1
|
Zhang Y, Bissola AL, Treverton J, Hack M, Lychacz M, Kwok S, Arnold A, Nazy I. Vaccine-Induced Immune Thrombotic Thrombocytopenia: Clinicopathologic Features and New Perspectives on Anti-PF4 Antibody-Mediated Disorders. J Clin Med 2024; 13:1012. [PMID: 38398325 PMCID: PMC10889051 DOI: 10.3390/jcm13041012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare yet severe adverse complication first identified during the global vaccination effort against SARS-CoV-2 infection, predominantly observed following administration of the ChAdOx1-S (Oxford-AstraZeneca) and Ad26.CoV2.S (Johnson & Johnson/Janssen) adenoviral vector-based vaccines. Unlike other anti-platelet factor 4 (PF4) antibody-mediated disorders, such as heparin-induced thrombocytopenia (HIT), VITT arises with the development of platelet-activating anti-PF4 antibodies 4-42 days post-vaccination, typically featuring thrombocytopenia and thrombosis at unusual sites. AIM To explore the unique properties, pathogenic mechanisms, and long-term persistence of VITT antibodies in patients, in comparison with other anti-PF4 antibody-mediated disorders. DISCUSSION This review highlights the complexity of VITT as it differs in antibody behavior and clinical presentation from other anti-PF4-mediated disorders, including the high incidence rate of cerebral venous sinus thrombosis (CVST) and the persistence of anti-PF4 antibodies, necessitating a re-evaluation of long-term patient care strategies. The nature of VITT antibodies and the underlying mechanisms triggering their production remain largely unknown. CONCLUSION The rise in awareness and subsequent prompt recognition of VITT is paramount in reducing mortality. As vaccination campaigns continue, understanding the role of adenoviral vector-based vaccines in VITT antibody production is crucial, not only for its immediate clinical implications, but also for developing safer vaccines in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
| | - Anna-Lise Bissola
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jared Treverton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
| | - Michael Hack
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
| | - Mark Lychacz
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sarah Kwok
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
| | - Addi Arnold
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5A5, Canada;
| | - Ishac Nazy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.Z.); (J.T.); (M.H.); (S.K.)
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, ON L8S 4K1, Canada; (A.-L.B.); (M.L.)
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
2
|
Giles JB, Miller EC, Steiner HE, Karnes JH. Elucidation of Cellular Contributions to Heparin-Induced Thrombocytopenia Using Omic Approaches. Front Pharmacol 2022; 12:812830. [PMID: 35126147 PMCID: PMC8814424 DOI: 10.3389/fphar.2021.812830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is an unpredictable, complex, immune-mediated adverse drug reaction associated with a high mortality. Despite decades of research into HIT, fundamental knowledge gaps persist regarding HIT likely due to the complex and unusual nature of the HIT immune response. Such knowledge gaps include the identity of a HIT immunogen, the intrinsic roles of various cell types and their interactions, and the molecular basis that distinguishes pathogenic and non-pathogenic PF4/heparin antibodies. While a key feature of HIT, thrombocytopenia, implicates platelets as a seminal cell fragment in HIT pathogenesis, strong evidence exists for critical roles of multiple cell types. The rise in omic technologies over the last decade has resulted in a number of agnostic, whole system approaches for biological research that may be especially informative for complex phenotypes. Applying multi-omics techniques to HIT has the potential to bring new insights into HIT pathophysiology and identify biomarkers with clinical utility. In this review, we review the clinical, immunological, and molecular features of HIT with emphasis on key cell types and their roles. We then address the applicability of several omic techniques underutilized in HIT, which have the potential to fill knowledge gaps related to HIT biology.
