1
|
De Leon-Oliva D, Garcia-Montero C, Fraile-Martinez O, Boaru DL, García-Puente L, Rios-Parra A, Garrido-Gil MJ, Casanova-Martín C, García-Honduvilla N, Bujan J, Guijarro LG, Alvarez-Mon M, Ortega MA. AIF1: Function and Connection with Inflammatory Diseases. BIOLOGY 2023; 12:biology12050694. [PMID: 37237507 DOI: 10.3390/biology12050694] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Macrophages are a type of immune cell distributed throughout all tissues of an organism. Allograft inflammatory factor 1 (AIF1) is a calcium-binding protein linked to the activation of macrophages. AIF1 is a key intracellular signaling molecule that participates in phagocytosis, membrane ruffling and F-actin polymerization. Moreover, it has several cell type-specific functions. AIF1 plays important roles in the development of several diseases: kidney disease, rheumatoid arthritis, cancer, cardiovascular diseases, metabolic diseases and neurological disorders, and in transplants. In this review, we present a comprehensive review of the known structure, functions and role of AIF1 in inflammatory diseases.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis García-Puente
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Antonio Rios-Parra
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Maria J Garrido-Gil
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
2
|
Zhang X, Jiang B, Ji C, Li H, Yang L, Jiang G, Wang Y, Liu G, Liu G, Min L, Zhao F. Quantitative Label-Free Proteomic Analysis of Milk Fat Globule Membrane in Donkey and Human Milk. Front Nutr 2021; 8:670099. [PMID: 34239890 PMCID: PMC8258387 DOI: 10.3389/fnut.2021.670099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Previous studies have found donkey milk (DM) has the similar compositions with human milk (HM) and could be used as a potential hypoallergenic replacement diet for babies suffering from cow's milk allergy. Milk fat globule membrane (MFGM) proteins are involved in many biological functions, behaving as important indicators of the nutritional quality of milk. In this study, we used label-free proteomics to quantify the differentially expressed MFGM proteins (DEP) between DM (in 4-5 months of lactation) and HM (in 6-8 months of lactation). In total, 293 DEP were found in these two groups. Gene Ontology (GO) enrichment analysis revealed that the majority of DEP participated in regulation of immune system process, membrane invagination and lymphocyte activation. Several significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were determined for the DEP, such as lysosome, galactose metabolism and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Our study may provide valuable information in the composition of MFGM proteins in DM and HM, and expand our knowledge of different biological functions between DM and HM.
Collapse
Affiliation(s)
- Xinhao Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China.,National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Chuanliang Ji
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Haijing Li
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Li Yang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Guimiao Jiang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Yantao Wang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Guangyuan Liu
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| | - Guiqin Liu
- Shandong Donkey Industry, Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Fuwei Zhao
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E E-Jiao Co., Ltd, Liaocheng, China
| |
Collapse
|
3
|
Biology of the human blood-nerve barrier in health and disease. Exp Neurol 2020; 328:113272. [PMID: 32142802 DOI: 10.1016/j.expneurol.2020.113272] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
A highly regulated endoneurial microenvironment is required for normal axonal function in peripheral nerves and nerve roots, which structurally consist of an outer collagenous epineurium, inner perineurium consisting of multiple concentric layers of specialized epithelioid myofibroblasts that surround the innermost endoneurium, which consists of myelinated and unmyelinated axons embedded in a looser mesh of collagen fibers. Endoneurial homeostasis is achieved by tight junction-forming endoneurial microvessels that control ion, solute, water, nutrient, macromolecule and leukocyte influx and efflux between the bloodstream and endoneurium, and the innermost layers of the perineurium that control interstitial fluid component flux between the freely permeable epineurium and endoneurium. Strictly speaking, endoneurial microvascular endothelium should be considered the blood-nerve barrier (BNB) due to direct communication with circulating blood. The mammalian BNB is considered the second most restrictive vascular system after the blood-brain barrier (BBB) based on classic in situ permeability studies. Structural alterations in endoneurial microvessels or interactions with hematogenous leukocytes have been described in several human peripheral neuropathies; however major advances in BNB biology in health and disease have been limited over the past 50 years. Guided by transcriptome and proteome studies of normal and pathologic human peripheral nerves, purified primary and immortalized human endoneurial endothelial cells that form the BNB and leukocytes from patients with well-characterized peripheral neuropathies, validated by in situ or ex vivo protein expression studies, data are emerging on the molecular and functional characteristics of the human BNB in health and in specific peripheral neuropathies, as well as chronic neuropathic pain. These early advancements have the potential to not only increase our understanding of how the BNB works and adapts or fails to adapt to varying insult, but provide insights relevant to pathogenic leukocyte trafficking, with translational potential and specific therapeutic application for chronic peripheral neuropathies and neuropathic pain.
