s)
- Elia Pancheri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology Warsaw, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy;
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Giuliano Tomelleri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, 02-093 Warsaw, Poland;
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-093 Warsaw, Poland
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
- Correspondence:
| |
Collapse
|
11
|
Velasco R, Alberti P, Bruna J, Psimaras D, Argyriou AA. Bortezomib and other proteosome inhibitors-induced peripheral neurotoxicity: From pathogenesis to treatment. J Peripher Nerv Syst 2020; 24 Suppl 2:S52-S62. [PMID: 31647153 DOI: 10.1111/jns.12338] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Proteasome inhibitors (PIs), especially bortezomib (BTZ), have come to the forefront over the last years because of their unprecedented efficacy mainly against multiple myeloma (MM). Unfortunately, peripheral neuropathy (PN) secondary to treatment of MM with PIs has emerged as a clinically relevant complication, which negatively impacts the quality of life of MM survivors. Bortezomib-induced peripheral neuropathy (BIPN) is a dose-limiting toxicity, which develops in 30% to 60% of patients during treatment. Typically, BIPN is a length-dependent sensory axonopathy characterized by numbness, tingling, and severe neuropathic pain in stocking and glove distribution. BIPN mechanisms have not yet been fully elucidated. Experimental studies suggest that aggresome formation, endoplasmic reticulum stress, myotoxicity, microtubule stabilization, inflammatory response, and DNA damage could contribute to this neurotoxicity. A new generation of structurally distinct PIs has been developed, being increasingly used in clinical settings. Carfilzomib exhibits a much lower neurotoxicity profile, with a significantly lower incidence of PN compared to BTZ. Pre-existing PN increases the risk of developing BIPN. Besides, BIPN is related to dose, schedule and mode of administration and modifications of these factors have lowered the incidence of PN. However, to date there is no cure for PIs-induced PN (PIIPN), and a careful neurological monitoring and dose adjustment is a key strategy for preserving quality of life. This review critically looks at the pathogenesis, incidence, risk factors, both clinical and pharmacogenetics, clinical phenotype and management of PIIPN. We also make recommendations for further elucidating the whole clinical spectrum of PIIPN.
Collapse
Affiliation(s)
- Roser Velasco
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-Institut Català D'Oncologia L'Hospitalet, IDIBELL, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Paola Alberti
- NeuroMI (Milan Center for Neuroscience), Milan, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-Institut Català D'Oncologia L'Hospitalet, IDIBELL, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Dimitri Psimaras
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie Mazarin, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpetrière-Charles Foix et Hôpital Percy, Paris, France
| | - Andreas A Argyriou
- Department of Neurology, "Saint Andrew's" State General Hospital of Patras, Patras, Greece
| |
Collapse
|
12
|
Gendreau S, Berzero G, Tafani C, Raynouard I, Ricard D, Malfuson JV, Viala K, Debs R, Houillier C, Diamanti L, Marchioni E, Lenglet T, Ouzegdouh M, Bihan K, Gilardin L, Psimaras D. Demyelinating polyradiculoneuritis in patients with multiple myeloma: the other side of bortezomib-induced neurotoxicity. Acta Oncol 2020; 59:484-489. [PMID: 32122210 DOI: 10.1080/0284186x.2020.1723163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Segolene Gendreau
- Département de Médecine Interne et d’Immunologie Clinique, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Giulia Berzero
- Service de Neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpetrière, Paris, France
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Camille Tafani
- Service de neurologie, Hôpital d’Instruction des Armées Percy, Service de Santé des Armées, Clamart, France
- OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpetrière-Charles Foix et Hôpital Percy, Paris, France
| | - Igor Raynouard
- Service de Neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpetrière, Paris, France
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Damien Ricard
- Service de neurologie, Hôpital d’Instruction des Armées Percy, Service de Santé des Armées, Clamart, France
- OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpetrière-Charles Foix et Hôpital Percy, Paris, France
- Ecole du Val-de-Grâce, Service de Santé des Armées, F-75005, Paris, France
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-94235, Cachan, France
