1
|
Fudulu DP, Horn G, Hazell G, Lefrançois-Martinez AM, Martinez A, Angelini GD, Lightman SL, Spiga F. Co-culture of monocytes and zona fasciculata adrenal cells: An in vitro model to study the immune-adrenal cross-talk. Mol Cell Endocrinol 2021; 526:111195. [PMID: 33571577 PMCID: PMC8024787 DOI: 10.1016/j.mce.2021.111195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022]
Abstract
The hypothalamic-pituitary-adrenal axis is the primary neuroendocrine system activated to re-establish homeostasis during periods of stress, including critical illness and major surgery. During critical illness, evidence suggests that locally induced inflammation of the adrenal gland could facilitate immune-adrenal cross-talk and, in turn, modulate cortisol secretion. It has been hypothesized that immune cells are necessary to mediate the effect of inflammatory stimuli on the steroidogenic pathway that has been observed in vivo. To test this hypothesis, we developed and characterized a trans-well co-culture model of THP1 (human monocytic cell)-derived macrophages and ATC7 murine zona fasciculata adrenocortical cells. We found that co-culture of ATC7 and THP1 cells results in a significant increase in the basal levels of IL-6 mRNA in ATC7 cells, and this effect was potentiated by treatment with LPS. Addition of LPS to co-cultures of ATC7 and THP1 significantly decreased the expression of key adrenal steroidogenic enzymes (including StAR and DAX-1), and this was also found in ATC7 cells treated with pro-inflammatory cytokines. Moreover, 24-h treatment with the synthetic glucocorticoid dexamethasone prevented the effects of LPS stimulation on IL-6, StAR and DAX-1 mRNA in ATC7 cells co-cultured with THP1 cells. Our data suggest that the expression of IL-6 and steroidogenic genes in response to LPS depends on the activation of intra-adrenal immune cells. Moreover, we also show that the effects of LPS can be modulated by glucocorticoids in a time- and dose-dependent manner with potential implications for clinical practice.
Collapse
Affiliation(s)
- Daniel P Fudulu
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom; Bristol Heart Institute, University of Bristol, 68 Horfield Rd, Bristol, BS2 8ED, United Kingdom.
| | - George Horn
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom
| | - Georgina Hazell
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom
| | - Anne-Marie Lefrançois-Martinez
- Génétique Reproduction & Développement, CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63001, Clermont-Ferrand, France
| | - Antoine Martinez
- Génétique Reproduction & Développement, CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 63001, Clermont-Ferrand, France
| | - Gianni D Angelini
- Bristol Heart Institute, University of Bristol, 68 Horfield Rd, Bristol, BS2 8ED, United Kingdom
| | - Stafford L Lightman
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom
| | - Francesca Spiga
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
2
|
Pal M, Bao W, Wang R, Liu Y, An X, Mitchell WB, Lobo CA, Minniti C, Shi PA, Manwani D, Yazdanbakhsh K, Zhong H. Hemolysis inhibits humoral B-cell responses and modulates alloimmunization risk in patients with sickle cell disease. Blood 2021; 137:269-280. [PMID: 33152749 PMCID: PMC7820872 DOI: 10.1182/blood.2020008511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Red blood cell alloimmunization remains a barrier for safe and effective transfusions in sickle cell disease (SCD), but the associated risk factors remain largely unknown. Intravascular hemolysis, a hallmark of SCD, results in the release of heme with potent immunomodulatory activity, although its effect on SCD humoral response, specifically alloimmunization, remains unclear. Here, we found that cell-free heme suppresses human B-cell plasmablast and plasma cell differentiation by inhibiting the DOCK8/STAT3 signaling pathway, which is critical for B-cell activation, as well as by upregulating heme oxygenase 1 (HO-1) through its enzymatic byproducts, carbon monoxide and biliverdin. Whereas nonalloimmunized SCD B cells were inhibited by exogenous heme, B cells from the alloimmunized group were nonresponsive to heme inhibition and readily differentiated into plasma cells. Consistent with a differential B-cell response to hemolysis, we found elevated B-cell basal levels of DOCK8 and higher HO-1-mediated inhibition of activated B cells in nonalloimmunized compared with alloimmunized SCD patients. To overcome the alloimmunized B-cell heme insensitivity, we screened several heme-binding molecules and identified quinine as a potent inhibitor of B-cell activity, reversing the resistance to heme suppression in alloimmunized patients. B-cell inhibition by quinine occurred only in the presence of heme and through HO-1 induction. Altogether, these data suggest that hemolysis can dampen the humoral B-cell response and that B-cell heme responsiveness maybe a determinant of alloimmunization risk in SCD. By restoring B-cell heme sensitivity, quinine may have therapeutic potential to prevent and inhibit alloimmunization in SCD patients.
