1
|
Rose JK, Butterfield M, Liang J, Parvand M, Lin CHS, Rankin CH. Neuroligin Plays a Role in Ethanol-Induced Disruption of Memory and Corresponding Modulation of Glutamate Receptor Expression. Front Behav Neurosci 2022; 16:908630. [PMID: 35722190 PMCID: PMC9204643 DOI: 10.3389/fnbeh.2022.908630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to alcohol causes deficits in long-term memory formation across species. Using a long-term habituation memory assay in Caenorhabditis elegans, the effects of ethanol on long-term memory (> 24 h) for habituation were investigated. An impairment in long-term memory was observed when animals were trained in the presence of ethanol. Cues of internal state or training context during testing did not restore memory. Ethanol exposure during training also interfered with the downregulation of AMPA/KA-type glutamate receptor subunit (GLR-1) punctal expression previously associated with long-term memory for habituation in C. elegans. Interestingly, ethanol exposure alone had the opposite effect, increasing GLR-1::GFP punctal expression. Worms with a mutation in the C. elegans ortholog of vertebrate neuroligins (nlg-1) were resistant to the effects of ethanol on memory, as they displayed both GLR-1::GFP downregulation and long-term memory for habituation after training in the presence of ethanol. These findings provide insights into the molecular mechanisms through which alcohol consumption impacts memory.
Collapse
|
2
|
Bayassi-Jakowicka M, Lietzau G, Czuba E, Patrone C, Kowiański P. More than Addiction—The Nucleus Accumbens Contribution to Development of Mental Disorders and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052618. [PMID: 35269761 PMCID: PMC8910774 DOI: 10.3390/ijms23052618] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Stress and negative emotions evoked by social relationships and working conditions, frequently accompanied by the consumption of addictive substances, and metabolic and/or genetic predispositions, negatively affect brain function. One of the affected structures is nucleus accumbens (NAc). Although its function is commonly known to be associated with brain reword responses and addiction, a growing body of evidence also suggests its role in some mental disorders, such as depression and schizophrenia, as well as neurodegenerative diseases, such as Alzheimer’s, Huntington’s, and Parkinson’s. This may result from disintegration of the extensive connections based on numerous neurotransmitter systems, as well as impairment of some neuroplasticity mechanisms in the NAc. The consequences of NAc lesions are both morphological and functional. They include changes in the NAc’s volume, cell number, modifications of the neuronal dendritic tree and dendritic spines, and changes in the number of synapses. Alterations in the synaptic plasticity affect the efficiency of synaptic transmission. Modification of the number and structure of the receptors affects signaling pathways, the content of neuromodulators (e.g., BDNF) and transcription factors (e.g., pCREB, DeltaFosB, NFκB), and gene expression. Interestingly, changes in the NAc often have a different character and intensity compared to the changes observed in the other parts of the basal ganglia, in particular the dorsal striatum. In this review, we highlight the role of the NAc in various pathological processes in the context of its structural and functional damage, impaired connections with the other brain areas cooperating within functional systems, and progression of the pathological processes.
Collapse
Affiliation(s)
- Martyna Bayassi-Jakowicka
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
| | - Grazyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
- Correspondence: (G.L.); (P.K.); Tel.: +48-58-349-14-01 (G.L. & P.K.)
| | - Ewelina Czuba
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Sjukhusbacken 17, 11883 Stockholm, Sweden;
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
- Correspondence: (G.L.); (P.K.); Tel.: +48-58-349-14-01 (G.L. & P.K.)
