1
|
Watson-Levings RS, Palmer GD, Levings PP, Dacanay EA, Evans CH, Ghivizzani SC. Gene Therapy in Orthopaedics: Progress and Challenges in Pre-Clinical Development and Translation. Front Bioeng Biotechnol 2022; 10:901317. [PMID: 35837555 PMCID: PMC9274665 DOI: 10.3389/fbioe.2022.901317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
In orthopaedics, gene-based treatment approaches are being investigated for an array of common -yet medically challenging- pathologic conditions of the skeletal connective tissues and structures (bone, cartilage, ligament, tendon, joints, intervertebral discs etc.). As the skeletal system protects the vital organs and provides weight-bearing structural support, the various tissues are principally composed of dense extracellular matrix (ECM), often with minimal cellularity and vasculature. Due to their functional roles, composition, and distribution throughout the body the skeletal tissues are prone to traumatic injury, and/or structural failure from chronic inflammation and matrix degradation. Due to a mixture of environment and endogenous factors repair processes are often slow and fail to restore the native quality of the ECM and its function. In other cases, large-scale lesions from severe trauma or tumor surgery, exceed the body’s healing and regenerative capacity. Although a wide range of exogenous gene products (proteins and RNAs) have the potential to enhance tissue repair/regeneration and inhibit degenerative disease their clinical use is hindered by the absence of practical methods for safe, effective delivery. Cumulatively, a large body of evidence demonstrates the capacity to transfer coding sequences for biologic agents to cells in the skeletal tissues to achieve prolonged delivery at functional levels to augment local repair or inhibit pathologic processes. With an eye toward clinical translation, we discuss the research progress in the primary injury and disease targets in orthopaedic gene therapy. Technical considerations important to the exploration and pre-clinical development are presented, with an emphasis on vector technologies and delivery strategies whose capacity to generate and sustain functional transgene expression in vivo is well-established.
Collapse
Affiliation(s)
- Rachael S. Watson-Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Glyn D. Palmer
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Padraic P. Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - E. Anthony Dacanay
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christopher H. Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MI, United States
| | - Steven C. Ghivizzani
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- *Correspondence: Steven C. Ghivizzani,
| |
Collapse
|
2
|
Grzeskowiak RM, Alghazali KM, Hecht S, Donnell RL, Doherty TJ, Smith CK, Anderson DE, Biris AS, Adair HS. Influence of a novel scaffold composed of polyurethane, hydroxyapatite, and decellularized bone particles on the healing of fourth metacarpal defects in mares. Vet Surg 2021; 50:1117-1127. [PMID: 33948951 PMCID: PMC8360067 DOI: 10.1111/vsu.13608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/04/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine the effect of a novel scaffold, designed for use in bone regeneration, on healing of splint bone segmental defects in mares. STUDY DESIGN In vivo experimental study. SAMPLE POPULATION Five adult mares (4-10 years old; mean weight, 437.7 kg ± 29 kg). METHODS Bilateral 2-cm full-thickness defects were created in the fourth metacarpal bones (MCIV) of each horse. Each defect was randomly assigned to either a novel scaffold treatment (n = 5) or an untreated control (n = 5). The scaffold was composed of polyurethane, hydroxyapatite, and decellularized bone particles. Bone healing was assessed for a period of 60 days by thermography, ultrasonography, radiography, and computed tomography (CT). Biopsies of each defect were performed 60 days after surgery for histological evaluation. RESULTS On the basis of radiographic analysis, scaffold-treated defects had greater filling (67.42% ± 26.7%) compared with untreated defects (35.88% ± 32.7%; P = .006). After 60 days, CT revealed that the density of the defects treated with the scaffolds (807.80 ± 129.6 Hounsfield units [HU]) was greater than density of the untreated defects (464.80 ± 81.3 HU; P = .004). Evaluation of histology slides provided evidence of bone formation within an average of 9.43% ± 3.7% of the cross-sectional area of scaffolds in contrast to unfilled defects in which connective tissue was predominant throughout the biopsy specimens. CONCLUSION The novel scaffold was biocompatible and supported bone formation within the MCIV segmental defects. CLINICAL SIGNIFICANCE This novel scaffold offers an effective option for filling bone voids in horses when support of bone healing is indicated.