Collapse
|
4
|
Wolbert J, Cheng MI, Meyer zu Horste G, Su MA. Deciphering immune mechanisms in chronic inflammatory demyelinating polyneuropathies. JCI Insight 2020; 5:132411. [PMID: 32051341 DOI: 10.1172/jci.insight.132411] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease of the peripheral nerves that presents with either chronic progression or relapsing disease. Recent studies in samples from patients with CIDP and mouse models have delineated how defects in central (thymic) and peripheral (extrathymic) immune tolerance mechanisms can cause PNS autoimmunity. Notably, nerve parenchymal cells actively contribute to local autoimmunity and also control disease outcome. Here, we outline how emerging technologies increasingly enable an integrated view of how immune cells and PNS parenchymal cells communicate in CIDP. We also relate the known heterogeneity of clinical presentation with specific underlying mechanisms. For example, a severe subtype of CIDP with tremor is associated with pathogenic IgG4 autoantibodies against nodal and paranodal proteins. An improved understanding of pathogenic mechanisms in CIDP will form the basis for more effective mechanism-based therapies.
Collapse
Affiliation(s)
- Jolien Wolbert
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Mandy I Cheng
- Department of Microbiology Immunology and Medical Genetics and
| | - Gerd Meyer zu Horste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Maureen A Su
- Department of Microbiology Immunology and Medical Genetics and.,Department of Pediatrics, UCLA, Los Angeles, California, USA
| |
Collapse
|
5
|
Role of allograft inflammatory factor-1 in pathogenesis of diseases. Immunol Lett 2019; 218:1-4. [PMID: 31830499 DOI: 10.1016/j.imlet.2019.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Allograft inflammatory factor-1 (AIF-1) is a 17 kDa calcium-binding protein produced by monocytes, macrophages, and lymphocytes; its synthesis is induced by INF-γ. The AIF-1 gene is located in the major histocompatibility complex (MHC) class III region on chromosome 6p21.3, surrounded by surface glycoprotein genes and complement cascade protein genes as well as TNF-α, TNF-β, and NF-κB genes. Increased expression of AIF-1 was observed in several diseases, including endometriosis, breast cancer, atherosclerosis, rheumatoid arthritis, and fibrosis. In this review, we summarise the role of AIF-1 in allograft rejection and the pathogenesis of diseases.
Collapse
|
6
|
Herder C, Kannenberg JM, Carstensen-Kirberg M, Strom A, Bönhof GJ, Rathmann W, Huth C, Koenig W, Heier M, Krumsiek J, Peters A, Meisinger C, Roden M, Thorand B, Ziegler D. A Systemic Inflammatory Signature Reflecting Cross Talk Between Innate and Adaptive Immunity Is Associated With Incident Polyneuropathy: KORA F4/FF4 Study. Diabetes 2018; 67:2434-2442. [PMID: 30115651 DOI: 10.2337/db18-0060] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022]
Abstract
Prospective analyses of biomarkers of inflammation and distal sensorimotor polyneuropathy (DSPN) are scarce and limited to innate immunity. We therefore aimed to assess associations between biomarkers reflecting multiple aspects of immune activation and DSPN. The study was based on 127 case subjects with incident DSPN and 386 noncase subjects from the population-based Cooperative Health Research in the Region of Augsburg (KORA) F4/FF4 cohort (follow-up 6.5 years). Proximity extension assay technology was used to measure serum levels of biomarkers of inflammation. Of 71 biomarkers assessed, 26 were associated with incident DSPN. After adjustment for multiple testing, higher levels of six biomarkers remained related to incident DSPN. Three of these proteins (MCP-3/CCL7, MIG/CXCL9, IP-10/CXCL10) were chemokines, and the other three (DNER, CD40, TNFRSF9) were soluble forms of transmembrane receptors. The chemokines had neurotoxic effects on neuroblastoma cells in vitro. Addition of all six biomarkers improved the C statistic of a clinical risk model from 0.748 to 0.783 (P = 0.011). Pathway analyses indicated that multiple cell types from innate and adaptive immunity are involved in the development of DSPN. We thus identified novel associations between biomarkers of inflammation and incident DSPN pointing to a complex cross talk between innate and adaptive immunity in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia M Kannenberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Maren Carstensen-Kirberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Cornelia Huth
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Munich, Germany
- Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Annette Peters
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Epidemiology, Ludwig-Maximilians-Universität München am UNIKA-T Augsburg, Augsburg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Langjahr M, Schubert AL, Sommer C, Üçeyler N. Increased pro-inflammatory cytokine gene expression in peripheral blood mononuclear cells of patients with polyneuropathies. J Neurol 2018; 265:618-627. [DOI: 10.1007/s00415-018-8748-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/24/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