Collapse
Affiliation(s)
- Jason B. Giles
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ, United States
| | - Elise C. Miller
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ, United States
| | - Heidi E. Steiner
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ, United States
| | - Jason H. Karnes
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ, United States,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Jason H. Karnes,
| |
Collapse
|
3
|
Bilotta C, Perrone G, Adelfio V, Spatola GF, Uzzo ML, Argo A, Zerbo S. COVID-19 Vaccine-Related Thrombosis: A Systematic Review and Exploratory Analysis. Front Immunol 2021; 12:729251. [PMID: 34912330 PMCID: PMC8666479 DOI: 10.3389/fimmu.2021.729251] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction The World Health Organization declared the coronavirus disease 2019 (COVID-19) pandemic on March 11, 2020. Two vaccine types were developed using two different technologies: viral vectors and mRNA. Thrombosis is one of the most severe and atypical adverse effects of vaccines. This study aimed to analyze published cases of thrombosis after COVID-19 vaccinations to identify patients' features, potential pathophysiological mechanisms, timing of appearance of the adverse events, and other critical issues. Materials and Methods We performed a systematic electronic search of scientific articles regarding COVID-19 vaccine-related thrombosis and its complications on the PubMed (MEDLINE) database and through manual searches. We selected 10 out of 50 articles from February 1 to May 5, 2021 and performed a descriptive analysis of the adverse events caused by the mRNA-based Pfizer and Moderna vaccines and the adenovirus-based AstraZeneca vaccine. Results In the articles on the Pfizer and Moderna vaccines, the sample consisted of three male patients with age heterogeneity. The time from vaccination to admission was ≤3 days in all cases; all patients presented signs of petechiae/purpura at admission, with a low platelet count. In the studies on the AstraZeneca vaccine, the sample consisted of 58 individuals with a high age heterogeneity and a high female prevalence. Symptoms appeared around the ninth day, and headache was the most common symptom. The platelet count was below the lower limit of the normal range. All patients except one were positive for PF4 antibodies. The cerebral venous sinus was the most affected site. Death was the most prevalent outcome in all studies, except for one study in which most of the patients remained alive. Discussion Vaccine-induced thrombotic thrombocytopenia (VITT) is an unknown nosological phenomenon secondary to inoculation with the COVID-19 vaccine. Several hypotheses have been formulated regarding its physiopathological mechanism. Recent studies have assumed a mechanism that is assimilable to heparin-induced thrombocytopenia, with protagonist antibodies against the PF4-polyanion complex. Viral DNA has a negative charge and can bind to PF4, causing VITT. New experimental studies have assumed that thrombosis is related to a soluble adenoviral protein spike variant, originating from splicing events, which cause important endothelial inflammatory events, and binding to endothelial cells expressing ACE2. Conclusion Further studies are needed to better identify VITT's pathophysiological mechanisms and genetic, demographic, or clinical predisposition of high-risk patients, to investigate the correlation of VITT with the different vaccine types, and to test the significance of the findings.
Collapse
Affiliation(s)
- Clio Bilotta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Giulio Perrone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Valeria Adelfio
- Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
| | - Giovanni Francesco Spatola
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Maria Laura Uzzo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Antonina Argo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| | - Stefania Zerbo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Section of Legal Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Vayne C, Guéry EA, Rollin J, Baglo T, Petermann R, Gruel Y. Pathophysiology and Diagnosis of Drug-Induced Immune Thrombocytopenia. J Clin Med 2020; 9:E2212. [PMID: 32668640 PMCID: PMC7408966 DOI: 10.3390/jcm9072212] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Drug-induced immune thrombocytopenia (DITP) is a life-threatening clinical syndrome that is under-recognized and difficult to diagnose. Many drugs can cause immune-mediated thrombocytopenia, but the most commonly implicated are abciximab, carbamazepine, ceftriaxone, eptifibatide, heparin, ibuprofen, mirtazapine, oxaliplatin, penicillin, quinine, quinidine, rifampicin, suramin, tirofiban, trimethoprim-sulfamethoxazole, and vancomycin. Several different mechanisms have been identified in typical DITP, which is most commonly characterized by severe thrombocytopenia due to clearance and/or destruction of platelets sensitized by a drug-dependent antibody. Patients with typical DITP usually bleed when symptomatic, and biological confirmation of the diagnosis is often difficult because detection of drug-dependent antibodies (DDabs) in the patient's serum or plasma is frequently not possible. This is in contrast to heparin-induced thrombocytopenia (HIT), which is a particular DITP caused in most cases by heparin-dependent antibodies specific for platelet factor 4, which can strongly activate platelets in vitro and in vivo, explaining why affected patients usually have thrombotic complications but do not bleed. In addition, laboratory tests are readily available to diagnose HIT, unlike the methods used to detect DDabs associated with other DITP that are mostly reserved for laboratories specialized in platelet immunology.