Collapse
Affiliation(s)
- Remigiusz M. Grzeskowiak
- Department of Large Animal Clinical SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| | - Karrer M. Alghazali
- Center for Integrative Nanotechnology SciencesUniversity of Arkansas at Little RockLittle RockArkansasUSA
| | - Silke Hecht
- Department of Small Animal Clinical SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| | - Robert L. Donnell
- Department of Biomedical and Diagnostic SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| | - Thomas J. Doherty
- Department of Large Animal Clinical SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| | - Christopher K. Smith
- Department of Small Animal Clinical SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| | - David E. Anderson
- Department of Large Animal Clinical SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology SciencesUniversity of Arkansas at Little RockLittle RockArkansasUSA
| | - Henry S. Adair
- Department of Large Animal Clinical SciencesThe University of Tennessee College of Veterinary MedicineKnoxvilleTennesseeUSA
| |
Collapse
|
3
|
Wilkinson P, Bozo IY, Braxton T, Just P, Jones E, Deev RV, Giannoudis PV, Feichtinger GA. Systematic Review of the Preclinical Technology Readiness of Orthopedic Gene Therapy and Outlook for Clinical Translation. Front Bioeng Biotechnol 2021; 9:626315. [PMID: 33816447 PMCID: PMC8011540 DOI: 10.3389/fbioe.2021.626315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/12/2021] [Indexed: 12/09/2022] Open
Abstract
Bone defects and improper healing of fractures are an increasing public health burden, and there is an unmet clinical need in their successful repair. Gene therapy has been proposed as a possible approach to improve or augment bone healing with the potential to provide true functional regeneration. While large numbers of studies have been performed in vitro or in vivo in small animal models that support the use of gene therapy for bone repair, these systems do not recapitulate several key features of a critical or complex fracture environment. Larger animal models are therefore a key step on the path to clinical translation of the technology. Herein, the current state of orthopedic gene therapy research in preclinical large animal models was investigated based on performed large animal studies. A summary and an outlook regarding current clinical studies in this sector are provided. It was found that the results found in the current research literature were generally positive but highly methodologically inconsistent, rendering a comparison difficult. Additionally, factors vital for translation have not been thoroughly addressed in these model systems, and the risk of bias was high in all reviewed publications. These limitations directly impact clinical translation of gene therapeutic approaches due to lack of comparability, inability to demonstrate non-inferiority or equivalence compared with current clinical standards, and lack of safety data. This review therefore aims to provide a current overview of ongoing preclinical and clinical work, potential bottlenecks in preclinical studies and for translation, and recommendations to overcome these to enable future deployment of this promising technology to the clinical setting.
Collapse
Affiliation(s)
- Piers Wilkinson
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom.,CDT Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, University of Leeds, Leeds, United Kingdom
| | - Ilya Y Bozo
- Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Thomas Braxton
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom.,CDT Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, University of Leeds, Leeds, United Kingdom
| | - Peter Just
- Into Numbers Data Science GmbH, Vienna, Austria
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Peter V Giannoudis
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds General Infirmary, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, United Kingdom
| | - Georg A Feichtinger
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Ball AN, Phillips JN, McIlwraith CW, Kawcak CE, Samulski RJ, Goodrich LR. Genetic modification of scAAV-equine-BMP-2 transduced bone-marrow-derived mesenchymal stem cells before and after cryopreservation: An "off-the-shelf" option for fracture repair. J Orthop Res 2019; 37:1310-1317. [PMID: 30578639 PMCID: PMC8366205 DOI: 10.1002/jor.24209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/12/2018] [Indexed: 02/04/2023]
Abstract
Optimizing the environment of complex bone healing and improving treatment of catastrophic bone fractures and segmental bone defects remains an unmet clinical need both human and equine veterinary medical orthopaedics. The objective of this study was to determine whether scAAV-equine-BMP-2 transduced cells would induce osteogenesis in equine bone marrow derived mesenchymal stem cells (BMDMSCs) in vitro, and if these cells could be cryopreserved in an effort to osteogenically prime them as an "off-the-shelf" gene therapeutic approach for fracture repair. Our study found that transgene expression is altered by cell expansion, as would be expected by a transduction resulting in episomal transgene expression, and that osteoinductive levels could still be achieved 5 days after recovery, and protein expression would continue up to 14 days after transduction. This is the first evidence that cryopreservation of genetically modified BMDMSCs would not alter the osteoinductive potential or clinical use of allogeneic donor cells in cases of equine fracture repair. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1310-1317, 2019.
