1
|
Momin SZ, Le JT, Miranda RC. Vascular Contributions to the Neurobiological Effects of Prenatal Alcohol Exposure. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:10924. [PMID: 37205306 PMCID: PMC10191416 DOI: 10.3389/adar.2023.10924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are often characterized as a cluster of brain-based disabilities. Though cardiovascular effects of prenatal alcohol exposure (PAE) have been documented, the vascular deficits due to PAE are less understood, but may contribute substantially to the severity of neurobehavioral presentation and health outcomes in persons with FASD. Methods We conducted a systematic review of research articles curated in PubMed to assess the strength of the research on vascular effects of PAE. 40 pertinent papers were selected, covering studies in both human populations and animal models. Results Studies in human populations identified cardiac defects, and defects in vasculature, including increased tortuosity, defects in basement membranes, capillary basal hyperplasia, endarteritis, and disorganized and diminished cerebral vasculature due to PAE. Preclinical studies showed that PAE rapidly and persistently results in vasodilation of large afferent cerebral arteries, but to vasoconstriction of smaller cerebral arteries and microvasculature. Moreover, PAE continues to affect cerebral blood flow into middle-age. Human and animal studies also indicate that ocular vascular parameters may have diagnostic and predictive value. A number of intervening mechanisms were identified, including increased autophagy, inflammation and deficits in mitochondria. Studies in animals identified persistent changes in blood flow and vascular density associated with endocannabinoid, prostacyclin and nitric oxide signaling, as well as calcium mobilization. Conclusion Although the brain has been a particular focus of studies on PAE, the cardiovascular system is equally affected. Studies in human populations, though constrained by small sample sizes, did link pathology in major blood vessels and tissue vasculature, including brain vasculature, to PAE. Animal studies highlighted molecular mechanisms that may be useful therapeutic targets. Collectively, these studies suggest that vascular pathology is a possible contributing factor to neurobehavioral and health problems across a lifespan in persons with a diagnosis of FASD. Furthermore, ocular vasculature may serve as a biomarker for neurovascular health in FASD.
Collapse
Affiliation(s)
| | | | - Rajesh C. Miranda
- Corresponding author to whom correspondence should be addressed: Rajesh C. Miranda, PhD, , Texas A&M University Health Science Center, School of Medicine, Department of Neuroscience & Experimental Therapeutics, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, Phone: 979-436-0332, Fax: 979-436-0086
| |
Collapse
|
2
|
Gualdoni GS, Jacobo PV, Barril C, Ventureira MR, Cebral E. Early Abnormal Placentation and Evidence of Vascular Endothelial Growth Factor System Dysregulation at the Feto-Maternal Interface After Periconceptional Alcohol Consumption. Front Physiol 2022; 12:815760. [PMID: 35185604 PMCID: PMC8847216 DOI: 10.3389/fphys.2021.815760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/28/2021] [Indexed: 01/16/2023] Open
Abstract
Adequate placentation, placental tissue remodeling and vascularization is essential for the success of gestation and optimal fetal growth. Recently, it was suggested that abnormal placenta induced by maternal alcohol consumption may participate in fetal growth restriction and relevant clinical manifestations of the Fetal Alcohol Spectrum Disorders (FASD). Particularly, periconceptional alcohol consumption up to early gestation can alter placentation and angiogenesis that persists in pregnancy beyond the exposure period. Experimental evidence suggests that abnormal placenta following maternal alcohol intake is associated with insufficient vascularization and defective trophoblast development, growth and function in early gestation. Accumulated data indicate that impaired vascular endothelial growth factor (VEGF) system, including their downstream effectors, the nitric oxide (NO) and metalloproteinases (MMPs), is a pivotal spatio-temporal altered mechanism underlying the early placental vascular alterations induced by maternal alcohol consumption. In this review we propose that the periconceptional alcohol intake up to early organogenesis (first trimester) alters the VEGF-NO-MMPs system in trophoblastic-decidual tissues, generating imbalances in the trophoblastic proliferation/apoptosis, insufficient trophoblastic development, differentiation and migration, deficient labyrinthine vascularization, and uncompleted remodelation and transformation of decidual spiral arterioles. Consequently, abnormal placenta with insufficiency blood perfusion, vasoconstriction and reduced labyrinthine blood exchange can be generated. Herein, we review emerging knowledge of abnormal placenta linked to pregnancy complications and FASD produced by gestational alcohol ingestion and provide evidence of the early abnormal placental angiogenesis-vascularization and growth associated to decidual-trophoblastic dysregulation of VEGF system after periconceptional alcohol consumption up to mid-gestation, in a mouse model.