Collapse
Affiliation(s)
- Caroline Vayne
- EA 7501-Groupe Innovation et Ciblage Cellulaire (GICC), Université François Rabelais, CEDEX 01, 37032 Tours, France; (C.V.); (J.R.)
- Laboratoire d’Hématologie-Hémostase, Hôpital Trousseau, CHRU Tours, CEDEX 09, 37044 Tours, France; (E.-A.G.); (T.B.)
| | - Eve-Anne Guéry
- Laboratoire d’Hématologie-Hémostase, Hôpital Trousseau, CHRU Tours, CEDEX 09, 37044 Tours, France; (E.-A.G.); (T.B.)
| | - Jérôme Rollin
- EA 7501-Groupe Innovation et Ciblage Cellulaire (GICC), Université François Rabelais, CEDEX 01, 37032 Tours, France; (C.V.); (J.R.)
- Laboratoire d’Hématologie-Hémostase, Hôpital Trousseau, CHRU Tours, CEDEX 09, 37044 Tours, France; (E.-A.G.); (T.B.)
| | - Tatiana Baglo
- Laboratoire d’Hématologie-Hémostase, Hôpital Trousseau, CHRU Tours, CEDEX 09, 37044 Tours, France; (E.-A.G.); (T.B.)
- Laboratoire d’Hématologie, CNHU de Cotonou, Cotonou 01 BP 386, Benin
| | - Rachel Petermann
- Département d’Immunologie plaquettaire, Institut National de la Transfusion Sanguine (INTS), 75015 Paris, France;
- Equipe ETRES (Ethics, Research, Translations), Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Yves Gruel
- EA 7501-Groupe Innovation et Ciblage Cellulaire (GICC), Université François Rabelais, CEDEX 01, 37032 Tours, France; (C.V.); (J.R.)
- Laboratoire d’Hématologie-Hémostase, Hôpital Trousseau, CHRU Tours, CEDEX 09, 37044 Tours, France; (E.-A.G.); (T.B.)
| |
Collapse
|
5
|
Bakchoul T, Marini I. Drug-associated thrombocytopenia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:576-583. [PMID: 30504360 PMCID: PMC6246020 DOI: 10.1182/asheducation-2018.1.576] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many drugs have been implicated in drug-induced immune thrombocytopenia (DITP). Patients with DITP develop a drop in platelet count 5 to 10 days after drug administration with an increased risk of hemorrhage. The diagnosis of DITP is often challenging, because most hospitalized patients are taking multiple medications and have comorbidities that can also cause thrombocytopenia. Specialized laboratory diagnostic tests have been developed and are helpful to confirm the diagnosis. Treatment of DITP involves discontinuation of the offending drug. The platelet count usually starts to recover after 4 or 5 half-lives of the responsible drug or drug metabolite. High doses of intravenous immunoglobulin can be given to patients with severe thrombocytopenia and bleeding. Although in most cases, DITP is associated with bleeding, life-threatening thromboembolic complications are common in patients with heparin-induced thrombocytopenia (HIT). Binding of antiplatelet factor 4/heparin antibodies to Fc receptors on platelets and monocytes causes intravascular cellular activation, leading to an intensely prothrombotic state in HIT. The clinical symptoms include a decrease in platelet counts by >50% and/or new thromboembolic complications. Two approaches can help to confirm or rule out HIT: assessment of the clinical presentation using scoring systems and in vitro demonstration of antiplatelet factor 4/heparin antibodies. The cornerstone of HIT management is immediate discontinuation of heparin when the disease is suspected and anticoagulation using nonheparin anticoagulant. In this review, we will provide an update on the pathophysiology, diagnosis, and management of both DITP and HIT.
Collapse
Affiliation(s)
- Tamam Bakchoul
- Transfusion Medicine, Medical Faculty of Tubingen, University of Tubingen, Tubingen, Germany
| | - Irene Marini
- Transfusion Medicine, Medical Faculty of Tubingen, University of Tubingen, Tubingen, Germany
| |
Collapse
|
6
|
Abstract
Heparin-induced thrombocytopenia (HIT) is an immune complication of heparin therapy caused by antibodies to complexes of platelet factor 4 (PF4) and heparin. Pathogenic antibodies to PF4/heparin bind and activate cellular FcγRIIA on platelets and monocytes to propagate a hypercoagulable state culminating in life-threatening thrombosis. It is now recognized that anti-PF4/heparin antibodies develop commonly after heparin exposure, but only a subset of sensitized patients progress to life-threatening complications of thrombocytopenia and thrombosis. Recent scientific developments have clarified mechanisms underlying PF4/heparin immunogenicity, disease susceptibility, and clinical manifestations of disease. Insights from clinical and laboratory findings have also been recently harnessed for disease prevention. This review will summarize our current understanding of HIT by reviewing pathogenesis, essential clinical and laboratory features, and management.