| |
Collapse
|
3
|
Neuroplasticity and Multilevel System of Connections Determine the Integrative Role of Nucleus Accumbens in the Brain Reward System. Int J Mol Sci 2021; 22:ijms22189806. [PMID: 34575969 PMCID: PMC8471564 DOI: 10.3390/ijms22189806] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
A growing body of evidence suggests that nucleus accumbens (NAc) plays a significant role not only in the physiological processes associated with reward and satisfaction but also in many diseases of the central nervous system. Summary of the current state of knowledge on the morphological and functional basis of such a diverse function of this structure may be a good starting point for further basic and clinical research. The NAc is a part of the brain reward system (BRS) characterized by multilevel organization, extensive connections, and several neurotransmitter systems. The unique role of NAc in the BRS is a result of: (1) hierarchical connections with the other brain areas, (2) a well-developed morphological and functional plasticity regulating short- and long-term synaptic potentiation and signalling pathways, (3) cooperation among several neurotransmitter systems, and (4) a supportive role of neuroglia involved in both physiological and pathological processes. Understanding the complex function of NAc is possible by combining the results of morphological studies with molecular, genetic, and behavioral data. In this review, we present the current views on the NAc function in physiological conditions, emphasizing the role of its connections, neuroplasticity processes, and neurotransmitter systems.
Collapse
|
4
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Zhu S, Chen P, Chen M, Ruan J, Ren W, Zhang X, Gao Y, Li Y. Alcohol inhibits morphine/cocaine reward memory acquisition and reconsolidation in rats. Psychopharmacology (Berl) 2020; 237:1043-1053. [PMID: 31912191 DOI: 10.1007/s00213-019-05433-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/11/2019] [Indexed: 01/05/2023]
Abstract
RATIONALE AND OBJECTIVE Alcohol is a recreational substance that is generally socially acceptable and legal in most areas worldwide. An alcohol overdose will produce an inhibitory effect on the brain and impair cognition and memory. In this study, we examined the effect of alcohol on the acquisition, consolidation, and reconsolidation of drug reward memory induced by morphine and cocaine in rats. METHODS Rats were trained to acquire morphine sulfate (10 mg/kg, s.c.) and cocaine (10 mg/kg, i.p.) conditioned place preference (CPP) via an unbiased CPP paradigm. Vehicle or alcohol (0.25, 0.75, 1.5 g/kg, i.p.) was administered at various time-points, including 30 min before each CPP conditioning session (acquisition), immediately after each CPP conditioning session (consolidation), immediately after the reactivation of CPP (reconsolidation with re-exposure), or without reactivation to the drug-paired context (reconsolidation without re-exposure). Conditioning scores were recorded before or after each conditioning session or memory reactivation. RESULTS Alcohol at a dose of 1.5 g/kg but not 0.25 g/kg or 0.75 g/kg significantly inhibited the acquisition and reconsolidation of morphine- and cocaine-associated memory. In contrast, alcohol had no effect on the consolidation of morphine- or cocaine-induced CPP. CONCLUSIONS The results suggested that pre-exposure alcohol dose-dependently attenuated morphine- or cocaine-induced place preference and prevented drug reinstatement in rats by disrupting memory reconsolidation, which may be explained by the inhibitory effect of alcohol on dopaminergic and glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Shimin Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, China
| | - Pingping Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, China
| | - Mingzhu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, China
| | - Jiawei Ruan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, China
| | - Wanying Ren
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, China
| | - Xinyu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, China
| | - Yang Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, China
| | - Yanqin Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, China.
| |
Collapse
|
6
|
Johnson KA, Lovinger DM. Allosteric modulation of metabotropic glutamate receptors in alcohol use disorder: Insights from preclinical investigations. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:193-232. [PMID: 32416868 DOI: 10.1016/bs.apha.2020.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are family C G protein-coupled receptors (GPCRs) that modulate neuronal excitability and synaptic transmission throughout the nervous system. Owing to recent advances in development of subtype-selective allosteric modulators of mGlu receptors, individual members of the mGlu receptor family have been proposed as targets for treating a variety of neurological and psychiatric disorders, including substance use disorders. In this chapter, we highlight preclinical evidence that allosteric modulators of mGlu receptors could be useful for reducing alcohol consumption and preventing relapse in alcohol use disorder (AUD). We begin with an overview of the preclinical models that are used to study mGlu receptor involvement in alcohol-related behaviors. Alcohol exposure causes adaptations in both expression and function of various mGlu receptor subtypes, and pharmacotherapies aimed at reversing these adaptations have the potential to reduce alcohol consumption and seeking. Positive allosteric modulators (PAMs) of mGlu2 and negative allosteric modulators of mGlu5 show particular promise for reducing alcohol intake and/or preventing relapse. Finally, this chapter discusses important considerations for translating preclinical findings toward the development of clinically useful drugs, including the potential for PAMs to avoid tolerance issues that are frequently observed with repeated administration of GPCR agonists.
