1
|
Qin Z, Peng T, Qin X, Liu G, Zhang H. Colorimetric/fluorescent dual-mode biosensor based on metalloporphyrin covalently modified NH 2-MIL-101(Fe) with highly efficient peroxidase-like activity for the detection of tetracycline in honey samples. Food Chem 2025; 484:144387. [PMID: 40273871 DOI: 10.1016/j.foodchem.2025.144387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Accurate detection of tetracycline residue is of great significance for ensuring product quality and protecting human health. Here, a colorimetric/fluorescent dual-mode biosensor was developed for the detection of tetracycline in honey by using metalloporphyrin [TCPP(Fe)] covalently modified NH2-MIL-101(Fe) [named NH2-MIL-101(Fe)@TCPP(Fe)]. The morphology, chemical structure and peroxidas-like activity of this hybrid nanozyme were comprehensively studied. Based on excellent catalytic activity and intrinsic fluorescence of NH2-MIL-101(Fe)@TCPP(Fe), a colorimetric/fluorescent dual-mode biosensor was developed for the detection of tetracycline. The primary mechanism for this dual mode biosensor was the inhibitory effect of tetracycline on on NH2-MIL-101(Fe)@TCPP(Fe) catalyzed chromatic reaction between H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB)/o-phenylenediamine (OPD), which was ascribed to the consumption of ·OH by tetracycline and the adsorption of tetracycline on the surface of NH2-MIL-101(Fe)@TCPP(Fe). After effective validation, this colorimetric/fluorescent dual mode method was applied to detect tetracycline residues in three actual honey samples.
Collapse
Affiliation(s)
- Zhiyang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tianyue Peng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Gang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haizhi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
2
|
Hu J, Yang X, Peng Q, Wang F, Zhu Y, Hu X, Zheng B, Du J, Xiao D. A highly sensitive visual sensor for tetracycline in food samples by a double-signal response fluorescent nanohybrid. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106832] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Entwistle FM, Coote PJ. Evaluation of greater wax moth larvae, Galleria mellonella, as a novel in vivo model for non-tuberculosis Mycobacteria infections and antibiotic treatments. J Med Microbiol 2018; 67:585-597. [PMID: 29458557 DOI: 10.1099/jmm.0.000696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To evaluate the suitability of Galleria mellonella larvae as an in vivo model and drug-screening tool for mycobacteria infections. METHODOLOGY Larvae were infected using a range of inoculum sizes from a variety of rapid-growing mycobacteria, including strains of M. fortuitum, M. marinum and M. aurum. Larval survival, internal bacterial burden and the effects of amikacin, ciprofloxacin, ethambutol, isoniazid and rifampicin treatment on larval survival were measured over 144 h. The effects of these anti-mycobacterial drugs on phagocytosis and circulating haemocyte numbers were also examined using microscopy. RESULTS Larval survival decreased after infection with M. fortuitum and M. marinum in a dose-dependent manner, but remained unaffected by M. aurum. Heat-killed bacteria did not cause larval death. Where antibiotic monotherapy was efficacious, larval survival post-infection increased in a dose-dependent fashion. However, efficacy varied between different antibiotics and species of infecting mycobacteria and, apart from rifampicin, efficacy in vivo correlated poorly with the in vitro minimum inhibitory concentrations (MICs). Combinations of antibiotics led to higher survival of infected larvae than antibiotic monotherapy. Selected antibiotic treatments that enhanced larval survival reduced the overall internal burden of infecting mycobacteria, but did not eradicate the pathogens. Administration of amikacin or ethambutol to uninfected larvae induced an initial transient increase in the numbers of circulating haemocytes and reduced the phagocytic rate of haemocytes in larvae infected with M. marinum. CONCLUSIONS This report demonstrates the potential of employing a wax moth larvae model for studying fast-growing mycobacteria infections, and as a cheap, effective system for initial screening of novel treatments.