Collapse
Affiliation(s)
| | | | | | | | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - William B Mitchell
- Department of Pediatrics, Montefiore Health Center, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY
| | - Cheryl A Lobo
- Laboratory of Blood-Borne Parasites, New York Blood Center, New York, NY
| | - Caterina Minniti
- Department of Medicine, Division of Hematology, Montefiore Health Center, Albert Einstein College of Medicine, Bronx, NY; and
| | - Patricia A Shi
- Sickle Cell Clinical Research Program, New York Blood Center, New York, NY
| | - Deepa Manwani
- Department of Pediatrics, Montefiore Health Center, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY
| | | | - Hui Zhong
- Laboratory of Immune Regulation, and
| |
Collapse
|
3
|
Feng Q, Xu M, Yu YY, Hou Y, Mi X, Sun YX, Ma S, Zuo XY, Shao LL, Hou M, Zhang XH, Peng J. High-dose dexamethasone or all-trans-retinoic acid restores the balance of macrophages towards M2 in immune thrombocytopenia. J Thromb Haemost 2017; 15:1845-1858. [PMID: 28682499 DOI: 10.1111/jth.13767] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Indexed: 01/08/2023]
Abstract
Essentials M1/M2 imbalance is involved in many autoimmune diseases, and could be restored. The expressions and functions of M1 and M2 were investigated in an in vitro culture system. A preferred M1 polarization is involved in the pathogenesis of immune thrombocytopenia (ITP). High-dose dexamethasone or all-trans-retinoic acid restores M1/M2 balance in ITP patients. SUMMARY Background Immune thrombocytopenia (ITP) is an autoimmune disorder. Deficiency of immune tolerance in antigen-presenting cells and cross-communication between antigen-presenting cells and T cells are involved in the pathogenesis of ITP. Macrophages can polarize into proinflammatory M1 or anti-inflammatory M2 phenotypes in response to different environmental stimuli, and have diverse immunologic functions. Objectives To investigate the M1/M2 imbalance in ITP and whether high-dose dexamethasone (HD-DXM) or all-trans-retinoic acid (ATRA) could restore this imbalance. Methods The numbers of M1 and M2 macrophages in the spleens of ITP patients and patients with traumatic spleen rupture were analyzed by immunofluorescence. Monocyte-derived macrophages were cultured and induced with cytokines and drugs. The expression of M1 and M2 markers and functions of M1 and M2 macrophages before and after modulation by HD-DXM or ATRA were evaluated with flow cytometry and ELISA. Results There was preferred M1 polarization in ITP spleens as compared with healthy controls. Monocyte-derived macrophages from ITP patients had increased expression of M1 markers and impaired immunosuppressive functions. Either HD-DXM or ATRA corrected this imbalance by decreasing the expression of M1 markers and increasing the expression of M2 markers. Moreover, HD-DXM-modulated or ATRA-modulated macrophages suppressed both CD4+ and CD8+ T-cell proliferation and expanded CD4+ CD49+ LAG3+ type 1 T-regulatory cells. HD-DXM or ATRA modulated macrophages to shift the T-cell cytokine profile towards Th2. Treating patients with HD-DXM or ATRA revealed that macrophages induced from responders showed a predominant M2-like phenotype and immunosuppressive function. Conclusions Aberrant macrophage polarization is involved in the pathogenesis of ITP. Either HD-DXM or ATRA is able to correct this imbalance.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Biomarkers/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Case-Control Studies
- Cell Proliferation/drug effects
- Cells, Cultured
- Coculture Techniques
- Cytokines/metabolism
- Dexamethasone/adverse effects
- Dexamethasone/therapeutic use
- Female
- Humans
- Immunologic Factors/adverse effects
- Immunologic Factors/therapeutic use
- Lymphocyte Activation/drug effects
- Macrophage Activation/drug effects
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Middle Aged
- Phagocytosis/drug effects
- Phenotype
- Purpura, Thrombocytopenic, Idiopathic/drug therapy
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Purpura, Thrombocytopenic, Idiopathic/metabolism
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Treatment Outcome
- Tretinoin/adverse effects
- Tretinoin/therapeutic use
- Young Adult
Collapse
Affiliation(s)
- Q Feng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - M Xu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Y Y Yu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Y Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - X Mi
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Y X Sun
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - S Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - X Y Zuo