- Université de Paris, CNRS, Centre Borelli, F-75005 Paris, France
| | - Jean-Valère Malfuson
- Ecole du Val-de-Grâce, Service de Santé des Armées, F-75005, Paris, France
- Service d’Hématologie, Service de Santé des Armées, Hôpital d’Instruction des Armées Percy, Clamart, France
| | - Karine Viala
- Department of Clinical Neurophysiology, APHP, Pitié-Salpêtrière Hospital, Paris
| | - Rabab Debs
- Department of Clinical Neurophysiology, APHP, Pitié-Salpêtrière Hospital, Paris
| | - Caroline Houillier
- Service de Neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpetrière, Paris, France
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- Service d’Hématologie, Institut Curie, Site Saint Cloud, France
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Timothée Lenglet
- Department of Clinical Neurophysiology, APHP, Pitié-Salpêtrière Hospital, Paris
| | - Maya Ouzegdouh
- Département d’Hématologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Kevin Bihan
- Regional Pharmacovigilance Center, Department of Pharmacology, Pitié-Salpêtrière Hospital, Paris, France
| | - Laurent Gilardin
- Département de Médecine Interne et d’Immunologie Clinique, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Dimitri Psimaras
- Service de Neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpetrière, Paris, France
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpetrière-Charles Foix et Hôpital Percy, Paris, France
| |
Collapse
|
13
|
Al-Massri KF, Ahmed LA, El-Abhar HS. Mesenchymal stem cells in chemotherapy-induced peripheral neuropathy: A new challenging approach that requires further investigations. J Tissue Eng Regen Med 2019; 14:108-122. [PMID: 31677248 DOI: 10.1002/term.2972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/08/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic drugs may disrupt the nervous system and cause chemotherapy-induced peripheral neuropathy (CIPN) as side effects. There are no completely successful medications for the prevention or treatment of CIPN. Many drugs such as tricyclic antidepressants and anticonvulsants have been used for symptomatic treatment of CIPN. Unfortunately, these drugs often give only partial relief or have dose-limiting side effects. Thus, the treatment of CIPN becomes a challenge because of failure to regenerate and repair the injured neurons. Mesenchymal stem cell (MSC) therapy is a new attractive approach for CIPN. Evidence has demonstrated that MSCs play important roles in reducing oxidative stress, neuroinflammation, and apoptosis, as well as mediating axon regeneration after nerve damage in several experimental studies and some clinical trials. We will briefly review the pathogenesis of CIPN, traditional therapies used and their drawbacks as well as therapeutic effects of MSCs, their related mechanisms, future challenges for their clinical application, and the additional benefit of their combination with pharmacological agents. MSCs-based therapies may provide a new therapeutic strategy for patients suffering from CIPN where further investigations are required for studying their exact mechanisms. Combined therapy with pharmacological agents can provide another promising option for enhancing MSC therapy success while limiting its adverse effects.
Collapse
Affiliation(s)
- Khaled F Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2019; 20:ijms20061451. [PMID: 30909387 PMCID: PMC6471666 DOI: 10.3390/ijms20061451] [Citation(s) in RCA: 444] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by antineoplastic agents, with a prevalence from 19% to over 85%. Clinically, CIPN is a mostly sensory neuropathy that may be accompanied by motor and autonomic changes of varying intensity and duration. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors as well as for their health care providers, especially because, at the moment, there is no single effective method of preventing CIPN; moreover, the possibilities of treating this syndrome are very limited. There are six main substance groups that cause damage to peripheral sensory, motor and autonomic neurons, which result in the development of CIPN: platinum-based antineoplastic agents, vinca alkaloids, epothilones (ixabepilone), taxanes, proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). Among them, the most neurotoxic are platinum-based agents, taxanes, ixabepilone and thalidomide; other less neurotoxic but also commonly used drugs are bortezomib and vinca alkaloids. This paper reviews the clinical picture of CIPN and the neurotoxicity mechanisms of the most common antineoplastic agents. A better understanding of the risk factors and underlying mechanisms of CIPN is needed to develop effective preventive and therapeutic strategies.