Collapse
Affiliation(s)
- Frances M Entwistle
- Biomedical Sciences Research Complex, School of Biology, The North Haugh, University of St Andrews, Fife, KY16 9ST, UK
| | - Peter J Coote
- Biomedical Sciences Research Complex, School of Biology, The North Haugh, University of St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
4
|
Effects of In-Feed Chlortetracycline Prophylaxis in Beef Cattle on Animal Health and Antimicrobial-Resistant Escherichia coli. Appl Environ Microbiol 2016; 82:7197-7204. [PMID: 27736789 DOI: 10.1128/aem.01928-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/03/2016] [Indexed: 11/20/2022] Open
Abstract
Concerns have been raised that in-feed chlortetracycline (CTC) may increase antimicrobial resistance (AMR), specifically tetracycline-resistant (TETr) Escherichia coli and third-generation cephalosporin-resistant (3GCr) E. coli We evaluated the impact of a 5-day in-feed CTC prophylaxis on animal health, TETr E. coli, and 3GCr E. coli A control group of cattle (n = 150) received no CTC, while a CTC group (n = 150) received in-feed CTC (10 mg/lb of body weight/day) from the 5th to the 9th day after feedlot arrival. Over 25% (38/150) of the animals in the control group developed illnesses requiring therapeutic treatment with antimicrobials critically important to human medicine. Only two animals (1.3%) in the CTC group required such treatments. Fecal swab and pen surface occurrences of generic E. coli (isolated on media that did not contain antimicrobials of interest and were not isolated based on any specific resistance), TETr E. coli, and 3GCr E. coli were determined on five sampling occasions: arrival at the feedlot, 5 days posttreatment (5 dpt), 27 dpt, 75 dpt, and 117 dpt. On 5 dpt, TETr E. coli concentrations were higher for the CTC group than the control group (P < 0.01). On 27 dpt, 75 dpt, and 117 dpt, TETr E. coli concentrations did not differ between groups. 3GCr E. coli occurrences did not differ between control and CTC groups on any sampling occasion. For both groups, generic, TETr, and 3GCr E. coli occurrences were highest on 75 dpt and 117 dpt, suggesting that factors other than in-feed CTC contributed more significantly to antimicrobial-resistant E. coli occurrence. IMPORTANCE The occurrence of human bacterial infections resistant to antimicrobial therapy has been increasing. It has been postulated that antimicrobial resistance was inevitable, but the life span of the antimicrobial era has been prematurely compromised due to the misuse of antimicrobials in clinical and agricultural practices. Direct evidence relating the use of antimicrobials in livestock production to diminished human health outcomes due to antimicrobial resistance is lacking, and the U.S. Food and Drug Administration has taken an approach to maximize therapeutic efficacy and minimize the selection of resistant microorganisms through judicious use of antimicrobials. This study demonstrated that prophylactic in-feed treatment of chlortetracycline administered for 5 days to calves entering feedlots is judicious, as this therapy reduced animal morbidity, reduced the use of antimicrobials more critical to human health, and had no long-term impact on the occurrence of antimicrobial-resistant E. coli.
Collapse
|
5
|
Fowler H, Davis MA, Perkins A, Trufan S, Joy C, Buswell M, McElwain TF, Moore D, Worhle R, Rabinowitz PM. A survey of veterinary antimicrobial prescribing practices, Washington State 2015. Vet Rec 2016; 179:651. [PMID: 27807211 DOI: 10.1136/vr.103916] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2016] [Indexed: 01/18/2023]
Abstract
Antimicrobial resistance is a growing global health issue. It is also a recognised problem in veterinary medicine. Between September and December 2015 the authors administered a cross-sectional survey to licensed veterinarians in Washington State to assess factors affecting antimicrobial prescribing practices among veterinarians in Washington State. Two hundred and three veterinarians completed the survey. The majority of respondents (166, 82 per cent) were engaged in small animal or exotic animal practice. 24 per cent of respondents reported not ordering culture and sensitivity (C/S) testing in practice. Of the 76 per cent of veterinarians who reported ordering C/S tests, 36 per cent reported ordering such testing 'often' or 'always' when treating presumptive bacterial infections. Most respondents (65 per cent) mentioned cost as the most common barrier to ordering a C/S test. Only 16 (10 per cent) respondents reported having access to or utilising a clinic-specific antibiogram. This survey demonstrated that while antimicrobials are commonly used in veterinary practice, and veterinarians are concerned about antimicrobial resistance, cost is a barrier to obtaining C/S tests to guide antimicrobial therapy. Summaries of antimicrobial resistance patterns are rarely available to the practising veterinarian. Efforts to promote antimicrobial stewardship in a 'One Health' manner should address barriers to the judicious use of antimicrobials in the veterinary practice setting.