Collapse
Affiliation(s)
- Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
7
|
Li DY, Bing YH, Chu CP, Cui X, Cui SB, Qiu DL, Su LD. Chronic Ethanol Consumption Impairs the Tactile-Evoked Long-Term Depression at Cerebellar Molecular Layer Interneuron-Purkinje Cell Synapses in vivo in Mice. Front Cell Neurosci 2019; 12:521. [PMID: 30692916 PMCID: PMC6339896 DOI: 10.3389/fncel.2018.00521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/13/2018] [Indexed: 01/21/2023] Open
Abstract
The cerebellum is sensitive to ethanol (EtOH) consumption. Chronic EtOH consumption impairs motor learning by modulating the cerebellar circuitry synaptic transmission and long-term plasticity. Under in vitro conditions, acute EtOH inhibits both parallel fiber (PF) and climbing fiber (CF) long-term depression (LTD). However, thus far it has not been investigated how chronic EtOH consumption affects sensory stimulation-evoked LTD at the molecular layer interneurons (MLIs) to the Purkinje cell (PC) synapses (MLI-PC LTD) in the cerebellar cortex of living animals. In this study, we investigated the effect of chronic EtOH consumption on facial stimulation-evoked MLI-PC LTD, using an electrophysiological technique as well as pharmacological methods, in urethane-anesthetized mice. Our results showed that facial stimulation induced MLI–PC LTD in the control mice, but it could not be induced in mice with chronic EtOH consumption (0.8 g/kg; 28 days). Blocking the cannabinoid type 1 (CB1) receptor activity with AM-251, prevented MLI-PC LTD in the control mice, but revealed a nitric oxide (NO)-dependent long-term potentiation (LTP) of MLI–PC synaptic transmission (MLI-PC LTP) in the EtOH consumption mice. Notably, with the application of a NO donor, S-nitroso-N-Acetyl-D, L-penicillamine (SNAP) alone prevented the induction of MLI–PC LTD, but a mixture of SNAP and AM-251 revealed an MLI-PC LTP in control mice. In contrast, inhibiting NO synthase (NOS) revealed the facial stimulation-induced MLI-PC LTD in EtOH consumption mice. These results indicate that long-term EtOH consumption can impair the sensory stimulation-induced MLI–PC LTD via the activation of a NO signaling pathway in the cerebellar cortex in vivo in mice. Our results suggest that the chronic EtOH exposure causes a deficit in the cerebellar motor learning function and may be involved in the impaired MLI–PC GABAergic synaptic plasticity.
Collapse
Affiliation(s)
- Da-Yong Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,College of Basic Courses, Zhejiang Shuren University, Hangzhou, China
| | - Yan-Hua Bing
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Chun-Ping Chu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Xun Cui
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Song-Biao Cui
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - De-Lai Qiu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.,Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
| | - Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhe-Jiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Joffe ME, Centanni SW, Jaramillo AA, Winder DG, Conn PJ. Metabotropic Glutamate Receptors in Alcohol Use Disorder: Physiology, Plasticity, and Promising Pharmacotherapies. ACS Chem Neurosci 2018; 9:2188-2204. [PMID: 29792024 PMCID: PMC6192262 DOI: 10.1021/acschemneuro.8b00200] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Developing efficacious treatments for alcohol use disorder (AUD) has proven difficult. The insidious nature of the disease necessitates a deep understanding of its underlying biology as well as innovative approaches to ameliorate ethanol-related pathophysiology. Excessive ethanol seeking and relapse are generated by long-term changes to membrane properties, synaptic physiology, and plasticity throughout the limbic system and associated brain structures. Each of these factors can be modulated by metabotropic glutamate (mGlu) receptors, a diverse set of G protein-coupled receptors highly expressed throughout the central nervous system. Here, we discuss how different components of the mGlu receptor family modulate neurotransmission in the limbic system and other brain regions involved in AUD etiology. We then describe how these processes are dysregulated following ethanol exposure and speculate about how mGlu receptor modulation might restore such pathophysiological changes. To that end, we detail the current understanding of the behavioral pharmacology of mGlu receptor-directed drug-like molecules in animal models of AUD. Together, this review highlights the prominent position of the mGlu receptor system in the pathophysiology of AUD and provides encouragement that several classes of mGlu receptor modulators may be translated as viable treatment options.