Collapse
|
15
|
Staff NP, Grisold A, Grisold W, Windebank AJ. Chemotherapy-induced peripheral neuropathy: A current review. Ann Neurol 2017; 81:772-781. [PMID: 28486769 PMCID: PMC5656281 DOI: 10.1002/ana.24951] [Citation(s) in RCA: 516] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting side effect experienced by patients receiving treatment for cancer. Approximately 30 to 40% of patients treated with neurotoxic chemotherapy will develop CIPN, and there is considerable variability in its severity between patients. It is often sensory-predominant with pain and can lead to long-term morbidity in survivors. The prevalence and burden of CIPN late effects will likely increase as cancer survival rates continue to improve. In this review, we discuss the approach to peripheral neuropathy in patients with cancer and address the clinical phenotypes and pathomechanisms of specific neurotoxic chemotherapeutic agents. Ann Neurol 2017;81:772-781.
Collapse
Affiliation(s)
| | - Anna Grisold
- Department of Neurology, Medical University of Vienna, Austria
| | - Wolfgang Grisold
- Ludwig Boltzmann Institute for Experimental und Clinical
Traumatology, Vienna, Austria
| | | |
Collapse
|
16
|
|
17
|
Kaplan GS, Torcun CC, Grune T, Ozer NK, Karademir B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic Biol Med 2017; 103:1-13. [PMID: 27940347 DOI: 10.1016/j.freeradbiomed.2016.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/22/2016] [Accepted: 12/04/2016] [Indexed: 01/10/2023]
Abstract
Proteasomal system plays an important role in protein turnover, which is essential for homeostasis of cells. Besides degradation of oxidized proteins, it is involved in the regulation of many different signaling pathways. These pathways include mainly cell differentiation, proliferation, apoptosis, transcriptional activation and angiogenesis. Thus, proteasomal system is a crucial target for treatment of several diseases including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes and cancer. Over the last fifteen years, proteasome inhibitors have been tested to highlight their mechanisms of action and used in the clinic to treat different types of cancer. Proteasome inhibitors are mainly used in combinational therapy along with classical chemo-radiotherapy. Several studies have proved their significant effects but serious side effects such as peripheral neuropathy, limits their use in required effective doses. Recent studies focus on peripheral neuropathy as the primary side effect of proteasome inhibitors. Therefore, it is important to delineate the underlying mechanisms of peripheral neuropathy and develop new inhibitors according to obtained data. This review will detail the role of proteasome inhibition in cancer therapy and development of peripheral neuropathy as a side effect. Additionally, new approaches to prevent treatment-limiting side effects will be discussed in order to help researchers in developing effective strategies to overcome side effects of proteasome inhibitors.
Collapse
Affiliation(s)
- Gulce Sari Kaplan
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek Torcun
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Tilman Grune
- Department for Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Nesrin Kartal Ozer
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
18
|
Bortezomib-associated demyelinating neuropathy--clinical and pathologic features. J Clin Neuromuscul Dis 2016; 16:202-9. [PMID: 25996966 DOI: 10.1097/cnd.0000000000000077] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Bortezomib is a proteasome inhibitor that is frequently used for multiple myeloma and lymphoma. A sensory predominant axonal neuropathy is associated with bortezomib treatment but a demyelinating neuropathy is also described primarily based on electrodiagnostic findings. We report a series of patients treated with bortezomib who developed peripheral neuropathy and were found to have demyelinating features on electrodiagnostic testing. METHODS Four patients who developed a bortezomib-induced peripheral neuropathy underwent electrophysiological testing, and 1 patient had a nerve biopsy. RESULTS The four patients with bortezomib-induced peripheral neuropathy had demyelinating features on their electrophysiological testing. The nerve biopsy performed in 1 patient demonstrated a demyelinating component in a background of axonal degeneration. CONCLUSIONS Although most toxic neuropathies are symmetrical axonal neuropathies, bortezomib is part of a small list of agents that may cause a demyelinating polyneuropathy and axonal degeneration. These findings have been confirmed by nerve biopsy.