Collapse
Affiliation(s)
- H Fowler
- Department of Occupational and Environmental Health Sciences, Center for One Health Research (COHR), University of Washington School of Public Health, Seattle, Washington, USA
| | - M A Davis
- Washington State One Health Veterinary Workgroup
| | - A Perkins
- Washington State One Health Veterinary Workgroup
| | - S Trufan
- Department of Occupational and Environmental Health Sciences, Center for One Health Research (COHR), University of Washington School of Public Health, Seattle, Washington, USA
| | - C Joy
- Washington State One Health Veterinary Workgroup
| | - M Buswell
- Washington State One Health Veterinary Workgroup
| | - T F McElwain
- Washington State One Health Veterinary Workgroup
| | - D Moore
- Washington State One Health Veterinary Workgroup
| | - R Worhle
- Washington State One Health Veterinary Workgroup
| | - P M Rabinowitz
- Department of Occupational and Environmental Health Sciences, Center for One Health Research (COHR), University of Washington School of Public Health, Seattle, Washington, USA
| |
Collapse
|
6
|
Fan HT, Shi LQ, Shen H, Chen X, Xie KP. Equilibrium, isotherm, kinetic and thermodynamic studies for removal of tetracycline antibiotics by adsorption onto hazelnut shell derived activated carbons from aqueous media. RSC Adv 2016. [DOI: 10.1039/c6ra23346e] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hazelnut shell, an agricultural waste, was used to prepare activated carbons by phosphoric acid activation.
Collapse
Affiliation(s)
- Hong-Tao Fan
- College of Applied Chemistry
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Li-Qi Shi
- College of Applied Chemistry
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Hua Shen
- College of Applied Chemistry
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Xi Chen
- School of Life Science
- Liaoning Normal University
- Dalian
- China
| | - Kun-Peng Xie
- School of Life Science
- Liaoning Normal University
- Dalian
- China
| |
Collapse
|
7
|
Roy Chowdhury P, McKinnon J, Wyrsch E, Hammond JM, Charles IG, Djordjevic SP. Genomic interplay in bacterial communities: implications for growth promoting practices in animal husbandry. Front Microbiol 2014; 5:394. [PMID: 25161648 PMCID: PMC4129626 DOI: 10.3389/fmicb.2014.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
The discovery of antibiotics heralded the start of a “Golden Age” in the history of medicine. Over the years, the use of antibiotics extended beyond medical practice into animal husbandry, aquaculture and agriculture. Now, however, we face the worldwide threat of diseases caused by pathogenic bacteria that are resistant to all existing major classes of antibiotic, reflecting the possibility of an end to the antibiotic era. The seriousness of the threat is underscored by the severely limited production of new classes of antibiotics. Evolution of bacteria resistant to multiple antibiotics results from the inherent genetic capability that bacteria have to adapt rapidly to changing environmental conditions. Consequently, under antibiotic selection pressures, bacteria have acquired resistance to all classes of antibiotics, sometimes very shortly after their introduction. Arguably, the evolution and rapid dissemination of multiple drug resistant genes en-masse across microbial pathogens is one of the most serious threats to human health. In this context, effective surveillance strategies to track the development of resistance to multiple antibiotics are vital to managing global infection control. These surveillance strategies are necessary for not only human health but also for animal health, aquaculture and plant production. Shortfalls in the present surveillance strategies need to be identified. Raising awareness of the genetic events that promote co-selection of resistance to multiple antimicrobials is an important prerequisite to the design and implementation of molecular surveillance strategies. In this review we will discuss how lateral gene transfer (LGT), driven by the use of low-dose antibiotics in animal husbandry, has likely played a significant role in the evolution of multiple drug resistance (MDR) in Gram-negative bacteria and has complicated molecular surveillance strategies adopted for predicting imminent resistance threats.
