1
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and other detrimental metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:309-365. [PMID: 39396839 DOI: 10.1016/bs.adgen.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
2
|
Jiang Y, Zhang T, Kusumanchi P, Han S, Yang Z, Liangpunsakul S. Alcohol Metabolizing Enzymes, Microsomal Ethanol Oxidizing System, Cytochrome P450 2E1, Catalase, and Aldehyde Dehydrogenase in Alcohol-Associated Liver Disease. Biomedicines 2020; 8:50. [PMID: 32143280 PMCID: PMC7148483 DOI: 10.3390/biomedicines8030050] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022] Open
Abstract
Once ingested, most of the alcohol is metabolized in the liver by alcohol dehydrogenase to acetaldehyde. Two additional pathways of acetaldehyde generation are by microsomal ethanol oxidizing system (cytochrome P450 2E1) and catalase. Acetaldehyde can form adducts which can interfere with cellular function, leading to alcohol-induced liver injury. The variants of alcohol metabolizing genes encode enzymes with varied kinetic properties and result in the different rate of alcohol elimination and acetaldehyde generation. Allelic variants of these genes with higher enzymatic activity are believed to be able to modify susceptibility to alcohol-induced liver injury; however, the human studies on the association of these variants and alcohol-associated liver disease are inconclusive. In addition to acetaldehyde, the shift in the redox state during alcohol elimination may also link to other pathways resulting in activation of downstream signaling leading to liver injury.
Collapse
Affiliation(s)
- Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.J.); (T.Z.); (P.K.); (S.H.)
| | - Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.J.); (T.Z.); (P.K.); (S.H.)
| | - Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.J.); (T.Z.); (P.K.); (S.H.)
| | - Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.J.); (T.Z.); (P.K.); (S.H.)
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.J.); (T.Z.); (P.K.); (S.H.)
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (Y.J.); (T.Z.); (P.K.); (S.H.)
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Koontz JM, Dancy BCR, Horton CL, Stallings JD, DiVito VT, Lewis JA. The Role of the Human Microbiome in Chemical Toxicity. Int J Toxicol 2019; 38:251-264. [PMID: 31220972 DOI: 10.1177/1091581819849833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is overwhelming evidence that the microbiome must be considered when evaluating the toxicity of chemicals. Disruption of the normal microbial flora is a known effect of toxic exposure, and these disruptions may lead to human health effects. In addition, the biotransformation of numerous compounds has been shown to be dependent on microbial enzymes, with the potential for different host health outcomes resulting from variations in the microbiome. Evidence suggests that such metabolism of environmental chemicals by enzymes from the host's microbiota can affect the toxicity of that chemical to the host. Chemical-microbial interactions can be categorized into two classes: Microbiome Modulation of Toxicity (MMT) and Toxicant Modulation of the Microbiome (TMM). MMT refers to transformation of a chemical by microbial enzymes or metabolites to modify the chemical in a way that makes it more or less toxic. TMM is a change in the microbiota that results from a chemical exposure. These changes span a large magnitude of effects and may vary from microbial gene regulation, to inhibition of a specific enzyme, to the death of the microbes. Certain microbiomes or microbiota may become associated with different health outcomes, such as resistance or susceptibility to exposure to certain toxic chemicals, the ability to recover following a chemical-induced injury, the presence of disease-associated phenotypes, and the effectiveness of immune responses. Future work in toxicology will require an understanding of how the microbiome interacts with toxicants to fully elucidate how a compound will affect a diverse, real-world population.