Collapse
|
3
|
Alleyne J, Dopico AM. Alcohol Use Disorders and Their Harmful Effects on the Contractility of Skeletal, Cardiac and Smooth Muscles. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1:10011. [PMID: 35169771 PMCID: PMC8843239 DOI: 10.3389/adar.2021.10011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Alcohol misuse has deleterious effects on personal health, family, societal units, and global economies. Moreover, alcohol misuse usually leads to several diseases and conditions, including alcoholism, which is a chronic condition and a form of addiction. Alcohol misuse, whether as acute intoxication or alcoholism, adversely affects skeletal, cardiac and/or smooth muscle contraction. Ethanol (ethyl alcohol) is the main effector of alcohol-induced dysregulation of muscle contractility, regardless of alcoholic beverage type or the ethanol metabolite (with acetaldehyde being a notable exception). Ethanol, however, is a simple and "promiscuous" ligand that affects many targets to mediate a single biological effect. In this review, we firstly summarize the processes of excitation-contraction coupling and calcium homeostasis which are critical for the regulation of contractility in all muscle types. Secondly, we present the effects of acute and chronic alcohol exposure on the contractility of skeletal, cardiac, and vascular/ nonvascular smooth muscles. Distinctions are made between in vivo and in vitro experiments, intoxicating vs. sub-intoxicating ethanol levels, and human subjects vs. animal models. The differential effects of alcohol on biological sexes are also examined. Lastly, we show that alcohol-mediated disruption of muscle contractility, involves a wide variety of molecular players, including contractile proteins, their regulatory factors, membrane ion channels and pumps, and several signaling molecules. Clear identification of these molecular players constitutes a first step for a rationale design of pharmacotherapeutics to prevent, ameliorate and/or reverse the negative effects of alcohol on muscle contractility.
Collapse
Affiliation(s)
| | - Alex M. Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
4
|
Naik VD, Davis-Anderson K, Subramanian K, Lunde-Young R, Nemec MJ, Ramadoss J. Mechanisms Underlying Chronic Binge Alcohol Exposure-Induced Uterine Artery Dysfunction in Pregnant Rat. Alcohol Clin Exp Res 2018; 42:682-690. [PMID: 29363778 DOI: 10.1111/acer.13602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/16/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND A cardinal feature of fetal alcohol syndrome is growth restriction. Maternal uterine artery adaptations to pregnancy correlate with birthweight and survival. We hypothesized that gestational binge alcohol exposure impairs maternal uterine vascular function, affecting endothelial nitric oxide (NO)-mediated vasodilation. METHODS Pregnant rats grouped as pair-fed control or binge alcohol exposed received a once-daily, orogastric gavage of isocaloric maltose-dextrin or alcohol, respectively. On gestational day 20, primary uterine arteries were isolated, cannulated, and connected to a pressure transducer, and functional studies were conducted by dual-chamber arteriography. Uterine arteries maintained at constant intramural pressure (90 mm Hg) were maximally constricted with thromboxane, and a dose-response for acetylcholine (Ach) was recorded. RESULTS The alcohol group exhibited significantly impaired endothelium-dependent, Ach-induced uterine artery relaxation (↓∼30%). Subsequently, a dose-response was recorded following inhibition of endothelium-derived hyperpolarizing factor (apamin and TRAM-34) and prostacyclin (indomethacin). Ach-induced relaxation in the pair-fed control decreased by ~46%, and interestingly, relaxation in alcohol group further decreased by an additional ~48%, demonstrating that gestational binge alcohol impairs the NO system in the primary uterine artery. An endothelium-independent sodium nitroprusside effect was not observed. Immunoblotting indicated that alcohol decreased the level of endothelial excitatory P-Ser1177 endothelial NO synthase (eNOS) (p < 0.05) and total eNOS expression (p < 0.05) compared to both the normal and pair-fed controls. P-Ser1177 eNOS level was also confirmed by immunofluorescence imaging. CONCLUSIONS This is the first study to demonstrate maternal binge alcohol consumption during pregnancy disrupts uterine artery vascular function via impairment of the eNOS vasodilatory system.