|
8
|
Palladino SP, Helton ES, Jain P, Dong C, Crowley MR, Crossman DK, Ubogu EE. The Human Blood-Nerve Barrier Transcriptome. Sci Rep 2017; 7:17477. [PMID: 29234067 PMCID: PMC5727190 DOI: 10.1038/s41598-017-17475-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/24/2017] [Indexed: 01/16/2023] Open
Abstract
The blood-nerve barrier (BNB), formed by tight junction-forming microvessels within peripheral nerve endoneurium, exists to regulate its internal microenvironment essential for effective axonal signal transduction. Relatively little is known about the unique human BNB molecular composition. Such knowledge is crucial to comprehend the relationships between the systemic circulation and peripheral nerves in health, adaptations to intrinsic or extrinsic perturbations and alterations that may result in disease. We performed RNA-sequencing on cultured early- and late-passage adult primary human endoneurial endothelial cells and laser-capture microdissected endoneurial microvessels from four cryopreserved normal adult human sural nerves referenced to the Genome Reference Consortium Human Reference 37 genome browser, using predefined criteria guided by known transcript or protein expression in vitro and in situ. We identified 12881 common transcripts associated by 125 independent biological networks, defined as the normal adult BNB transcriptome, including a comprehensive array of transporters and specialized intercellular junctional complex components. These identified transcripts and their interacting networks provide insights into peripheral nerve microvascular morphogenesis, restrictive barrier formation, influx and efflux transporters with relevance to understanding peripheral nerve homeostasis and pharmacology, including targeted drug delivery and the mediators of leukocyte trafficking in peripheral nerves during normal immunosurveillance.
Collapse
Affiliation(s)
- Steven P Palladino
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, United States of America
| | - E Scott Helton
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, United States of America
| | - Preti Jain
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294-0024, United States of America
| | - Chaoling Dong
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, United States of America
| | - Michael R Crowley
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294-0024, United States of America
| | - David K Crossman
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294-0024, United States of America
| | - Eroboghene E Ubogu
- Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294-0017, United States of America.
| |
Collapse
|
9
|
Viala K. Diagnosis of atypical forms of chronic inflammatory demyelinating polyradiculoneuropathy: a practical overview based on some case studies. Int J Neurosci 2015; 126:777-85. [DOI: 10.3109/00207454.2015.1096786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Inflammatory neuropathies: pathology, molecular markers and targets for specific therapeutic intervention. Acta Neuropathol 2015; 130:445-68. [PMID: 26264608 DOI: 10.1007/s00401-015-1466-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 08/01/2015] [Accepted: 08/02/2015] [Indexed: 12/21/2022]
Abstract
Inflammatory neuropathies encompass groups of heterogeneous disorders characterized by pathogenic immune-mediated hematogenous leukocyte infiltration of peripheral nerves, nerve roots or both, with resultant demyelination or axonal degeneration or both. Inflammatory neuropathies may be divided into three major disease categories: Guillain-Barré syndrome (particularly the acute inflammatory demyelinating polyradiculoneuropathy variant), chronic inflammatory demyelinating polyradiculoneuropathy and nonsystemic vasculitic neuropathy (or peripheral nerve vasculitis). Despite major advances in molecular biology, pathology and genetics, the pathogenesis of these disorders remains elusive. There is insufficient knowledge on the mechanisms of hematogenous leukocyte trafficking into the peripheral nervous system to guide the development of specific molecular therapies for immune-mediated inflammatory neuropathies compared to disorders such as psoriasis, inflammatory bowel disease, rheumatoid arthritis or multiple sclerosis. The recent isolation and characterization of human endoneurial endothelial cells that form the blood-nerve barrier provides an opportunity to elucidate leukocyte-endothelial cell interactions critical to the pathogenesis of inflammatory neuropathies at the interface between the systemic circulation and peripheral nerve endoneurium. This review discusses our current knowledge of the classic pathological features of inflammatory neuropathies, attempts at molecular classification and genetic determinants, the utilization of in vitro and in vivo animal models to determine pathogenic mechanisms at the interface between the systemic circulation and the peripheral nervous system relevant to these disorders and prospects for future potential molecular pathology biomarkers and targets for specific therapeutic intervention.