Collapse
Affiliation(s)
- Max E. Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Anel A. Jaramillo
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Danny G. Winder
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
| |
Collapse
|
9
|
Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 2017; 96:1223-1238. [PMID: 29268093 PMCID: PMC6566861 DOI: 10.1016/j.neuron.2017.10.032] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/30/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
Ethanol is one of the most commonly abused drugs. Although environmental and genetic factors contribute to the etiology of alcohol use disorders, it is ethanol's actions in the brain that explain (1) acute ethanol-related behavioral changes, such as stimulant followed by depressant effects, and (2) chronic changes in behavior, including escalated use, tolerance, compulsive seeking, and dependence. Our knowledge of ethanol use and abuse thus relies on understanding its effects on the brain. Scientists have employed both bottom-up and top-down approaches, building from molecular targets to behavioral analyses and vice versa, respectively. This review highlights current progress in the field, focusing on recent and emerging molecular, cellular, and circuit effects of the drug that impact ethanol-related behaviors. The focus of the field is now on pinpointing which molecular effects in specific neurons within a brain region contribute to behavioral changes across the course of acute and chronic ethanol exposure.
Collapse
Affiliation(s)
- Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Armando G Salinas
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
White AO, Kramár EA, López AJ, Kwapis JL, Doan J, Saldana D, Davatolhagh MF, Alaghband Y, Blurton-Jones M, Matheos DP, Wood MA. BDNF rescues BAF53b-dependent synaptic plasticity and cocaine-associated memory in the nucleus accumbens. Nat Commun 2016; 7:11725. [PMID: 27226355 PMCID: PMC4894971 DOI: 10.1038/ncomms11725] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Recent evidence implicates epigenetic mechanisms in drug-associated memory processes. However, a possible role for one major epigenetic mechanism, nucleosome remodelling, in drug-associated memories remains largely unexplored. Here we examine mice with genetic manipulations targeting a neuron-specific nucleosome remodelling complex subunit, BAF53b. These mice display deficits in cocaine-associated memory that are more severe in BAF53b transgenic mice compared with BAF53b heterozygous mice. Similar to the memory deficits, theta-induced long-term potentiation (theta-LTP) in the nucleus accumbens (NAc) is significantly impaired in slices taken from BAF53b transgenic mice but not heterozygous mice. Further experiments indicate that theta-LTP in the NAc is dependent on TrkB receptor activation, and that BDNF rescues theta-LTP and cocaine-associated memory deficits in BAF53b transgenic mice. Together, these results suggest a role for BAF53b in NAc neuronal function required for cocaine-associated memories, and also that BDNF/TrkB activation in the NAc may overcome memory and plasticity deficits linked to BAF53b mutations.