Collapse
|
7
|
Staibano P, Arnold DM, Bowdish DME, Nazy I. The unique immunological features of heparin-induced thrombocytopenia. Br J Haematol 2017; 177:198-207. [DOI: 10.1111/bjh.14603] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Phillip Staibano
- Department of Medicine; Michael G. DeGroote School of Medicine; McMaster University; Hamilton ON Canada
| | - Donald M. Arnold
- Department of Medicine; Michael G. DeGroote School of Medicine; McMaster University; Hamilton ON Canada
- Canadian Blood Services; Hamilton ON Canada
| | - Dawn M. E. Bowdish
- McMaster Immunology Research Centre; McMaster University; Hamilton ON Canada
| | - Ishac Nazy
- Department of Medicine; Michael G. DeGroote School of Medicine; McMaster University; Hamilton ON Canada
| |
Collapse
|
8
|
Khandelwal S, Arepally GM. Immune pathogenesis of heparin-induced thrombocytopenia. Thromb Haemost 2016; 116:792-798. [PMID: 27465274 DOI: 10.1160/th16-01-0074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023]
Abstract
The immune response to heparin is one of the most common drug-induced allergies, and yet, atypical for a drug hypersensitivity reaction. Whereas most drug-induced allergies are rare, idiosyncratic and life-long, the allergic response to heparin is common, predictable in certain clinical settings and transient. Advances in the last decade with regards to structural characterisation of the PF4/heparin antigenic complex, contributions of innate immunity and development of animal models have provided insights into the distinctive features of the HIT immune response. Recent descriptions of the crystal structure of the PF4/heparin complex, alongside other biophysical studies, have clarified the structural requirements for immunogenicity and heparin-dependency of antibody formation. Studies of interactions of PF4 with bacterial cell walls as well as epidemiologic associations of anti-PF4/heparin antibody formation and infection suggest a role for immune priming and explain the rapid evolution of an isotype-switched immune response in sensitised patients. Murine models have greatly facilitated investigations of cellular basis of the HIT response and identified a major role for T-cells and marginal zone B-cells, but key findings have yet to be validated in human disease. This chapter will summarise recent investigations of the HIT immune response in the context of major pathways of immune activation and identify areas of uncertainty.
Collapse
Affiliation(s)
| | - Gowthami M Arepally
- Gowthami Arepally, MD, Division of Hematology, DUMC Box 3486, Rm 356A Alex H. Sands Bldg., Research Drive, Durham, NC 27710, USA, Tel: +1 919 668 3696, Fax: +1 919 684 2420, E-mail:
| |
Collapse
|
9
|
Bakchoul T. An update on heparin-induced thrombocytopenia: diagnosis and management. Expert Opin Drug Saf 2016; 15:787-97. [DOI: 10.1517/14740338.2016.1165667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tamam Bakchoul
- Institute for Immunology and Transfusion Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Krauel K, Schulze A, Jouni R, Hackbarth C, Hietkamp B, Selleng S, Koster A, Jensch I, van der Linde J, Schwertz H, Bakchoul T, Hundt M, Greinacher A. Further insights into the anti-PF4/heparin IgM immune response. Thromb Haemost 2015; 115:752-61. [PMID: 26467272 DOI: 10.1160/th15-08-0654] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/27/2015] [Indexed: 11/05/2022]
Abstract
Anti-platelet factor 4 (PF4)/heparin antibodies are not only the cause of heparin-induced thrombocytopenia but might also play a role in the antibacterial host defence. Recently, marginal zone (MZ) B cells were identified to be crucial for anti-PF4/heparin IgG antibody production in mice. Combining human studies and a murine model of polymicrobial sepsis we further characterised the far less investigated anti-PF4/heparin IgM immune response. We detected anti-PF4/heparin IgM antibodies in the sera of paediatric patients < 6 months of age after cardiac surgery and in sera of splenectomised mice subjected to polymicrobial sepsis. In addition, PF4/heparin-specific IgM B cells were not only found in murine spleen, but also in peritoneum and bone marrow upon in vitro stimulation. Together, this indicates involvement of additional B cell populations, as MZ B cells are not fully developed in humans until the second year of life and are restricted to the spleen in mice. Moreover, PF4/heparin-specific B cells were detected in human cord blood upon in vitro stimulation and PF4-/- mice produced anti-PF4/heparin IgM antibodies after polymicrobial sepsis. In conclusion, the anti-PF4/heparin IgM response is a potential innate immune reaction driven by a B cell population distinct from MZ B cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Andreas Greinacher