Collapse
Affiliation(s)
- Alyssa N. Ball
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jennifer N. Phillips
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - C. Wayne McIlwraith
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Christopher E. Kawcak
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Richard J. Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Laurie R. Goodrich
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA,Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Ball AN, Donahue SW, Wojda SJ, McIlwraith CW, Kawcak CE, Ehrhart N, Goodrich LR. The challenges of promoting osteogenesis in segmental bone defects and osteoporosis. J Orthop Res 2018; 36:1559-1572. [PMID: 29280510 PMCID: PMC8354209 DOI: 10.1002/jor.23845] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023]
Abstract
Conventional clinical management of complex bone healing scenarios continues to result in 5-10% of fractures forming non-unions. Additionally, the aging population and prevalence of osteoporosis-related fractures necessitate the further exploration of novel ways to augment osteogenesis in this special population. This review focuses on the current clinical modalities available, and the ongoing clinical and pre-clinical research to promote osteogenesis in segmental bone defects, delayed unions, and osteoporosis. In summary, animal models of fracture repair are often small animals as historically significant large animal models, like the dog, continue to gain favor as companion animals. Small rodents have well-documented limitations in comparing to fracture repair in humans, and few similarities exist. Study design, number of studies, and availability of funding continue to limit large animal studies. Osteoinduction with rhBMP-2 results in robust bone formation, although long-term quality is scrutinized due to poor bone mineral quality. PTH 1-34 is the only FDA approved osteo-anabolic treatment to prevent osteoporotic fractures. Limited to 2 years of clinical use, PTH 1-34 has further been plagued by dose-related ambiguities and inconsistent results when applied to pathologic fractures in systematic human clinical studies. There is limited animal data of PTH 1-34 applied locally to bone defects. Gene therapy continues to gain popularity among researchers to augment bone healing. Non-integrating viral vectors and targeted apoptosis of genetically modified therapeutic cells is an ongoing area of research. Finally, progenitor cell therapies and the content variation of patient-side treatments (e.g., PRP and BMAC) are being studied. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1559-1572, 2018.
Collapse
Affiliation(s)
- Alyssa N. Ball
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| | - Seth W. Donahue
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678,,Department of Mechanical Engineering, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Samantha J. Wojda
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678,,Department of Mechanical Engineering, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - C. Wayne McIlwraith
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| | - Christopher E. Kawcak
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| | - Nicole Ehrhart
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Laurie R. Goodrich
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| |
Collapse
|
6
|
Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries. Stem Cells Int 2016; 2016:7403890. [PMID: 27818692 PMCID: PMC5081458 DOI: 10.1155/2016/7403890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/29/2016] [Indexed: 01/05/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology.
Collapse
|
7
|
Abstract
Injuries to the musculoskeletal system are common, debilitating and expensive. In many cases, healing is imperfect, which leads to chronic impairment. Gene transfer might improve repair and regeneration at sites of injury by enabling the local, sustained and potentially regulated expression of therapeutic gene products; such products include morphogens, growth factors and anti-inflammatory agents. Proteins produced endogenously as a result of gene transfer are nascent molecules that have undergone post-translational modification. In addition, gene transfer offers particular advantages for the delivery of products with an intracellular site of action, such as transcription factors and noncoding RNAs, and proteins that need to be inserted into a cell compartment, such as a membrane. Transgenes can be delivered by viral or nonviral vectors via in vivo or ex vivo protocols using progenitor or differentiated cells. The first gene transfer clinical trials for osteoarthritis and cartilage repair have already been completed. Various bone-healing protocols are at an advanced stage of development, including studies with large animals that could lead to human trials. Other applications in the repair and regeneration of skeletal muscle, intervertebral disc, meniscus, ligament and tendon are in preclinical development. In addition to scientific, medical and safety considerations, clinical translation is constrained by social, financial and logistical issues.
Collapse
|