Collapse
Affiliation(s)
- André O White
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - Enikö A Kramár
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - Alberto J López
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - Janine L Kwapis
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697, USA
| | - John Doan
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - David Saldana
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - M Felicia Davatolhagh
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yasaman Alaghband
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - Mathew Blurton-Jones
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697, USA.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697, USA
| | - Dina P Matheos
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA
| | - Marcelo A Wood
- 301 Qureshey Research Lab, Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.,Center for the Neurobiology of Learning and Memory, Irvine, California 92697, USA.,Irvine Center for Addiction Neuroscience (ICAN), University of California, Irvine, California 92697, USA.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California 92697, USA
| |
Collapse
|
11
|
Stankiewicz AM, Goscik J, Dyr W, Juszczak GR, Ryglewicz D, Swiergiel AH, Wieczorek M, Stefanski R. Novel candidate genes for alcoholism--transcriptomic analysis of prefrontal medial cortex, hippocampus and nucleus accumbens of Warsaw alcohol-preferring and non-preferring rats. Pharmacol Biochem Behav 2015; 139:27-38. [PMID: 26455281 DOI: 10.1016/j.pbb.2015.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Animal models provide opportunity to study neurobiological aspects of human alcoholism. Changes in gene expression have been implicated in mediating brain functions, including reward system and addiction. The current study aimed to identify genes that may underlie differential ethanol preference in Warsaw High Preferring (WHP) and Warsaw Low Preferring (WLP) rats. METHODS Microarray analysis comparing gene expression in nucleus accumbens (NAc), hippocampus (HP) and medial prefrontal cortex (mPFC) was performed in male WHP and WLP rats bred for differences in ethanol preference. RESULTS Differential and stable between biological repeats expression of 345, 254 and 129 transcripts in NAc, HP and mPFC was detected. Identified genes and processes included known mediators of ethanol response (Mx2, Fam111a, Itpr1, Gabra4, Agtr1a, LTP/LTD, renin-angiotensin signaling pathway), toxicity (Sult1c2a, Ces1, inflammatory response), as well as genes involved in regulation of important addiction-related brain systems such as dopamine, tachykinin or acetylcholine (Gng7, Tac4, Slc5a7). CONCLUSIONS The identified candidate genes may underlie differential ethanol preference in an animal model of alcoholism. COMMENT Names of genes are written in italics, while names of proteins are written in standard font. Names of human genes/proteins are written in all capital letters. Names of rodent genes/proteins are written in capital letter followed by small letters.
Collapse
Affiliation(s)
- Adrian M Stankiewicz
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Joanna Goscik
- Software Department, Faculty of Computer Science, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Wanda Dyr
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Grzegorz R Juszczak
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Danuta Ryglewicz
- First Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Artur H Swiergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA71130, USA.
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Roman Stefanski
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
12
|
Xiang Y, Kim KY, Gelernter J, Park IH, Zhang H. Ethanol upregulates NMDA receptor subunit gene expression in human embryonic stem cell-derived cortical neurons. PLoS One 2015; 10:e0134907. [PMID: 26266540 PMCID: PMC4534442 DOI: 10.1371/journal.pone.0134907] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/16/2015] [Indexed: 01/16/2023] Open
Abstract
Chronic alcohol consumption may result in sustained gene expression alterations in the brain, leading to alcohol abuse or dependence. Because of ethical concerns of using live human brain cells in research, this hypothesis cannot be tested directly in live human brains. In the present study, we used human embryonic stem cell (hESC)-derived cortical neurons as in vitro cellular models to investigate alcohol-induced expression changes of genes involved in alcohol metabolism (ALDH2), anti-apoptosis (BCL2 and CCND2), neurotransmission (NMDA receptor subunit genes: GRIN1, GRIN2A, GRIN2B, and GRIN2D), calcium channel activity (ITPR2), or transcriptional repression (JARID2). hESCs were differentiated into cortical neurons, which were characterized by immunostaining using antibodies against cortical neuron-specific biomarkers. Ethanol-induced gene expression changes were determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). After a 7-day ethanol (50 mM) exposure followed by a 24-hour ethanol withdrawal treatment, five of the above nine genes (including all four NMDA receptor subunit genes) were highly upregulated (GRIN1: 1.93-fold, P = 0.003; GRIN2A: 1.40-fold, P = 0.003; GRIN2B: 1.75-fold, P = 0.002; GRIN2D: 1.86-fold, P = 0.048; BCL2: 1.34-fold, P = 0.031), and the results of GRIN1, GRIN2A, and GRIN2B survived multiple comparison correction. Our findings suggest that alcohol responsive genes, particularly NMDA receptor genes, play an important role in regulating neuronal function and mediating chronic alcohol consumption-induced neuroadaptations.