Collapse
Affiliation(s)
- Jason M Koontz
- 1 US Army Center for Environmental Health Research, Fort Detrick, MD, USA
| | - Blair C R Dancy
- 1 US Army Center for Environmental Health Research, Fort Detrick, MD, USA
| | | | | | - Valerie T DiVito
- 1 US Army Center for Environmental Health Research, Fort Detrick, MD, USA
| | - John A Lewis
- 1 US Army Center for Environmental Health Research, Fort Detrick, MD, USA
| |
Collapse
|
4
|
Konkit M, Kim K, Kim JH, Kim W. Protective effects of Lactococcus chungangensis CAU 28 on alcohol-metabolizing enzyme activity in rats. J Dairy Sci 2018; 101:5713-5723. [PMID: 29681403 DOI: 10.3168/jds.2017-13992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the beneficial effects of Lactococcus chungangensis CAU 28, a bacterial strain of nondairy origin, on alcohol metabolism in rats treated with ethanol, focusing on alcohol elimination and prevention of damage and comparing the effects with those observed for Lactococcus lactis ssp. lactis ATCC 19435. Male Sprague-Dawley rats were orally administered 20% ethanol and 3 substrates (freeze-dried cells, cream cheese, and yogurt) containing Lc. chungangensis CAU 28 or Lc. lactis ssp. lactis ATCC 19435, which were provided 1 h before or 1 h after ethanol ingestion. Blood samples were collected from the tail veins of the rats at 1, 3, 6, 12, and 24 h after ingestion of ethanol, Lc. chungangensis CAU 28 substrate, or Lc. lactis ssp. lactis ATCC 19435 substrate. Alcohol and acetaldehyde concentrations in the Lc. chungangensis CAU 28 substrate-treated rats were significantly reduced in a time-dependent manner compared with those in the Lc. lactis ssp. lactis ATCC 19435 substrate-treated rats. Among the experimental groups, treatment with cream cheese before ingestion of 20% ethanol was found to be the most effective method for reducing both alcohol and acetaldehyde levels in the blood. Alanine aminotransferase and aspartate aminotransferase activities in the Lc. chungangensis CAU 28 substrate-treated rats were significantly lower than those in the positive controls. Moreover, in the Lc. chungangensis CAU 28 cream cheese-treated group, rats showed a reduction of liver enzymes by up to 60%, with good effectiveness observed for both pre- and post-ethanol ingestion. These results suggested that intake of lactic acid bacteria, particularly in Lc. chungangensis CAU 28-supplemented dairy products, may reduce blood alcohol and acetaldehyde concentrations, thereby mitigating acute alcohol-induced hepatotoxicity by altering alcohol-metabolizing enzyme activities.
Collapse
Affiliation(s)
- Maytiya Konkit
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Kiyoung Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea.
| |
Collapse
|
5
|
Rossi M, Jahanzaib Anwar M, Usman A, Keshavarzian A, Bishehsari F. Colorectal Cancer and Alcohol Consumption-Populations to Molecules. Cancers (Basel) 2018; 10:E38. [PMID: 29385712 PMCID: PMC5836070 DOI: 10.3390/cancers10020038] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the third most common cancer diagnosed in both men and women in the world. Several environmental and habitual factors have been associated with the CRC risk. Alcohol intake, a common and rising habit of modern society, is one of the major risk factors for development of CRC. Here, we will summarize the evidence linking alcohol with colon carcinogenesis and possible underlying mechanisms. Some epidemiologic studies suggest that even moderate drinking increases the CRC risk. Metabolism of alcohol involves ethanol conversion to its metabolites that could exert carcinogenic effects in the colon. Production of ethanol metabolites can be affected by the colon microbiota, another recently recognized mediating factor to colon carcinogenesis. The generation of acetaldehyde and alcohol's other metabolites leads to activation of cancer promoting cascades, such as DNA-adduct formation, oxidative stress and lipid peroxidation, epigenetic alterations, epithelial barrier dysfunction, and immune modulatory effects. Not only does alcohol induce its toxic effect through carcinogenic metabolites, but alcoholics themselves are predisposed to a poor diet, low in folate and fiber, and circadian disruption, which could further augment alcohol-induced colon carcinogenesis.
Collapse
Affiliation(s)
- Marco Rossi
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Muhammad Jahanzaib Anwar
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ahmad Usman
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ali Keshavarzian
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Faraz Bishehsari
- Division of Digestive Diseases, Hepatology, and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
6
|
Samak G, Gangwar R, Meena AS, Rao RG, Shukla PK, Manda B, Narayanan D, Jaggar JH, Rao R. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers. Sci Rep 2016; 6:38899. [PMID: 27958326 PMCID: PMC5153649 DOI: 10.1038/srep38899] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca2+-free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or CaV1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK.