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - L L Shao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - M Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Jinan, China
| | - X H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - J Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
4
|
Thrombopoietin receptor agonists shift the balance of Fcγ receptors toward inhibitory receptor IIb on monocytes in ITP. Blood 2016; 128:852-61. [PMID: 27281793 DOI: 10.1182/blood-2016-01-690727] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/01/2016] [Indexed: 12/25/2022] Open
Abstract
Elevated expression of the activating Fcγ receptor (FcγR) I and FcγRIIa together with decreased expression of the inhibitory FcγRIIb are involved in the pathogenesis of primary immune thrombocytopenia (ITP). Thrombopoietin receptor agonists (TPO-RAs) have been used clinically for the management of ITP; however, little is known about the effect of TPO-RAs on FcγR modulation in ITP. In this prospective study, we measured the alteration in monocyte FcγR expression from 21 corticosteroid-resistant/relapsed patients with chronic ITP receiving eltrombopag therapy. Results showed that the mRNA and protein levels of FcγRIIb were significantly elevated after 6-week eltrombopag treatment. Concurrently, FcγRI and IIa levels decreased remarkably, whereas FcγRIII expression did not change. In vitro phagocytosis assays indicated that a shift in the balance of FcγR toward inhibitory FcγRIIb on monocytes was accompanied with a considerable decrease in monocyte/macrophage phagocytic capacity. The response to eltrombopag therapy in patients with ITP was associated with FcγR phenotype and functional changes of monocytes/macrophages. Moreover, the plasma transforming growth factor-β1 (TGF-β1) concentrations increased significantly in eltrombopag responders. Modulation of monocyte FcγR balance by TPO-RAs was also found in a murine model of ITP established by transferring splenocytes from immunized CD61 knockout mice into CD61(+) severe combined immunodeficient mice. Romiplostim administration in ITP mice significantly upregulated inhibitory FcγRII expression and downregulated activating FcγRI expression. These findings showed that recovery of platelet counts after TPO-RA treatment in ITP is associated with the restoration of FcγR balance toward the inhibitory FcγRIIb on monocytes, and suggested that thrombopoietic agents have a profound effect on immune modulation in ITP. This study is registered at ClinicalTrials.gov as #NCT01864512.
Collapse
|
5
|
Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: An in vitro cell model for immune modulation approach. Int Immunopharmacol 2014; 23:37-45. [DOI: 10.1016/j.intimp.2014.08.002] [Citation(s) in RCA: 573] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 01/06/2023]
|
6
|
Hottz ED, Medeiros-de-Moraes IM, Vieira-de-Abreu A, de Assis EF, Vals-de-Souza R, Castro-Faria-Neto HC, Weyrich AS, Zimmerman GA, Bozza FA, Bozza PT. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. THE JOURNAL OF IMMUNOLOGY 2014; 193:1864-72. [PMID: 25015827 DOI: 10.4049/jimmunol.1400091] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma are features of severe dengue. Although monocytes have been recognized as important sources of cytokines in dengue, the contributions of platelet-monocyte interactions to inflammatory responses in dengue have not been addressed. Patients with dengue were investigated for platelet-monocyte aggregate formation. Platelet-induced cytokine responses by monocytes and underlying mechanisms were also investigated in vitro. We observed increased levels of platelet-monocyte aggregates in blood samples from patients with dengue, especially patients with thrombocytopenia and increased vascular permeability. Moreover, the exposure of monocytes from healthy volunteers to platelets from patients with dengue induced the secretion of the cytokines IL-1β, IL-8, IL-10 and MCP-1, whereas exposure to platelets from healthy volunteers only induced the secretion of MCP-1. In addition to the well-established modulation of monocyte cytokine responses by activated platelets through P-selectin binding, we found that interaction of monocytes with apoptotic platelets mediate IL-10 secretion through phosphatidylserine recognition in platelet-monocyte aggregates. Moreover, IL-10 secretion required platelet-monocyte contact but not phagocytosis. Together, our results demonstrate that activated and apoptotic platelets aggregate with monocytes during dengue infection and signal specific cytokine responses that may contribute to the pathogenesis of dengue.