- Prof. Dr. Andreas Greinacher, Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Strasse, D-17489 Greifswald, Germany, Tel.: +49 3834 865482, Fax: +49 3834 865489, E-mail:
| |
Collapse
|
11
|
New insights in heparin-induced thrombocytopenia by the use of fluid-phase assays to detect specifically platelet factor 4/heparin complex antibodies and antibody-secreting cells. Thromb Res 2014; 134:174-81. [DOI: 10.1016/j.thromres.2014.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/13/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023]
|
12
|
B-cell tolerance regulates production of antibodies causing heparin-induced thrombocytopenia. Blood 2013; 123:931-4. [PMID: 24357731 DOI: 10.1182/blood-2013-11-540781] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Immune complexes consisting of heparin, platelet factor 4 (PF4), and PF4/heparin-reactive antibodies are central to the pathogenesis of heparin-induced thrombocytopenia (HIT). It is as yet unclear what triggers the initial induction of pathogenic antibodies. We identified B cells in peripheral blood of healthy adults that produce PF4/heparin-specific antibodies following in vitro stimulation with proinflammatory molecules containing deoxycytosine-deoxyguanosine (CpG). Similarly, B cells from unmanipulated wild-type mice produced PF4/heparin-specific antibodies following in vitro or in vivo CpG stimulation. Thus, both healthy humans and mice possess preexisting inactive/tolerant PF4/heparin-specific B cells. The findings suggest that breakdown of tolerance leads to PF4/heparin-specific B-cell activation and antibody production in patients developing HIT. Consistent with this concept, mice lacking protein kinase Cδ (PKCδ) that are prone to breakdown of B-cell tolerance produced anti-PF4/heparin antibodies spontaneously. Therefore, breakdown of tolerance can lead to PF4/heparin-specific antibody production, and B-cell tolerance may play an important role in HIT pathogenesis.
Collapse
|
13
|
Bakchoul T, Greinacher A. Recent advances in the diagnosis and treatment of heparin-induced thrombocytopenia. Ther Adv Hematol 2013; 3:237-51. [PMID: 23606934 DOI: 10.1177/2040620712443537] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is a drug-mediated, prothrombotic disorder caused by immunization against platelet factor 4 (PF4) after complex formation with heparin or other polyanions. After their binding to PF4/heparin complexes on the platelet surface, HIT antibodies are capable of intravascular platelet activation by cross-linking Fcγ receptor IIA leading to a platelet count decrease and/or thrombosis. Diagnosis of HIT is often difficult. This, and the low specificity of the commercially available immunoassays, leads currently to substantial overdiagnosis of HIT. Timing of onset, the moderate nature of thrombocytopenia, and the common concurrence of thrombosis are very important factors, which help to differentiate HIT from other potential causes of thrombocytopenia. A combination of a clinical pretest scoring system and laboratory investigation is usually necessary to diagnose HIT. Although HIT is considered to be a rare complication of heparin treatment, the very high number of hospital inpatients, and increasingly also hospital outpatients receiving heparin, still result in a considerable number of patients developing HIT. If HIT occurs, potentially devastating complications such as life-threatening thrombosis make it one of the most serious adverse drug reactions. If HIT is strongly suspected, all heparin must be stopped and an alternative nonheparin anticoagulant started at a therapeutic dose to prevent thromboembolic complications. However, the nonheparin alternative anticoagulants bear a considerable bleeding risk, especially if given to patients with thrombocytopenia due to other reasons than HIT. While established drugs for HIT are disappearing from the market (lepirudin, danaparoid), bivalirudin, fondaparinux and potentially the new anticoagulants such as dabigatran, rivaroxaban and apixaban provide new treatment options.