Collapse
Affiliation(s)
- Geetha Samak
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Ruchika Gangwar
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Avtar S Meena
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Roshan G Rao
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Pradeep K Shukla
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Bhargavi Manda
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Damodaran Narayanan
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| | - RadhaKrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis TN 38163, USA
| |
Collapse
|
7
|
Tsuruya A, Kuwahara A, Saito Y, Yamaguchi H, Tsubo T, Suga S, Inai M, Aoki Y, Takahashi S, Tsutsumi E, Suwa Y, Morita H, Kinoshita K, Totsuka Y, Suda W, Oshima K, Hattori M, Mizukami T, Yokoyama A, Shimoyama T, Nakayama T. Ecophysiological consequences of alcoholism on human gut microbiota: implications for ethanol-related pathogenesis of colon cancer. Sci Rep 2016; 6:27923. [PMID: 27295340 PMCID: PMC4904738 DOI: 10.1038/srep27923] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/26/2016] [Indexed: 01/09/2023] Open
Abstract
Chronic consumption of excess ethanol increases the risk of colorectal cancer. The pathogenesis of ethanol-related colorectal cancer (ER-CRC) is thought to be partly mediated by gut microbes. Specifically, bacteria in the colon and rectum convert ethanol to acetaldehyde (AcH), which is carcinogenic. However, the effects of chronic ethanol consumption on the human gut microbiome are poorly understood, and the role of gut microbes in the proposed AcH-mediated pathogenesis of ER-CRC remains to be elaborated. Here we analyse and compare the gut microbiota structures of non-alcoholics and alcoholics. The gut microbiotas of alcoholics were diminished in dominant obligate anaerobes (e.g., Bacteroides and Ruminococcus) and enriched in Streptococcus and other minor species. This alteration might be exacerbated by habitual smoking. These observations could at least partly be explained by the susceptibility of obligate anaerobes to reactive oxygen species, which are increased by chronic exposure of the gut mucosa to ethanol. The AcH productivity from ethanol was much lower in the faeces of alcoholic patients than in faeces of non-alcoholic subjects. The faecal phenotype of the alcoholics could be rationalised based on their gut microbiota structures and the ability of gut bacteria to accumulate AcH from ethanol.
Collapse
Affiliation(s)
- Atsuki Tsuruya
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 Japan
| | - Akika Kuwahara
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 Japan
| | - Yuta Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 Japan
| | - Haruhiko Yamaguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 Japan
| | - Takahisa Tsubo
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 Japan
| | - Shogo Suga
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 Japan
| | - Makoto Inai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 Japan
| | - Yuichi Aoki
- Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi 980-8579 Japan
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 Japan
| | - Eri Tsutsumi
- Suntory World Research Center, Suntory Holdings Ltd., Soraku-gun, Kyoto 619-0284, Japan
| | - Yoshihide Suwa
- Suntory World Research Center, Suntory Holdings Ltd., Soraku-gun, Kyoto 619-0284, Japan
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kenji Kinoshita
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan
| | - Yukari Totsuka
- Division of Cancer Development System, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Wataru Suda
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Kenshiro Oshima
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Masahira Hattori
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Takeshi Mizukami
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Kanagawa 239-0841, Japan
| | - Akira Yokoyama
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Kanagawa 239-0841, Japan
| | - Takefumi Shimoyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 Japan
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 Japan
| |
Collapse
|
8
|
Tsuruya A, Kuwahara A, Saito Y, Yamaguchi H, Tenma N, Inai M, Takahashi S, Tsutsumi E, Suwa Y, Totsuka Y, Suda W, Oshima K, Hattori M, Mizukami T, Yokoyama A, Shimoyama T, Nakayama T. Major Anaerobic Bacteria Responsible for the Production of Carcinogenic Acetaldehyde from Ethanol in the Colon and Rectum. Alcohol Alcohol 2016; 51:395-401. [DOI: 10.1093/alcalc/agv135] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023] Open
|
9
|
Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV. Metabolic methanol: molecular pathways and physiological roles. Physiol Rev 2015; 95:603-44. [PMID: 25834233 DOI: 10.1152/physrev.00034.2014] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Anastasia V Shindyapina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Ekaterina V Sheshukova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Tatiana V Komarova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
10
|
Abstract
Alcoholic liver disease is a leading cause of morbidity and liver-related death worldwide. Intestinal bacterial overgrowth and dysbiosis induced by ethanol ingestion play an important role in the pathogenesis of alcoholic liver disease. After exposure to alcohol in the lumen, enteric bacteria alter their metabolism and thereby disturb intestinal homeostasis. Disruption of the mucosal barrier results in the translocation of microbial products that contribute to liver disease by inducing hepatic inflammation. In this review, we will discuss the effects of alcohol on the intestinal microbiome, and in particular, its effects on bacterial metabolism, bacterial translocation and ecological balance. A better understanding of the interactions among alcohol, the host and the microbiome will reveal new targets for therapy and lead to new treatments.