Collapse
Affiliation(s)
- Eugenio D Hottz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil; Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; Department of Medicine, University of Utah, Salt Lake City, UT 84112
| | - Isabel M Medeiros-de-Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | - Adriana Vieira-de-Abreu
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil; Department of Medicine, University of Utah, Salt Lake City, UT 84112
| | - Edson F de Assis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | - Rogério Vals-de-Souza
- Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Hugo C Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | - Andrew S Weyrich
- Department of Medicine, University of Utah, Salt Lake City, UT 84112; Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112; and
| | - Guy A Zimmerman
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil; Department of Medicine, University of Utah, Salt Lake City, UT 84112
| | - Fernando A Bozza
- Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro 22281-110, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil;
| |
Collapse
|
7
|
Pul R, Chittappen KP, Stangel M. Quantification of microglial phagocytosis by a flow cytometer-based assay. Methods Mol Biol 2014; 1041:121-7. [PMID: 23813376 DOI: 10.1007/978-1-62703-520-0_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Microglia represent the largest population of phagocytes in the CNS and have a principal role in immune defense and inflammatory responses in the CNS. Their phagocytic activity can be studied by a variety of techniques, including a flow cytometry-based approach utilizing polystyrene latex beads. The flow cytometry-based microglial phagocytosis assay, which is presented here, offers the advantage of rapid and reliable analysis of thousands of cells in a quantitative fashion.
Collapse
Affiliation(s)
- Refik Pul
- Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
8
|
Veale MF, Healey G, Sparrow RL. Longer storage of red blood cells is associated with increased in vitro erythrophagocytosis. Vox Sang 2013; 106:219-26. [PMID: 24117950 DOI: 10.1111/vox.12095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/08/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Refrigerated storage of red blood cells (RBCs) induces numerous changes that may target the cells for erythrophagocytosis following transfusion. The influence of storage upon the phagocytosis of unseparated and fractionated young and old stored RBCs was investigated using two in vitro quantitative phagocytosis assays. MATERIALS AND METHODS Leucocyte-depleted RBC units were sampled at day 1 or 42 of storage. Young and old RBCs were fractionated at day 1 by density centrifugation and stored in paediatric packs for up to 42 days. RBCs were labelled with the fluorescent dye PKH26 and incubated with the human monocytic cell line THP-1. Erythrophagocytosis was quantified by flow cytometry and plate fluorometric assays. RESULTS A higher proportion of THP-1 cells phagocytosed RBCs stored for 42 days compared with 1 day (41% and 24% respectively; P<0·0001). This was associated with an increased mean number of RBCs phagocytosed per THP-1 cell (5·2±0·6 and 3·3±0·2 respectively; P<0·002). Erythrophagocytosis of fractionated young and old RBCs increased with longer storage duration up to 28 days (P<0·05). However, no significant differences were observed between erythrophagocytosis of young and old RBCs. CONCLUSION The susceptibility of stored RBCs to erythrophagocytosis significantly increased with longer storage time of the RBC units. Storage duration of RBCs had a greater influence on in vitro erythrophagocytosis than the chronological age of the RBCs at donation.