Collapse
Affiliation(s)
- Tamam Bakchoul
- Department of Immunology and Transfusion Medicine, Ernst-Moritz-Arndt niversity, Greifswald, Germany
| | | |
Collapse
|
14
|
Abstract
Heparin-induced thrombocytopenia (HIT) is an immune-mediated disorder that can cause fatal arterial or venous thrombosis/thromboembolism. Immune complexes consisting of platelet factor 4 (PF4), heparin, and PF4/heparin-reactive antibodies are central to the pathogenesis of HIT. However, the B-cell origin of HIT antibody production is not known. Here, we show that anti-PF4/heparin antibodies are readily generated in wild-type mice on challenge with PF4/heparin complexes, and that antibody production is severely impaired in B-cell-specific Notch2-deficient mice that lack marginal zone (MZ) B cells. As expected, Notch2-deficient mice responded normally to challenge with T-cell-dependent antigen nitrophenyl-chicken γ globulin but not to the T-cell-independent antigen trinitrophenyl-Ficoll. In addition, wild-type, but not Notch2-deficient, B cells plus B-cell-depleted wild-type splenocytes adoptively transferred into B-cell-deficient μMT mice responded to PF4/heparin complex challenge. PF4/heparin-specific antibodies produced by wild-type mice were IgG2b and IgG3 isotypes. An in vitro class-switching assay showed that MZ B cells were capable of producing antibodies of IgG2b and IgG3 isotypes. Lastly, MZ, but not follicular, B cells adoptively transferred into B-cell-deficient μMT mice responded to PF4/heparin complex challenge by producing PF4/heparin-specific antibodies of IgG2b and IgG3 isotypes. Taken together, these data demonstrate that MZ B cells are critical for PF4/heparin-specific antibody production.
Collapse
|
15
|
Heparin-Induced Thrombocytopenia. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Abstract
AbstractCardiopulmonary bypass surgery (CPB) is associated with a high incidence of IgG Abs against platelet factor 4/heparin (PF4/H) complexes by day 6 after surgery. These Abs are associated with an immune-mediated adverse drug reaction, heparin-induced thrombocytopenia. Although the early onset of the anti-PF4/H IgG response is compatible with a secondary immune response, the rapid decline of Ab titers thereafter is not. To shed light on the origin of these Abs, in the present study, we prospectively compared the kinetics of these Abs with that of Abs against 2 recall Ags and to that of autoantibodies in 166 CPB patients over 4 months. Surgery induced strong inflammation, as shown by an increase in mean C-reactive protein levels. Consistent with previous studies, anti-PF4/H IgG optical density transiently increased between baseline and day 10 (P < .001; not associated with C-reactive protein levels), followed by a decrease over the next months. In contrast, concentrations of antidiphtheria toxin IgG and antitetanus toxin IgG increased constantly over the 4 months after surgery by 25%-30%. IgG autoantibodies did not change. Therefore, the transient kinetics of the anti-PF4/H IgG response resembled neither that of recall Abs nor that of IgG autoantibodies, but rather showed a unique profile.
Collapse
|
17
|
Abstract
BACKGROUND Heparin-induced thrombocytopenia (HIT) is a rare but severe prothrombotic adverse effect of heparin treatment. The underlying cause is the formation of highly immunogenic complexes between negatively charged heparin and positively charged platelet factor 4 (PF4). Resulting antibodies against these PF4/heparin complexes can activate platelets via the platelet FcγIIa receptor, leading to thrombin generation and thus to the paradox of a prothrombotic state despite thrombocytopenia and application of heparin. Prompt diagnosis of HIT is important in order to change treatment to prevent severe thromboembolic complications. However, this is often difficult as thrombocytopenia is frequent in hospitalized patients and the commercially available laboratory tests for HIT antibodies have a high negative predictive value but only a poor positive predictive value. This leads to overdiagnosis and overtreatment of HIT, which also bear the risk for adverse outcomes. AREAS COVERED This review aims at resuming recent data on HIT, thereby focusing on the role of new anticoagulants and providing a framework for diagnosis and treatment. Furthermore, it provides some insights into the pathogenesis of this peculiar adverse drug reaction and ventures a guess at its future relevance in clinical practice. EXPERT OPINION New drugs which are strongly negatively charged should be assessed for their capacity to form complexes with PF4. If they do so, they bear the risk of inducing a HIT-like immune response. The immunology of HIT is still largely unresolved. Understanding HIT might provide insights into other immune and autoimmune response mechanisms.