Collapse
Affiliation(s)
- Vishal D Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Katie Davis-Anderson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Kaviarasan Subramanian
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
| | - Raine Lunde-Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Matthew J Nemec
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
5
|
Naik VD, Lunde-Young ER, Davis-Anderson KL, Orzabal M, Ivanov I, Ramadoss J. Chronic binge alcohol consumption during pregnancy alters rat maternal uterine artery pressure response. Alcohol 2016; 56:59-64. [PMID: 27793545 DOI: 10.1016/j.alcohol.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 01/10/2023]
Abstract
We aimed to investigate pressure-dependent maternal uterine artery responses and vessel remodeling following gestational binge alcohol exposure. Two groups of pregnant rats were used: the alcohol group (28.5% wt/v, 6.0 g/kg, once-daily orogastric gavage in a binge paradigm between gestational day (GD) 5-19) and pair-fed controls (isocalorically matched). On GD20, excised, pressurized primary uterine arteries were studied following equilibration (60 mm Hg) using dual chamber arteriograph. The uterine artery diameter stabilized at 20 mm Hg, showed passive distension at 40 mm Hg, and redeveloped tone at 60 mm Hg. An alcohol effect (P = 0.0025) was observed on the percent constriction of vessel diameter with greater pressure-dependent myogenic constriction. Similar alcohol effect was noted with lumen diameter response (P = 0.0020). The percent change in media:lumen ratio was higher in the alcohol group (P < 0.0001). Thus, gestational alcohol affects pressure-induced uterine artery reactivity, inward-hypotrophic remodeling, and adaptations critical for nutrient delivery to the fetus.
Collapse
|
6
|
Egeland GM, Klungsøyr K, Øyen N, Tell GS, Næss Ø, Skjærven R. Preconception Cardiovascular Risk Factor Differences Between Gestational Hypertension and Preeclampsia: Cohort Norway Study. Hypertension 2016; 67:1173-80. [PMID: 27113053 PMCID: PMC4861703 DOI: 10.1161/hypertensionaha.116.07099] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Preconception predictors of gestational hypertension and preeclampsia may identify opportunities for early detection and improve our understanding of the pathogenesis and life course epidemiology of these conditions. Female participants in community-based Cohort Norway health surveys, 1994 to 2003, were prospectively followed through 2012 via record linkages to Medical Birth Registry of Norway. Analyses included 13 217 singleton pregnancies (average of 1.59 births to 8321 women) without preexisting hypertension. Outcomes were gestational hypertension without proteinuria (n=237) and preeclampsia (n=429). Mean age (SD) at baseline was 27.9 years (4.5), and median follow-up was 4.8 years (interquartile range 2.6–7.8). Gestational hypertension and preeclampsia shared several baseline risk factors: family history of diabetes mellitus, pregravid diabetes mellitus, a high total cholesterol/high-density lipoprotein cholesterol ratio (>5), overweight and obesity, and elevated blood pressure status. For preeclampsia, a family history of myocardial infarction before 60 years of age and elevated triglyceride levels (≥1.7 mmol/L) also predicted risk while physical activity was protective. Preterm preeclampsia was predicted by past-year binge drinking (≥5 drinks on one occasion) with an adjusted odds ratio of 3.7 (95% confidence interval 1.3–10.8) and by past-year physical activity of ≥3 hours per week with an adjusted odds ratio of 0.5 (95% confidence interval 0.3–0.8). The results suggest similarities and important differences between gestational hypertension, preeclampsia, and preterm preeclampsia. Modifiable risk factors could be targeted for improving pregnancy outcomes and the short- and long-term sequelae for mothers and offspring.