Collapse
|
19
|
Axonal Transport Impairment in Chemotherapy-Induced Peripheral Neuropathy. TOXICS 2015; 3:322-341. [PMID: 29051467 PMCID: PMC5606679 DOI: 10.3390/toxics3030322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022]
Abstract
Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a dose-limiting side effect of several antineoplastic drugs which significantly reduces patients’ quality of life. Although different molecular mechanisms have been investigated, CIPN pathobiology has not been clarified yet. It has largely been recognized that Dorsal Root Ganglia are the main targets of chemotherapy and that the longest nerves are the most damaged, together with fast axonal transport. Indeed, this bidirectional cargo-specific transport has a pivotal role in neuronal function and its impairment is involved in several neurodegenerative and neurodevelopmental diseases. Literature data demonstrate that, despite different mechanisms of action, all antineoplastic agents impair the axonal trafficking to some extent and the severity of the neuropathy correlates with the degree of damage on this bidirectional transport. In this paper, we will examine the effect of the main old and new chemotherapeutic drug categories on axonal transport, with the aim of clarifying their potential mechanisms of action, and, if possible, of identifying neuroprotective strategies, based on the knowledge of the alterations induced by each drugs.
Collapse
|
20
|
Alé A, Bruna J, Navarro X, Udina E. Neurotoxicity induced by antineoplastic proteasome inhibitors. Neurotoxicology 2014; 43:28-35. [DOI: 10.1016/j.neuro.2014.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 12/22/2022]
|
21
|
Toxic and drug-induced peripheral neuropathies: updates on causes, mechanisms and management. Curr Opin Neurol 2014; 26:481-8. [PMID: 23995278 DOI: 10.1097/wco.0b013e328364eb07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review discusses publications highlighting current research on toxic, chemotherapy-induced peripheral neuropathies (CIPNs), and drug-induced peripheral neuropathies (DIPNs). RECENT FINDINGS The emphasis in clinical studies is on the early detection and grading of peripheral neuropathies, whereas recent studies in animal models have given insights into molecular mechanisms, with the discovery of novel neuronal, axonal, and Schwann cell targets. Some substances trigger inflammatory changes in the peripheral nerves. Pharmacogenetic techniques are underway to identify genes that may help to predict individuals at higher risk of developing DIPNs. Several papers have been published on chemoprotectants; however, to date, this approach has not been shown effective in clinical trials. SUMMARY Both length and nonlength-dependent neuropathies are encountered, including small-fiber involvement. The introduction of new diagnostic techniques, such as excitability studies, skin laser Doppler flowmetry, and pharmacogenetics, holds promise for early detection and to elucidate underlying mechanisms. New approaches to improve functions and quality of life in CIPN patients are discussed. Apart from developing less neurotoxic anticancer therapies, there is still hope to identify chemoprotective agents (erythropoietin and substances involved in the endocannabinoid system are promising) able to prevent or correct painful CIPNs.