Collapse
Affiliation(s)
- Piklu Roy Chowdhury
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia ; NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute Camden, NSW, Australia
| | - Jessica McKinnon
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| | - Ethan Wyrsch
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| | - Jeffrey M Hammond
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute Camden, NSW, Australia
| | - Ian G Charles
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| | - Steven P Djordjevic
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| |
Collapse
|
8
|
Niewold T. Why anti-inflammatory compounds are the solution for the problem with in feed antibiotics. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2014. [DOI: 10.3920/qas2012.0234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- T.A. Niewold
- Faculty of Bioscience Engineering, Nutrition and Health Unit, Katholieke Universiteit Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium
| |
Collapse
|
9
|
Borghi AA, Palma MSA. Tetracycline: production, waste treatment and environmental impact assessment. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502011000100003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
The frequent occurrence of pharmaceuticals in the aquatic environment requires an assessment of their environmental impact and their negative effects in humans. Among the drugs with high harmful potential to the environment are the antibiotics that reach the environment not only, as may be expected, through the effluents from chemical and pharmaceutical industries, but mainly through the sewage and livestock; because around 25 to 75% of the ingested drugs are excreted in unchanged form after the passage through the Gastro-Intestinal Tract. Tetracycline has high world consumption, representing a human consumption of about 23 kg/day in Brazil in 2007. At the moment, researches are being made to develop new tetracycline that incorporate heavy metals (Hg, Cd, Re, Pt, Pd) to their structures in order to increase their bactericidal effect. The conventional wastewater treatment plants are not able to degrade complex organic molecules to reduce their toxicity and improve their biodegradability. For this reason new technologies, i.e., the advanced oxidation processes, are being developed to handle this demand. The objectives of this study are to review the literature on the processes of obtaining tetracycline, presenting its waste treatment methods and evaluation of their environmental impact.
Collapse
|
10
|
Abstract
Antimicrobials are valuable therapeutics whose efficacy is seriously compromised by the emergence and spread of antimicrobial resistance. The provision of antibiotics to food animals encompasses a wide variety of nontherapeutic purposes that include growth promotion. The concern over resistance emergence and spread to people by nontherapeutic use of antimicrobials has led to conflicted practices and opinions. Considerable evidence supported the removal of nontherapeutic antimicrobials (NTAs) in Europe, based on the "precautionary principle." Still, concrete scientific evidence of the favorable versus unfavorable consequences of NTAs is not clear to all stakeholders. Substantial data show elevated antibiotic resistance in bacteria associated with animals fed NTAs and their food products. This resistance spreads to other animals and humans-directly by contact and indirectly via the food chain, water, air, and manured and sludge-fertilized soils. Modern genetic techniques are making advances in deciphering the ecological impact of NTAs, but modeling efforts are thwarted by deficits in key knowledge of microbial and antibiotic loads at each stage of the transmission chain. Still, the substantial and expanding volume of evidence reporting animal-to-human spread of resistant bacteria, including that arising from use of NTAs, supports eliminating NTA use in order to reduce the growing environmental load of resistance genes.
Collapse
Affiliation(s)
- Bonnie M. Marshall
- Alliance for the Prudent Use of Antibiotics, Boston, Massachusetts
- Department of Molecular Biology and Microbiology
| | - Stuart B. Levy
- Alliance for the Prudent Use of Antibiotics, Boston, Massachusetts
- Department of Molecular Biology and Microbiology
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
11
|
Mathers JJ, Flick SC, Cox LA. Longer-duration uses of tetracyclines and penicillins in U.S. food-producing animals: Indications and microbiologic effects. ENVIRONMENT INTERNATIONAL 2011; 37:991-1004. [PMID: 21435723 DOI: 10.1016/j.envint.2011.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 05/12/2023]
Abstract
We review and analyze regulatory categories for longer duration of use (defined as ≥ 7 day) tetracyclines (TCs) and penicillins (PNs) approved for U.S. livestock and poultry, together with scientific studies, surveillance programs and risk assessments pertaining to antimicrobial resistance. Indications listed on a government database were grouped into three broad categories according to the terminology used to describe their use: disease control (C), treatment (T) and growth improvement (G). Consistent with mostly therapeutic uses, the majority (86%) of listed indications had C and/or T terms. Several studies showed interruption of early disease stages in animals and modulation of intestinal microflora. Longer-duration exposures are consistent with bacteriostatic modes of action, where adequate exposure time as well as concentration is needed for sufficient antimicrobial activity. Other effects identified included reduced animal pathogen prevalence, toxin formation, inflammation, environmental impacts, improved animal health, reproductive measures, nutrient utilization, and others. Several animal studies have shown a limited, dose-proportionate, selective increase in resistance prevalence among commensal animal bacteria following longer-duration exposures. Pathogen surveillance programs showed overall stable or declining resistance trends among sentinel bacteria. Quantitative, microbiologically detailed resistance risk assessments indicate small probabilities of human treatment failure due to resistance under current conditions. Evaluations of longer-duration uses of TCs, PNs, and other antimicrobial classes used in food-producing animals should consider mechanisms of activity, known individual- and population-level health and waste reduction effects in addition to resistance risks.
Collapse
|