Collapse
Affiliation(s)
- Grace M Egeland
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.).
| | - Kari Klungsøyr
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| | - Nina Øyen
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| | - Grethe S Tell
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| | - Øyvind Næss
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| | - Rolv Skjærven
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| |
Collapse
|
7
|
Gundogan F, Gilligan J, Qi W, Chen E, Naram R, de la Monte SM. Dose effect of gestational ethanol exposure on placentation and fetal growth. Placenta 2015; 36:523-30. [PMID: 25745824 DOI: 10.1016/j.placenta.2015.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 01/02/2015] [Accepted: 02/16/2015] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Prenatal ethanol exposure compromises fetal growth by impairing placentation. Invasive trophoblastic cells, which mediate placentation, express the insulin-IGF regulated gene, aspartyl-asparaginyl β-hydroxylase (ASPH), which has a critical role in cell motility and invasion. The aims of this study were to characterize effects of ethanol on trophoblastic cell motility, and assess ethanol dose-dependent impairments in placentation and fetal development. METHODS Pregnant Long Evans dams were fed with isocaloric liquid diets containing 0%, 8%, 18% or 37% ethanol (caloric content) from gestation day (GD) 6 to GD18. Fetal development, placental morphology, density of invasive trophoblasts at the mesometrial triangle, as well as placental and mesometrial ASPH and Notch-1 protein expression were evaluated. Directional motility of control and ethanol-exposed HTR-8/SVneo cells was assessed by ATP Luminescence-Based assay. RESULTS Severity of fetal growth impairment correlated with increasing doses of ethanol. Ethanol exposure produced dose-dependent alterations in branching morphogenesis at the labyrinthine zone, and inhibited physiological transformation of maternal arteries. ASPH and Notch-1 protein expression levels were reduced, corresponding with impairments in placentation. DISCUSSION Prenatal ethanol exposure compromises fetal growth and placentation in a dose-responsive manner. Ethanol's adverse effects on placental development are mediated by: (1) altered branching morphogenesis in labyrinthine zone; (2) suppression of invasive trophoblastic precursor cells; and (3) inhibition of trophoblastic cell adhesion and motility, corresponding with reduced ASPH and Notch-1 protein expression.
Collapse
Affiliation(s)
- F Gundogan
- Department of Pathology, Women and Infants Hospital, Providence, RI, 02905, USA; Alpert Medical School at Brown University, Providence, RI, 02905, USA
| | - J Gilligan
- Department of Medicine, Liver Research Center, Rhode Island Hospital, Providence, RI, 02905, USA
| | - W Qi
- Department of Medicine, Liver Research Center, Rhode Island Hospital, Providence, RI, 02905, USA
| | - E Chen
- Department of Medicine, Liver Research Center, Rhode Island Hospital, Providence, RI, 02905, USA
| | - R Naram
- Department of Pathology, Women and Infants Hospital, Providence, RI, 02905, USA
| | - S M de la Monte
- Department of Pathology, Rhode Island Hospital, Providence, RI, 02905, USA; Department of Medicine, Liver Research Center, Rhode Island Hospital, Providence, RI, 02905, USA; Alpert Medical School at Brown University, Providence, RI, 02905, USA.
| |
Collapse
|
8
|
Sawant OB, Ramadoss J, Hankins GD, Wu G, Washburn SE. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol. Amino Acids 2014; 46:1981-96. [PMID: 24810329 DOI: 10.1007/s00726-014-1751-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/16/2014] [Indexed: 01/11/2023]
Abstract
Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75-2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid-base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid-base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy.