Collapse
Affiliation(s)
- Peng Chen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Elamin EE, Masclee AA, Dekker J, Jonkers DM. Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutr Rev 2013; 71:483-99. [PMID: 23815146 DOI: 10.1111/nure.12027] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ethanol is widely consumed and is associated with an increasing global health burden. Several reviews have addressed the effects of ethanol and its oxidative metabolite, acetaldehyde, on the gastrointestinal (GI) tract, focusing on carcinogenic effects or alcoholic liver disease. However, both the oxidative and the nonoxidative metabolites of ethanol can affect the epithelial barrier of the small and large intestines, thereby contributing to GI and liver diseases. This review outlines the possible mechanisms of ethanol metabolism as well as the effects of ethanol and its metabolites on the intestinal barrier. Limited studies in humans and supporting in vitro data have indicated that ethanol as well as mainly acetaldehyde can increase small intestinal permeability. Limited evidence also points to increased colon permeability following exposure to ethanol or acetaldehyde. In vitro studies have provided several mechanisms for disruption of the epithelial barrier, including activation of different cell-signaling pathways, oxidative stress, and remodeling of the cytoskeleton. Modulation via intestinal microbiota, however, should also be considered. In conclusion, ethanol and its metabolites may act additively or even synergistically in vivo. Therefore, in vivo studies investigating the effects of ethanol and its byproducts on permeability of the small and large intestines are warranted.
Collapse
Affiliation(s)
- Elhaseen E Elamin
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | | | | | | |
Collapse
|
12
|
Kurkivuori J, Salaspuro V, Kaihovaara P, Kari K, Rautemaa R, Grönroos L, Meurman JH, Salaspuro M. Acetaldehyde production from ethanol by oral streptococci. Oral Oncol 2007; 43:181-6. [PMID: 16859955 DOI: 10.1016/j.oraloncology.2006.02.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/09/2006] [Accepted: 02/13/2006] [Indexed: 12/25/2022]
Abstract
Alcohol is a well documented risk factor for upper digestive tract cancers. It has been shown that acetaldehyde, the first metabolite of ethanol is carcinogenic. The role of microbes in the production of acetaldehyde to the oral cavity has previously been described in several studies. In the present study, the aim was to investigate the capability of viridans group streptococci of normal oral flora to produce acetaldehyde in vitro during ethanol incubation. Furthermore, the aim was to measure the alcohol dehydrogenase (ADH) activity of the bacteria. Eight clinical strains and eight American Type Culture Collection (ATCC) strains of viridans group streptococci were selected for the study. Bacterial suspensions were incubated in two different ethanol concentrations, 11 mM and 1100 mM and the acetaldehyde was measured by gas chromatography. ADH-activity was measured by using a sensitive spectroscopy. The results show significant differences between the bacterial strains regarding acetaldehyde production capability and the detected ADH-activity. In particular, clinical strain of Streptococcus salivarius, both clinical and culture collection strains of Streptococcus intermedius and culture collection strain of Streptococcus mitis produced high amounts of acetaldehyde in 11 mM and 1100 mM ethanol incubation. All these four bacterial strains also showed significant ADH-enzyme activity. Twelve other strains were found to be low acetaldehyde producers. Consequently, our study shows that viridans group streptococci may play a role in metabolizing ethanol to carcinogenic acetaldehyde in the mouth. The observation supports the concept of a novel mechanism in the pathogenesis of oral cancer.
Collapse
Affiliation(s)
- Johanna Kurkivuori
- Research Unit of Substance Abuse Medicine, University Central Hospital of Helsinki, Biomedicum Helsinki, PL 700, 00029 HUS Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Excessive alcohol consumption and heavy smoking are the main risk factors of upper digestive tract cancer in industrialized countries. The association between heavy drinking and cancer appears to he particularly prominent in Asian individuals who have an inherited deficient ability to detoxify the first metabolite of ethanol oxidation, acetaldehyde. Alcohol itself is not carcinogenic. However, according to cell culture and animal experiments acetaldehyde is highly toxic, mutagenic, and carcinogenic. In addition to somatic cells, microbes representing normal human gut flora are also able to produce acetaldehyde from ethanol. After the ingestion of alcoholic beverages, this results in high local acetaldehyde concentrations in the saliva, gastric juice, and the contents of the large intestine. In addition, microbes may produce acetaldehyde endogenously without alcohol administration. This review summarizes the epidemiological, genetic, and biochemical evidence supporting the role of locally produced acetaldehyde in the pathogenesis of digestive tract cancer. Special emphasis is given to those factors that regulate local acetaldehyde concentration in the contents of the gastrointestinal tract. The new evidence presented in this review may open a microbiological approach to the pathogenesis of digestive tract cancer and may have an influence on future preventive strategies.
Collapse
Affiliation(s)
- Mikko P Salaspuro
- Research Unit of Substance Abuse Medicine, University Central Hospital of Helsinki, Biomedicum Helsinki, PL 700, 00029 HUS, Helsinki, Finland.
| |
Collapse
|