Collapse
|
22
|
Carozzi VA, Renn CL, Bardini M, Fazio G, Chiorazzi A, Meregalli C, Oggioni N, Shanks K, Quartu M, Serra MP, Sala B, Cavaletti G, Dorsey SG. Bortezomib-induced painful peripheral neuropathy: an electrophysiological, behavioral, morphological and mechanistic study in the mouse. PLoS One 2013; 8:e72995. [PMID: 24069168 PMCID: PMC3772181 DOI: 10.1371/journal.pone.0072995] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
Bortezomib is the first proteasome inhibitor with significant antineoplastic activity for the treatment of relapsed/refractory multiple myeloma as well as other hematological and solid neoplasms. Peripheral neurological complications manifesting with paresthesias, burning sensations, dysesthesias, numbness, sensory loss, reduced proprioception and vibratory sensitivity are among the major limiting side effects associated with bortezomib therapy. Although bortezomib-induced painful peripheral neuropathy is clinically easy to diagnose and reliable models are available, its pathophysiology remains partly unclear. In this study we used well-characterized immune-competent and immune-compromised mouse models of bortezomib-induced painful peripheral neuropathy. To characterize the drug-induced pathological changes in the peripheral nervous system, we examined the involvement of spinal cord neuronal function in the development of neuropathic pain and investigated the relevance of the immune response in painful peripheral neuropathy induced by bortezomib. We found that bortezomib treatment induced morphological changes in the spinal cord, dorsal roots, dorsal root ganglia (DRG) and peripheral nerves. Neurophysiological abnormalities and specific functional alterations in Aδ and C fibers were also observed in peripheral nerve fibers. Mice developed mechanical allodynia and functional abnormalities of wide dynamic range neurons in the dorsal horn of spinal cord. Bortezomib induced increased expression of the neuronal stress marker activating transcription factor-3 in most DRG. Moreover, the immunodeficient animals treated with bortezomib developed a painful peripheral neuropathy with the same features observed in the immunocompetent mice. In conclusion, this study extends the knowledge of the sites of damage induced in the nervous system by bortezomib administration. Moreover, a selective functional vulnerability of peripheral nerve fiber subpopulations was found as well as a change in the electrical activity of wide dynamic range neurons of dorsal horn of spinal cord. Finally, the immune response is not a key factor in the development of morphological and functional damage induced by bortezomib in the peripheral nervous system.
Collapse
Affiliation(s)
- Valentina A. Carozzi
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
- * E-mail: (VAC)
| | - Cynthia L. Renn
- School of Nursing, Center for Pain Studies, University of Maryland, Baltimore, Maryland, United States of America
| | - Michela Bardini
- “M. Tettamanti” Research Center, Department of Health Sciences, University of Milan Bicocca, Monza, Italy
| | - Grazia Fazio
- “M. Tettamanti” Research Center, Department of Health Sciences, University of Milan Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Cristina Meregalli
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Norberto Oggioni
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Kathleen Shanks
- School of Nursing, Center for Pain Studies, University of Maryland, Baltimore, Maryland, United States of America
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Monserrato, Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Monserrato, Italy
| | - Barbara Sala
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Guido Cavaletti
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Susan G. Dorsey
- School of Nursing, Center for Pain Studies, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
23
|
Manousakis G, Koch J, Sommerville RB, El-Dokla A, Harms MB, Al-Lozi MT, Schmidt RE, Pestronk A. Multifocal radiculoneuropathy during ipilimumab treatment of melanoma. Muscle Nerve 2013; 48:440-4. [PMID: 23447136 DOI: 10.1002/mus.23830] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2013] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Ipilimumab, a monoclonal anti-CTLA-4 antibody, is used to treat melanoma. Neuromuscular side effects, possibly autoimmune, may occur. METHODS In this investigation we undertook a retrospective review of patient records. RESULTS After 3 doses of ipilimumab, a 31-year-old man developed asymmetric, severe weakness involving all limbs, respiration, and cranial nerves, which was progressive over 2 weeks. EMG/NCS showed an axonal polyradiculoneuropathy with multifocal motor conduction blocks. CSF protein was 749 mg/dl. Nerve pathology showed inflammation around the endoneurial microvessels and subperineurial edema and inflammation. Spine MRI showed leptomeningeal and anterior and posterior root enhancement. Strength improved slowly over months after ipilimumab discontinuation and immunomodulating treatment. CONCLUSIONS Ipilimumab toxicity presented as a monophasic, multifocal, asymmetric polyradiculoneuropathy involving roots and peripheral and cranial nerves. Ipilimumab may produce a polyradiculoneuropathy with disruption of the blood-nerve barrier due to a microvasculopathy.