Collapse
Affiliation(s)
- Onkar B Sawant
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, 4466 Texas A&M University, College Station, TX, 77843-4466, USA
| | | | | | | | | |
Collapse
|
9
|
Subramanian K, Naik VD, Sathishkumar K, Sawant OB, Washburn SE, Wu G, Yallampalli C, Saade GR, Hankins GD, Ramadoss J. Interactive effects of in vitro binge-like alcohol and ATP on umbilical endothelial nitric oxide synthase post-translational modifications and redox modulation. Reprod Toxicol 2013; 43:94-101. [PMID: 24300283 DOI: 10.1016/j.reprotox.2013.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/29/2013] [Accepted: 11/22/2013] [Indexed: 01/01/2023]
Abstract
Alcohol dysregulates the regulation of reproductive vascular adaptations. We herein investigated chronic in vitro binge-like alcohol effects on umbilical endothelial nitric oxide synthase (eNOS) multi-site phosphorylation and related redox switches under basal (unstimulated) and stimulated (with ATP) states. Alcohol decreased endothelial excitatory (Pser1177)eNOS (P<0.001), whereas excitatory (Pser635)eNOS exhibited a main effect of alcohol (↓P=0.016) and ATP (↑P<0.001). Alcohol decreased (Pthr495)eNOS (P=0.004) levels, whereas inhibitory (Pser116)eNOS exhibited an alcohol main effect in both basal and stimulated states (↑P=0.005). Total eNOS was reduced by alcohol (P=0.038). In presence of ATP, alcohol inhibited ERK activity (P=0.002), whereas AKT exhibited no alcohol effect. Alcohol main effect on S-nitroso-glutathione reductase (↓P=0.031) and glutathione-S-transferase (↓P=0.027) were noted. Increased protein glutathiolation was noted, whereas no alcohol effect on GSH, GSSG, NOX2 or SOD expression was noted. Thus, alcohol effects on multi-site post-translational modifications and redox switches related to vasodilatory eNOS underscore the necessity for investigating alcohol-induced gestational vascular dysfunction.
Collapse
Affiliation(s)
- Kaviarasan Subramanian
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vishal D Naik
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kunju Sathishkumar
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Onkar B Sawant
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Shannon E Washburn
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Sciences, Texas A&M University, College Station, TX, USA
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - George R Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gary D Hankins
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jayanth Ramadoss
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
10
|
Ramadoss J, Magness RR. Alcohol-induced alterations in maternal uterine endothelial proteome: a quantitative iTRAQ mass spectrometric approach. Reprod Toxicol 2012; 34:538-44. [PMID: 22960358 DOI: 10.1016/j.reprotox.2012.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/13/2012] [Accepted: 08/28/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To quantitate alcohol-induced alterations in the maternal uterine endothelial proteome utilizing iTRAQ-based mass spectrometry. STUDY DESIGN Uterine artery endothelial cells from third trimester pregnant ewes were FAC sorted, validated and treated without or with binge-like alcohol. Lysates were trypsin digested, iTRAQ-labeled, and analyzed using nano LC MS/MS. RESULTS Alcohol significantly upregulated 14 and downregulated 17 proteins (P<0.05) including those related to cell structure, transcription/translation regulation, histones, Ca(2+)/NO, and redox balance. Gene Ontology and ArrayTrack analyses revealed alterations to protein processing, binding, and nutrient metabolism pathways. Further, alcohol altered proteins previously correlated with fetal alcohol spectrum disorders (FASD) and those that regulate epigenetic, transcriptional, and translational processes. CONCLUSIONS Alcohol differentially alters the proteome in the maternal uterine compartment at the level of the endothelium. iTRAQ mass spectrometry provides a robust high throughput platform to comprehend the multi-mechanistic actions of alcohol and develop appropriate biomarkers and ameliorative measures for FASD.
Collapse
Affiliation(s)
- Jayanth Ramadoss
- Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | |
Collapse
|
11
|
Abstract
Maternal alcohol consumption during pregnancy is a significant field of scientific exploration primarily because of its negative effects on the developing fetus, which is specifically defined as fetal alcohol spectrum disorders. Though the effects on the mother are less explored compared with those on the fetus, alcohol produces multiple effects on the maternal vascular system. Alcohol has major effects on systemic hemodynamic variables, endocrine axes, and paracrine factors regulating vascular resistance, as well as vascular reactivity. Alcohol is also reported to have significant effects on the reproductive vasculature including alterations in blood flow, vessel remodeling, and angiogenesis. Data presented in this review will illustrate the importance of the maternal vasculature in the pathogenesis of fetal alcohol spectrum disorders and that more studies are warranted in this field.