Collapse
Affiliation(s)
- Yangfei Xiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Kun-Yong Kim
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Joel Gelernter
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, United States of America
- VA Medical Center, VA Connecticut Healthcare System, West Haven, CT, United States of America
| | - In-Hyun Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
- * E-mail: (HZ); (IHP)
| | - Huiping Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America
- VA Medical Center, VA Connecticut Healthcare System, West Haven, CT, United States of America
- * E-mail: (HZ); (IHP)
| |
Collapse
|
13
|
Ji X, Saha S, Martin GE. The origin of glutamatergic synaptic inputs controls synaptic plasticity and its modulation by alcohol in mice nucleus accumbens. Front Synaptic Neurosci 2015; 7:12. [PMID: 26257641 PMCID: PMC4507144 DOI: 10.3389/fnsyn.2015.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/06/2015] [Indexed: 01/08/2023] Open
Abstract
It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens (NAc), a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the NAc receives glutamatergic inputs from distinct brain regions (e.g., the prefrontal cortex (PFCx), the amygdala and the hippocampus), each region providing different information (e.g., spatial, emotional and cognitive). Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD) and long-term potentiation (LTP) and long-term potentiation (tLTP) and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute Ethyl Alcohol (EtOH) has little effects on higher order information coming from the PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength.
Collapse
Affiliation(s)
- Xincai Ji
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School Worcester, MA, USA
| | - Sucharita Saha
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School Worcester, MA, USA
| | - Gilles E Martin
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School Worcester, MA, USA
| |
Collapse
|
14
|
Lacaille H, Duterte-Boucher D, Liot D, Vaudry H, Naassila M, Vaudry D. Comparison of the deleterious effects of binge drinking-like alcohol exposure in adolescent and adult mice. J Neurochem 2015; 132:629-41. [PMID: 25556946 DOI: 10.1111/jnc.13020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/18/2022]
Abstract
A major cause of alcohol toxicity is the production of reactive oxygen species generated during ethanol metabolism. The aim of this study was to compare the effect of binge drinking-like alcohol exposure on a panel of genes implicated in oxidative mechanisms in adolescent and adult mice. In adolescent animals, alcohol decreased the expression of genes involved in the repair and protection of oxidative DNA damage such as atr, gpx7, or nudt15 and increased the expression of proapoptotic genes such as casp3. In contrast, in the adult brain, genes activated by alcohol were mainly associated with protective mechanisms that prevent cells from oxidative damage. Whatever the age, iterative binge-like episodes provoked the same deleterious effects as those observed after a single binge episode. In adolescent mice, multiple binge ethanol exposure substantially reduced neurogenesis in the dentate gyrus and impaired short-term memory in the novel object and passive avoidance tests. Taken together, our results indicate that alcohol causes deleterious effects in the adolescent brain which are distinct from those observed in adults. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity. The effects of alcohol exposure were investigated on genes involved in oxidative mechanisms. In adolescent animals, alcohol decreased the expression of genes involved in DNA repair, a potential cause of the observed decrease of neurogenesis. In contrast, in the adult brain, alcohol increased the expression of genes associated with antioxidant mechanisms. Apoptosis was increase in all groups and converged with other biochemical alterations to enhance short-term memory impairment in the adolescent brain. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity.
Collapse
Affiliation(s)
- Hélène Lacaille
- INSERM U982, Neurotrophic factors and neuronal differentiation team, Mont-Saint-Aignan, France; International Associated Laboratory Samuel de Champlain, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
15
|
The involvement of accumbal glycine receptors in the dopamine-elevating effects of addictive drugs. Neuropharmacology 2014; 82:69-75. [PMID: 24686030 DOI: 10.1016/j.neuropharm.2014.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
Abstract
The ability of drugs of abuse to increase mesolimbic levels of dopamine is a characteristic associated with their rewarding effects. Exactly how these effects are produced by different substances is not as well characterised. Our previous work in rats has demonstrated that accumbal glycine receptors (GlyRs) are involved in mediating the dopamine-activating effects of ethanol, and in modulating ethanol intake. In this study the investigation of GlyR involvement was extended to include several different drugs of abuse. By using microdialysis and electrophysiology we compared effects of addictive drugs, with and without the GlyR antagonist strychnine, on dopamine levels and neurotransmission in nucleus accumbens. The dopamine-increasing effect of systemic ethanol and the drug-induced change in neurotransmission in vitro, as measured by microdialysis and field potential recordings, were dependent on GlyRs in nAc. Accumbal GlyRs were also involved in the actions of tetrahydrocannabinol and nicotine, but not in those of cocaine or morphine. These data indicate that accumbal GlyRs play a key role in ethanol-induced dopamine activation and contribute also to that of cannabinoids and nicotine.