Collapse
|
11
|
Differential gene expression of cytokines and neurotrophic factors in nerve and skin of patients with peripheral neuropathies. J Neurol 2014; 262:203-12. [PMID: 25371017 DOI: 10.1007/s00415-014-7556-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022]
Abstract
Pathophysiologically relevant alterations in cytokine and neurotrophic factor levels have been reported in neuropathy subtypes. We characterized gene expression profiles of pro- and anti-inflammatory cytokines and neurotrophic factors in nerve and skin samples of patients with neuropathies of different etiologies. We prospectively studied 133 patients with neuropathies and compared data between subtypes and with healthy controls. All patients underwent sural nerve and/or skin punch biopsy at the lateral thigh and lower leg; controls received skin punch biopsies. Gene expression of pro- and anti-inflammatory cytokines (IL-1β, IL-2, IL-6, TNF, IL-10), neurotrophic factors (BDNF, NGF, NT3, TrkA), and erythropoietin with the erythropoietin receptor (Epo, EpoR) was analyzed. Sural nerve gene expression of the investigated cytokines and neurotrophic factors did not differ between neuropathies of different etiologies; however, IL-6 (p < 0.01) and IL-10 (p < 0.05) expression was higher in painful compared to painless neuropathies. Skin IL-6 and IL-10 gene expression was increased in patients compared to controls (p < 0.05), and IL-10 expression was higher in lower leg skin of patients with non-inflammatory neuropathies compared to inflammatory neuropathies (p < 0.05). Proximal and distal skin neurotrophic factor and Epo gene expression of patients with neuropathies was reduced compared to controls (NGF, NT3, Epo; p < 0.05). Neuropathies are associated with an increase in cytokine expression and a decrease in neurotrophic factor expression including nerve and skin.
Collapse
|
12
|
Kuntzer T. [2011: What's new in dysimmune neuropathies]. Rev Neurol (Paris) 2012; 168:975-8. [PMID: 23107879 DOI: 10.1016/j.neurol.2012.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 09/20/2012] [Indexed: 11/17/2022]
Abstract
There are strong research activities in the field of dysimmune neuropathies. In Guillain-Barré syndrome, new pathophysiological mechanisms have been demonstrated with the potential development of new therapies, a clinical prediction model is applicable early in the course of disease, and under investigation are new treatment strategies with adapted intravenous Ig dosages. In chronic inflammatory demyelinating polyneuropathies, current diagnostic tests are discussed but biomarkers are needed, such as histological changes or differential gene expression in nerve or skin biopsies. The exploration of novel therapeutic approaches including monoclonal antibodies and oral immunosuppressants, known from multiple sclerosis studies, suggests new approaches to treatment. Changes of the peripheral nerves on MR imaging are better known and the usefulness of serum antibodies is reviewed.
Collapse
Affiliation(s)
- T Kuntzer
- Unité nerf-muscle, département des neurosciences cliniques, CHU Vaudois, 413 rue du Bugnon, Lausanne, Switzerland.
| |
Collapse
|
13
|
Steck A, Kinter J, Renaud S. [DNA microarray analysis in nerve biopsies of patients with vasculitic neuropathy]. Rev Neurol (Paris) 2011; 167:927-9. [PMID: 22100323 DOI: 10.1016/j.neurol.2011.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/21/2011] [Accepted: 09/24/2011] [Indexed: 11/30/2022]
Abstract
DNA microarray analysis is a powerful tool for simultaneous analysis and comparison of gene products expressed in normal and diseased tissues. We used this technique to identify differentially expressed genes (DEGs) in nerve biopsy samples of vasculitic neuropathy (VAS) patients. We find novel previously uncharacterized genes of relevance to VAS pathogenesis. Genes upregulated in VAS include IGLJ3, IGHG3, IGKC, and IGL, which all function in B-cell selection or antigen recognition of B cells. Other upregulated genes are chemokines, such as CXCL9 and CCR2 and CX3CR1. Allograft inflammatory factor-1 (AIF-1), a modulator of immune response is upregulated in VAS. We demonstrate by immunolocalisation the expression of AIF-1 in vascular smooth muscle cells, suggesting a role for AIF-1 in vascular remodeling in VAS. Microarray-based analysis of human nerve biopsies shows distinct gene expression patterns in VAS. DEGs might provide clues to the pathogenesis of this condition and help define potential targets for therapeutics.
Collapse
Affiliation(s)
- A Steck
- Département de biomédecine, hôpital universitaire de Bâle, Hebelstrasse 20, 4031 Bâle, Suisse.
| | | | | |
Collapse
|