Collapse
Affiliation(s)
- M F Veale
- Research and Development, Australian Red Cross Blood Service, Melbourne, Vic., Australia
| | | | | |
Collapse
|
9
|
Garraud O, Hamzeh-Cognasse H, Pozzetto B, Cavaillon JM, Cognasse F. Bench-to-bedside review: Platelets and active immune functions - new clues for immunopathology? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:236. [PMID: 23998653 PMCID: PMC4055978 DOI: 10.1186/cc12716] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platelets display a number of properties besides the crucial function of repairing damaged vascular endothelium and stopping bleeding; these are exploited to benefit patients receiving platelet component transfusions, which might categorize them as innate immune cells. For example, platelets specialize in pro-inflammatory activities, and can secrete a large number of molecules, many of which display biological response modifier functions. Platelets also express receptors for non-self-infectious and possibly non-infectious danger signals, and can engage infectious pathogens by mechanisms barely explained beyond observation. This relationship with infectious pathogens may involve other innate immune cells, especially neutrophils. The sophisticated interplay of platelets with bacteria may culminate in sepsis, a severe pathology characterized by significant reductions in platelet count and platelet dysfunction. How this occurs is still not fully understood. Recent findings from in-depth platelet signaling studies reveal the complexity of platelets and some of the ways they evolve along the immune continuum, from beneficial functions exemplified in endothelium repair to deleterious immunopathology as in systemic inflammatory response syndrome and acute vascular diseases. This review discusses the extended role of platelets as immune cells to emphasize their interactions with infectious pathogens sensed as potentially dangerous.
Collapse
|
10
|
Anti-allodynic effect of the flavonoid myricetin in a rat model of neuropathic pain: Involvement of p38 and protein kinase C mediated modulation of Ca2+
channels. Eur J Pain 2012; 14:992-8. [DOI: 10.1016/j.ejpain.2010.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/18/2010] [Accepted: 04/14/2010] [Indexed: 02/04/2023]
|
11
|
Qin Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis 2011; 221:2-11. [PMID: 21978918 DOI: 10.1016/j.atherosclerosis.2011.09.003] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/16/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
Abstract
Since their establishment thirty years ago, THP-1 cells have become one of most widely used cell lines to investigate the function and regulation of monocytes and macrophages in the cardiovascular system. However, because this cell line was derived from the blood of a patient with acute monocytic leukemia, the extent to which THP-1 cells mimic monocytes and macrophages in the vasculature is not entirely known. This article serves as a meaningful attempt to address this question by reviewing the recent publications. The interactions between THP-1 cells and various vascular cells (such as endothelial cells, smooth muscle cells, adipocytes, and T cells) provide insight into the roles of the interconnection of monocytes-macrophages with other vascular cells during vascular inflammation, particularly atherogenesis and obesity. Transcriptome, microRNA profile, and histone modifications of THP-1 cells shed new light on the regulatory mechanism of the monocytes-macrophages in response to various inflammatory mediators, such as oxidized low density lipoprotein, lipopolysaccharide, and glucose. These studies hint that under certain defined conditions, THP-1 cells not only resemble primary monocytes-macrophages isolated from healthy donors or donors with disease, such as diabetes mellitus, but also mimic the in situ alteration of macrophages in the adipose tissue of obese subjects and in atherosclerotic lesions. A potential trajectory is to use this cell line to study the novel molecular mechanisms in monocytes and macrophages in relation to the physiology and pathophysiology of the cardiovascular system, however, the conclusion of studies employing THP-1 cells requires further verification using primary cells and/or in vivo models to be generalized to monocytes and macrophages.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States.