Collapse
Affiliation(s)
- Miriam E Jaax
- Institute for Immunology and Transfusion Medicine, University Medicine Ernst Moritz Arndt University Greifswald, Sauerbruchstrasse, 17487 Greifswald, Germany
| | | |
Collapse
|
18
|
The identification and management of heparin-induced thrombocytopenia in the vascular patient. J Vasc Surg 2012; 55:562-70. [DOI: 10.1016/j.jvs.2011.10.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 09/28/2011] [Accepted: 10/02/2011] [Indexed: 11/22/2022]
|
19
|
Abstract
PURPOSE OF REVIEW Heparin-induced thrombocytopenia (HIT) is a prothrombotic complication of heparin therapy caused by antibodies against platelet factor 4/heparin complexes. Progress in our understanding of HIT has translated to improvements in treatment and patient outcomes. The objective of this review is to examine recent advances and highlight areas of future inquiry in the epidemiology, diagnosis, and management of this potentially fatal disorder. RECENT FINDINGS Risk factors for the development of HIT related to heparin administration are well described. Recent identification of host-related risk factors adds to our understanding of disease epidemiology. The limited specificity of clinical diagnosis and widely used immunologic assays for HIT results in frequent overdiagnosis. Novel clinical decision rules and laboratory assays to improve diagnosis are in development. Fondaparinux, bivalirudin, and desirudin have recently been added to the HIT armamentarium. SUMMARY Despite these advances, critical issues remain to be addressed. Future research efforts will focus on the identification of novel clinical risk factors and biomarkers that will enable recognition of individuals at greatest risk, optimization of diagnostic strategies and use of currently available therapeutics, and development of new drugs that not only reduce thrombotic complications, but also minimize bleeding risk, are well tolerated in patients with organ dysfunction, and facilitate transition to outpatient therapy.
Collapse
|
20
|
Abstract
Heparin-induced thrombocytopenia is a life-threatening immune-mediated platelet activation condition that can cause arterial and venous thromboembolism. The triggering complex, platelet factor 4/heparin antibody, has several unique immunologic characteristics that have not been well elucidated until recently. In patients undergoing cardiovascular procedures such as percutaneous coronary intervention and coronary artery bypass graft surgery, the prevalence of platelet factor 4/heparin antibody is significantly higher than that in the general population. The acuity and graveness of the thromboembolic phenomenon requires early diagnosis and empirical initiation of treatment, even before confirmatory test results are available. Also, although multiple therapeutic modalities exist, the safety and efficacy of each option depends upon the clinical setting. Therefore, this review will focus on the updated pathophysiology of heparin-induced thrombocytopenia, new diagnostic criteria, and the various treatment options for cardiovascular patients with different conditions.
Collapse
|
21
|
Association of natural anti-platelet factor 4/heparin antibodies with periodontal disease. Blood 2011; 118:1395-401. [PMID: 21659541 DOI: 10.1182/blood-2011-03-342857] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Platelet factor 4 (PF4) and heparin (H) form PF4/H complexes, the target of the immune reaction in heparin-induced thrombocytopenia (HIT). HIT seems to be a secondary immune response as anti-PF4/H-IgG antibodies occur as early as day 4 of heparin treatment. This study investigated whether prevalent infections such as periodontitis may induce the PF4/H immune response as: (1) natural anti-PF4/H Abs are present in the normal population; (2) PF4 bound to bacteria exposes the same antigen(s) as PF4/H complexes; and (3) sepsis induces PF4/H Abs in mice. We found PF4 bound to periodontal pathogens (Aggregatibacter actinomycetemcomitans; Porphyromonas gingivalis) enabling subsequent binding of human anti-PF4/H Abs. The association of natural PF4/H Abs and periodontitis was assessed in a case-control study, enrolling individuals with natural anti-PF4/H Abs (n = 40 matched pairs), and in the cross-sectional population-based Study of Health in Pomerania (SHIP; n = 3500). Both studies showed a robust association between periodontitis and presence of anti-PF4/H Abs independent of inflammation markers (case-control study: lowest vs highest tertile, odds ratio, 7.12 [95% confidence interval, 1.73-46.13; P = .005]; SHIP study, p(trend) ≤ 0.001). Thus, preimmunization to PF4/bacteria complexes by prevalent infections, for example, periodontitis, likely explains the presence of natural anti-PF4/heparin Abs and the early occurrence of anti-PF4/H-IgG in HIT.