Collapse
Affiliation(s)
- Jayanth Ramadoss
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA.
| | | |
Collapse
|
12
|
Ramadoss J, Magness RR. Multiplexed digital quantification of binge-like alcohol-mediated alterations in maternal uterine angiogenic mRNA transcriptome. Physiol Genomics 2012; 44:622-8. [PMID: 22535877 DOI: 10.1152/physiolgenomics.00009.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genomic studies on fetal alcohol spectrum disorders (FASD) have utilized either genome-wide microarrays/bioinformatics or targeted real-time PCR (RT-PCR). We utilized herein for the first time a novel digital approach with high throughput as well as the capability to focus on one physiological system. The aim of the present study was to investigate alcohol-induced alterations in uterine angiogenesis-related mRNA abundance using digital mRNA technology. Four biological and three technical replicates of uterine arterial endothelial cells from third-trimester ewes were fluorescence-activated cell sorted, validated, and treated without or with binge-like alcohol. A capture probe covalently bound to an oligonucleotide containing biotin and a color-coded reporter probe were designed for 85 angiogenesis-related genes and analyzed with the Nanostring nCounter system. Twenty genes were downregulated (↓) and two upregulated (↑), including angiogenic growth factors/receptors (↓placental growth factor), adhesion molecules (↓angiopoietin-like-3; ↓collagen-18A1; ↓endoglin), proteases/matrix proteins/inhibitors (↓alanyl aminopeptidase; ↓collagen-4A3; ↓heparanase; ↓plasminogen, ↑plasminogen activator urokinase; ↓platelet factor-4; ↓plexin domain containing-1; ↓tissue inhibitor of metalloproteinases-3), transcription/signaling molecules (↓heart and neural crest derivatives-2; ↓DNA-binding protein inhibitor; ↓NOTCH-4; ↓ribosomal protein-L13a1; ↓ribosomal protein large-P1), cytokines/chemokines (↓interleukin-1B), and miscellaneous growth factors (↓leptin; ↓platelet-derived growth factor-α); ↓transforming growth factor (TGF-α; ↑TGF-β receptor-1). These novel data show significant detrimental alcohol effects on genes controlling angiogenesis supporting a mechanistic role for abnormal uteroplacental vascular development in FASD. The tripartite digital gene expression system is therefore a valuable tool to answer many additional questions about FASD from both mechanistic as well as ameliorative perspectives.
Collapse
Affiliation(s)
- Jayanth Ramadoss
- Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | |
Collapse
|
13
|
Ramadoss J, Magness RR. 2-D DIGE uterine endothelial proteomic profile for maternal chronic binge-like alcohol exposure. J Proteomics 2011; 74:2986-94. [PMID: 21839868 DOI: 10.1016/j.jprot.2011.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/15/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
Little is known about alcohol effects on the utero-placental compartment during pregnancy. For the first time, we utilized 2-D DIGE quantitative proteomics to evaluate the role of the uterus in Fetal Alcohol Spectrum Disorders (FASD) pathogenesis. Uterine artery endothelial cells were isolated from pregnant ewes, FAC sorted, validated, and maintained in culture. To mimic maternal binge drinking patterns, cells were cultured in the absence or presence of alcohol (300 mg/dl) in a compensating sealed humidified chamber system equilibrated with aqueous alcohol for 3 h on 3 consecutive days for two weeks. CyDye switch combined with 2-D DIGE followed by MALDI-TOF and tandem MS/MS were utilized. Validation was performed using Western immunoblot analysis. Chronic binge-like alcohol significantly (P<0.05) decreased 30 proteins and increased 19 others. Gene-enrichment and functional annotation cluster analysis revealed significant enrichment (P<0.05) in three categories: glutathione S transferase, thioredoxin, and vesicle transport-related. Furthermore, alcohol differentially altered proteins with certain isoforms being downregulated while others were upregulated. In summary, binge alcohol has specific effects on the maternal uterine proteome, especially those related to oxidative stress. The current study also demonstrates a great need to utilize proteomic approaches for diagnostic, mechanistic and therapeutic aspects of FASD.
Collapse
Affiliation(s)
- Jayanth Ramadoss
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin 53715, USA.
| | | |
Collapse
|