| |
Collapse
|
12
|
Lawrence DW, Koenig JM. Enhanced Phagocytosis in Neonatal Monocyte-Derived Macrophages is Associated with Impaired SHP-1 Signaling. Immunol Invest 2011; 41:129-43. [DOI: 10.3109/08820139.2011.595471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
High-dose dexamethasone shifts the balance of stimulatory and inhibitory Fcgamma receptors on monocytes in patients with primary immune thrombocytopenia. Blood 2010; 117:2061-9. [PMID: 21131591 DOI: 10.1182/blood-2010-07-295477] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human Fcγ receptor (FcγR) system is composed of 2 opposing families, the activating FcγRs (FcγRI, FcγRIIa, and FcγRIII) and the inhibitory FcγR (FcγRIIb). The disturbed balance of the activating and inhibitory FcγRs has been implicated in the pathogenesis of many autoimmune diseases. In this study, the expression of FcγRs on monocytes was determined in 23 patients with primary immune thrombocytopenia (ITP) before and after high-dose dexamethasone (HD-DXM) treatment. The FcγRI expression was significantly higher in ITP patients and decreased after HD-DXM treatment. The ratio of FcγRIIa/IIb mRNA expression on monocytes was significantly higher in untreated patients than in healthy controls. After HD-DXM therapy, the ratio decreased and the increased expression of FcγRIIb mRNA and protein coincided with a remarkable decrease in the expression of FcγRIIa, FcγRI, and monocyte phagocytic capacity. There was no significant difference in FcγRIII expression on monocytes between patients and controls. In vitro cell-culture experiments showed that DXM could induce FcγRIIa and FcγRIIb expression in monocytes from ITP patients, with FcγRIIb at higher amplitudes. These findings suggested that the disturbed FcγR balance might play a role in the pathogenesis of ITP, and that HD-DXM therapy could shift monocyte FcγR balance toward the inhibitory FcγRIIb in patients with ITP.
Collapse
|
14
|
Pang SJY, Lazarus AH. Mechanisms of platelet recovery in ITP associated with therapy. Ann Hematol 2010; 89 Suppl 1:31-5. [PMID: 20179926 DOI: 10.1007/s00277-010-0916-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 01/29/2010] [Indexed: 02/07/2023]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease primarily characterized by increased clearance of auto-antibody-sensitized platelets by Fc-receptor-bearing macrophages in the spleen and liver. It has been classically accepted that antibody-mediated platelet destruction is Fc dependent. Recent studies, however, may also indicate the involvement of Fc-independent pathways of platelet destruction. Current treatment options work by immunosuppression (e.g., corticosteroids), immunomodulation (e.g., IVIg and anti-D), or removal of the platelet destruction site (splenectomy) in ITP. This review will discuss the mechanisms of action of these and other treatments for ITP.
Collapse
|
15
|
Semple JW, Speck ER, Fabron A, Kim RAM, Freedman J. A novel immunosuppressive pathway involving peroxynitrite-mediated [corrected] nitration of platelet antigens within antigen-presenting cells. Transfusion 2008; 48:1917-24. [PMID: 18564400 DOI: 10.1111/j.1537-2995.2008.01793.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Studies have demonstrated that immunity against platelet (PLT) transfusions is dependent on recipient antigen-presenting cells (APCs) and their ability to produce nitric oxide (NO). To further analyze this, we focused on NO's major metabolite peroxynitrite (ONOO(-)) and its ability to affect PLT immunity. STUDY DESIGN AND METHODS To address how NO and its major metabolite may mediate PLT immunity, GP91(PHOX) knockout (KO) mice that lack the ability to produce the ONOO(-) were transfused weekly with allogeneic BALB/c PLTs, and donor antibody development was analyzed. RESULTS Compared with controls, GP91(PHOX) KO mice developed significantly (p < 0.0001) higher-titered immunoglobulin G (IgG) donor antibodies by two transfusions, and this immune response could be inhibited by treating the recipient mice with aminoguanidine, a relatively selective inhibitor of inducible nitric oxide synthase. In vitro nitration of PLTs did not alter PLT antibody binding but significantly inhibited the transfused PLT's ability to stimulate IgG immunity in either wild-type or KO mice. The lack of nitrated PLT immunity correlated with an inability of APCs to mediate phagocytosis of nitrated PLTs. The lack of nitrated PLT immunity could only be restored when normal PLTs were mixed with the nitrated PLTs and transfused. CONCLUSION The results identify a dual role for NO metabolism within APCs that significantly modulates PLT immunity; nitration of PLT antigens leads to lack of immunity due to an inability of APCs to move PLT antigens intracellularly whereas there exists an NO-dependent pathway that stimulates anti-PLT immunity.
Collapse
Affiliation(s)
- John W Semple
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|