Collapse
Affiliation(s)
- Georgios Manousakis
- Department of Neurology Washington University School of Medicine, 600 South Euclid Avenue, St. Louis, Missouri, 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Psychiatrists in practice encounter patients abusing alcohol and street drugs such as cocaine that can lead to toxic myopathies or neuropathies. Psychiatrists also encounter patients with neuropsychiatric systemic lupus erythematosus who are treated with myotoxic medications (e.g., Hydroxychloroquine). Thus a well-rounded knowledge of toxic myopathies and neuropathies is extremely useful. The differential diagnosis of toxic myopathies and neuropathies is expanding rapidly and practical knowledge of these entities is becoming important.
Collapse
Affiliation(s)
- Hani A Kushlaf
- Department of Neurology, University of Cincinnati, 260 Stetson Street, Suite 2300, PO Box 670525, Cincinnati, OH 45267-0525, USA.
| |
Collapse
|
25
|
Mauermann ML, Blumenreich MS, Dispenzieri A, Staff NP. A case of peripheral nerve microvasculitis associated with multiple myeloma and bortezomib treatment. Muscle Nerve 2013; 46:970-7. [PMID: 23225391 DOI: 10.1002/mus.23493] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2012] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Bortezomib-induced peripheral neuropathy typically presents as a painful, length-dependent sensory predominant neuropathy. METHODS A case report, including nerve pathology, is presented of a man with multiple myeloma who developed a severe motor predominant polyradiculoneuropathy in the setting of bortezomib treatment. We also review the Mayo Clinic Hematology Dysproteinemia database for patients treated with bortezomib. RESULTS A 53-year-old man with Stage III multiple myeloma developed a severe motor predominant polyradiculoneuropathy following bortezomib treatment with electrophysiological features of multiple conduction blocks and pathological evidence of peripheral nerve microvasculitis. Our institutional experience is that 36.5% of dysproteinemia patients treated with bortezomib develop treatment-emergent peripheral neuropathy, and the most common pattern is a painful sensory predominant peripheral neuropathy. CONCLUSIONS A motor predominant polyradiculoneuropathy is a rare presentation of bortezomib-associated peripheral neuropathy in multiple myeloma patients which may progress despite treatment withdrawal and may be due to microvasculitis.
Collapse
Affiliation(s)
- Michelle L Mauermann
- Department of Neurology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
Although drug-induced neuropathies account for only 2-4% of referrals, their identification is important. Numerically, chemotherapy and antiretroviral drugs are the most important worldwide. Research is currently focused on elucidating pathogenic mechanisms and the earliest presymptomatic changes using neurophysiological and pharmacogenetic techniques in order to avoid the drug or make dosage changes before irreversible damage occurs. Chemoprotectants against chemotherapy-induced neuropathy are also an active area of research. This chapter focuses on the pathophysiology of drug-induced neuropathies in general, followed by detailed reviews of neuropathy due to; newer compounds such as TNF (tumor necrosis factor) α antagonists and antibiotics such as linezolid; chemotherapeutic agents, old and new, where significant progress has been made; antiretroviral drugs; and amiodarone, which is unusual in that it causes a demyelinating neuropathy. The controversial issue of statin-induced neuropathy is also reviewed.
Collapse
Affiliation(s)
- Hadi Manji
- MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
27
|
Jeter A, Kang Y. Immune modulation therapy in the management of bortezomib-induced peripheral neuropathy. Exp Hematol Oncol 2012; 1:20. [PMID: 23211009 PMCID: PMC3514086 DOI: 10.1186/2162-3619-1-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/09/2012] [Indexed: 11/23/2022] Open
Abstract
Peripheral neuropathy (PN) is one of the most common side effects of bortezomib therapy. The majority of bortezomib-related PN is a sensory neuropathy of mild to moderate degree, and is reversible after dose reduction or discontinuation. However, occasionally bortezomib-induced neuropathy can be severe and affects motor and/or autonomic nerves, and may be mediated by immune process. The role of immune modulation therapy in the management of bortezomib-induced PN was not well established. Here, we reported a case of bortezomib-induced severe PN that responded well to plasma exchange and steroid treatment.
Collapse
Affiliation(s)
- Ashley Jeter
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.
| | | |
Collapse
|
28
|
|