Collapse
|
16
|
Rao PSS, Sari Y. Effects of ceftriaxone on chronic ethanol consumption: a potential role for xCT and GLT1 modulation of glutamate levels in male P rats. J Mol Neurosci 2014; 54:71-7. [PMID: 24535561 DOI: 10.1007/s12031-014-0251-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/27/2014] [Indexed: 12/28/2022]
Abstract
Alterations in glutamatergic neurotransmission have been suggested to affect many aspects of neuroplasticity associated with alcohol/drug addiction. We have previously shown that ceftriaxone, a β-lactam antibiotic known to upregulate glutamate transporter 1 (GLT1), reduced ethanol intake after 5 weeks of free choice ethanol drinking paradigm in male alcohol-preferring (P) rats. Evidence suggests that differential effects involving alterations of glutamatergic neurotransmission occur after long-term ethanol consumption. In this study, we tested whether the efficacy of administration of ceftriaxone persists after 14 weeks of free access to 15 and 30 % ethanol in male P rats. After 14 weeks of ethanol consumption, male P rats were administered ceftriaxone (100 mg/kg, intraperitoneal (i.p.)) or saline vehicle for 5 days. We found that ceftriaxone treatment resulted in a significant reduction in ethanol intake starting from day 2 (48 h after the first i.p. injections of ceftriaxone) through day 14, 10 days after final injection. Western blot analysis of brain samples from animals euthanized 24 h after treatment with the last dose of ceftriaxone revealed a significant upregulation of cystine/glutamate exchanger (xCT) and GLT1 levels in prefrontal cortex, nucleus accumbens, and amygdala as compared to saline vehicle-treated group. These findings demonstrated the effectiveness of ceftriaxone in attenuating ethanol intake in a chronic consumption paradigm. These might be due in part through the upregulation of both xCT and GLT1 levels in brain reward regions. Thus, the drug has a potential therapeutic action for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- P S S Rao
- College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of Toledo, 3000 Arlington Avenue, HEB282G, Toledo, OH, 43614, USA
| | | |
Collapse
|
17
|
Acute and chronic effects of ethanol on learning-related synaptic plasticity. Alcohol 2014; 48:1-17. [PMID: 24447472 DOI: 10.1016/j.alcohol.2013.09.045] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/23/2022]
Abstract
Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol's acute and long-term pharmacological consequences.
Collapse
|
18
|
Locomotor sensitization to ethanol impairs NMDA receptor-dependent synaptic plasticity in the nucleus accumbens and increases ethanol self-administration. J Neurosci 2013; 33:4834-42. [PMID: 23486954 DOI: 10.1523/jneurosci.5839-11.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although alcoholism is a worldwide problem resulting in millions of deaths, only a small percentage of alcohol users become addicted. The specific neural substrates responsible for individual differences in vulnerability to alcohol addiction are not known. In this study, we used rodent models to study behavioral and synaptic correlates related to individual differences in the development of ethanol locomotor sensitization, a form of drug-dependent behavioral plasticity associated with addiction vulnerability. Male Swiss Webster mice were treated daily with saline or 1.8 g/kg ethanol for 21 d. Locomotor activity tests were performed once a week for 15 min immediately after saline or ethanol injections. After at least 11 d of withdrawal, cohorts of saline- or ethanol-treated mice were used to characterize the relationships between locomotor sensitization, ethanol drinking, and glutamatergic synaptic transmission in the nucleus accumbens. Ethanol-treated mice that expressed locomotor sensitization to ethanol drank significantly more ethanol than saline-treated subjects and ethanol-treated animals resilient to this form of behavioral plasticity. Moreover, ethanol-sensitized mice also had reduced accumbal NMDA receptor function and expression, as well as deficits in NMDA receptor-dependent long-term depression in the nucleus accumbens core after a protracted withdrawal. These findings suggest that disruption of accumbal core NMDA receptor-dependent plasticity may represent a synaptic correlate associated with ethanol-induced locomotor sensitization and increased propensity to consume ethanol.
Collapse
|