Collapse
|
22
|
Bacteria and HIT: a close connection? Blood 2011; 117:1105-6. [PMID: 21273328 DOI: 10.1182/blood-2010-11-317941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIT is caused by antibodies specific to PF4/heparin complexes. In this issue of Blood, Krauel et al report novel findings supporting the hypothesis that primary synthesis of these antibodies results from bacterial infections. HIT, therefore, appears to be a misdirected antibacterial host defense response.
Collapse
|
23
|
Platelet factor 4 binds to bacteria, inducing antibodies cross-reacting with the major antigen in heparin-induced thrombocytopenia. Blood 2011; 117:1370-8. [DOI: 10.1182/blood-2010-08-301424] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AbstractA clinically important adverse drug reaction, heparin-induced thrombocytopenia (HIT), is induced by antibodies specific for complexes of the chemokine platelet factor 4 (PF4) and the polyanion heparin. Even heparin-naive patients can generate anti-PF4/heparin IgG as early as day 4 of heparin treatment, suggesting preimmunization by antigens mimicking PF4/heparin complexes. These antibodies probably result from bacterial infections, as (1) PF4 bound charge-dependently to various bacteria, (2) human heparin-induced anti-PF4/heparin antibodies cross-reacted with PF4-coated Staphylococcus aureus and Escherichia coli, and (3) mice developed anti-PF4/heparin antibodies during polymicrobial sepsis without heparin application. Thus, after binding to bacteria, the endogenous protein PF4 induces antibodies with specificity for PF4/polyanion complexes. These can target a large variety of PF4-coated bacteria and enhance bacterial phagocytosis in vitro. The same antigenic epitopes are expressed when pharmacologic heparin binds to platelets augmenting formation of PF4 complexes. Boosting of preformed B cells by PF4/heparin complexes could explain the early occurrence of IgG antibodies in HIT. We also found a continuous, rather than dichotomous, distribution of anti-PF4/heparin IgM and IgG serum concentrations in a cross-sectional population study (n = 4029), indicating frequent preimmunization to modified PF4. PF4 may have a role in bacterial defense, and HIT is probably a misdirected antibacterial host defense mechanism.
Collapse
|
24
|
Abstract
The immune response in heparin-induced thrombocytopenia is initiated by and directed to large multimolecular complexes of platelet factor 4 (PF4) and heparin (H). We have previously shown that PF4:H multimolecular complexes assemble through electrostatic interactions and, once formed, are highly immunogenic in vivo. Based on these observations, we hypothesized that other positively charged proteins would exhibit similar biologic interactions with H. To test this hypothesis, we selected 2 unrelated positively charged proteins, protamine (PRT) and lysozyme, and studied H-dependent interactions using in vitro and in vivo techniques. Our studies indicate that PRT/H and lysozyme/H, like PF4/H, show H-dependent binding over a range of H concentrations and that formation of complexes occurs at distinct stoichiometric ratios. We show that protein/H complexes are capable of eliciting high-titer antigen-specific antibodies in a murine immunization model and that PRT/H antibodies occur in patients undergoing cardiopulmonary bypass surgery. Finally, our studies indicate that protein/H complexes, but not uncomplexed protein, directly activate dendritic cells in vitro leading to interleukin-12 release. Taken together, these studies indicate that H significantly alters the biophysical and biologic properties of positively charged compounds through formation of multimolecular complexes that lead to dendritic cell activation and trigger immune responses in vivo.
Collapse
|
25
|
Sandset PM. Immunobiology of Heparin-Induced Thrombocytopenia. Curr Top Microbiol Immunol 2010; 341:193-202. [DOI: 10.1007/82_2010_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|