1
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
2
|
Keeling EG, Sisco NJ, McElvogue MM, Borazanci A, Dortch RD, Stokes AM. Rapid simultaneous estimation of relaxation rates using multi-echo, multi-contrast MRI. Magn Reson Imaging 2024; 112:116-127. [PMID: 38971264 PMCID: PMC11323764 DOI: 10.1016/j.mri.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE Multi-echo, multi-contrast methods are increasingly used in dynamic imaging studies to simultaneously quantify R2∗ and R2. To overcome the computational challenges associated with nonlinear least squares (NLSQ) fitting, we propose a generalized linear least squares (LLSQ) solution to rapidly fit R2∗ and R2. METHODS Spin- and gradient-echo (SAGE) data were simulated across T2∗ and T2 values at high (200) and low (20) SNR. Full (four-parameter) and reduced (three-parameter) parameter fits were implemented and compared with both LLSQ and NLSQ fitting. Fit data were compared to ground truth using concordance correlation coefficient (CCC) and coefficient of variation (CV). In vivo SAGE perfusion data were acquired in 20 subjects with relapsing-remitting multiple sclerosis. LLSQ R2∗ and R2, as well as cerebral blood volume (CBV), were compared with the standard NLSQ approach. RESULTS Across all fitting methods, T2∗ was well-fit at high (CCC = 1, CV = 0) and low (CCC ≥ 0.87, CV ≤ 0.08) SNR. Except for short T2∗ values (5-15 ms), T2 was well-fit at high (CCC = 1, CV = 0) and low (CCC ≥ 0.99, CV ≤ 0.03) SNR. In vivo, LLSQ R2∗ and R2 estimates were similar to NLSQ, and there were no differences in R2∗ across fitting methods at high SNR. However, there were some differences at low SNR and for R2 at high and low SNR. In vivo NLSQ and LLSQ three parameter fits performed similarly, as did NLSQ and LLSQ four-parameter fits. LLSQ CBV nearly matched the standard NLSQ method for R2∗- (0.97 ratio) and R2-CBV (0.98 ratio). Voxel-wise whole-brain fitting was faster for LLSQ (3-4 min) than NLSQ (16-18 h). CONCLUSIONS LLSQ reliably fit for R2∗ and R2 in simulated and in vivo data. Use of LLSQ methods reduced the computational demand, enabling rapid estimation of R2∗ and R2.
Collapse
Affiliation(s)
- Elizabeth G Keeling
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA; School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA.
| | - Nicholas J Sisco
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA
| | - Molly M McElvogue
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA.
| | - Aimee Borazanci
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA.
| | - Richard D Dortch
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA.
| | - Ashley M Stokes
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA.
| |
Collapse
|
3
|
Toubasi AA, Xu J, Eisma JJ, AshShareef S, Gheen C, Vinarsky T, Adapa P, Shah S, Eaton J, Dortch RD, Donahue MJ, Bagnato F. Watershed regions are more susceptible to tissue microstructural injury in multiple sclerosis. Brain Commun 2024; 6:fcae299. [PMID: 39372138 PMCID: PMC11452773 DOI: 10.1093/braincomms/fcae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Histopathologic studies report higher concentrations of multiple sclerosis white matter lesions in watershed areas of the brain, suggesting that areas with relatively lower oxygen levels may be more vulnerable to disease. However, it is unknown at what point in the disease course lesion predilection for watershed territories begins. Accordingly, we studied a cohort of people with newly diagnosed disease and asked whether (1) white matter lesions disproportionally localize to watershed-regions and (2) the degree of microstructural injury in watershed-lesions is more severe. Fifty-four participants, i.e. 38 newly diagnosed people with multiple sclerosis, clinically isolated syndrome or radiologically isolated syndrome, and 16 age- and sex-matched healthy controls underwent brain magnetic resonance imaging. T1-weighted and T2-weighted fluid-attenuated inversion recovery sequences, selective inversion recovery quantitative magnetisation transfer images, and the multi-compartment diffusion imaging with the spherical mean technique were acquired. We computed the macromolecular-to-free pool size ratio, and the apparent axonal volume fraction maps to indirectly estimate myelin and axonal integrity, respectively. We produced a flow territory atlas in each subject's native T2-weighted fluid-attenuated inversion recovery images using a T1-weighted magnetic resonance imaging template in the Montreal Neurological Institute 152 space. Lesion location relative to the watershed, non-watershed and mixed brain vascular territories was annotated. The same process was performed on the T2-weighted fluid-attenuated inversion recovery images of the healthy controls using 294 regions of interest. Generalized linear mixed models for continuous outcomes were used to assess differences in size, pool size ratio and axonal volume fraction between lesions/regions of interests (in healthy controls) situated in different vascular territories. In patients, we assessed 758 T2-lesions and 356 chronic black holes (cBHs). The watershed-territories had higher relative and absolute concentrations of T2-lesions (P≤0.041) and cBHs (P≤0.036) compared to either non-watershed- or mixed-zones. T2-lesions in watershed-areas also had lower pool size ratio relative to T2-lesions in either non-watershed- or mixed-zones (P = 0.039). These results retained significance in the sub-cohort of people without vascular comorbidities and when accounting for periventricular lesions. In healthy controls, axonal volume fraction was higher only in mixed-areas regions of interest compared to non-watershed-ones (P = 0.008). No differences in pool size ratio were seen. We provide in vivo evidence that there is an association between arterial vascularisation of the brain and multiple sclerosis-induced tissue injury as early as the time of disease diagnosis. Our findings underline the importance of oxygen delivery and healthy arterial vascularisation to prevent lesion formation and foster a better outcome in multiple sclerosis.
Collapse
Affiliation(s)
- Ahmad A Toubasi
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| | - Junzhong Xu
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Sciences, VUMC, Nashville, TN 37232, USA
| | - Jarrod J Eisma
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| | - Salma AshShareef
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
- Department of Life and Physical Sciences, Fisk University, Nashville, TN 37208, USA
| | - Caroline Gheen
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| | - Taegan Vinarsky
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
| | - Pragnya Adapa
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
- College of Arts and Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Shailee Shah
- Neuroimmunology Division, Department of Neurology, VUMC, Nashville, TN 37232, USA
| | - James Eaton
- Neuroimmunology Division, Department of Neurology, VUMC, Nashville, TN 37232, USA
- Cognitive Division, Department of Neurology, VUMC, Nashville, TN 37232, USA
| | - Richard D Dortch
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Manus J Donahue
- Cognitive Division, Department of Neurology, VUMC, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Science, VUMC, Nashville, TN 37232, USA
| | - Francesca Bagnato
- Neuorimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center (VUMC), Nashville, TN 37232, USA
- Department of Neurology, TN Valley Healthcare System, Nashville Veterans Affairs Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
4
|
Mrabet S, Falfoul Y, Bouassida M, Souissi A, El Matri K, Gharbi A, Chebil A, Kacem I, El Matri L, Gouider R. Retinal changes in multiple sclerosis: An optical coherence tomography and angiography study. Rev Neurol (Paris) 2024; 180:622-631. [PMID: 38458836 DOI: 10.1016/j.neurol.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 03/10/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system with neuroaxonal damage. It is the principal driver of non-traumatic disability in young adults. Visual symptoms are common and optic neuritis (ON) may be the revealing feature in up to 30% of cases. Structural optical coherence tomography (OCT) represents a biomarker of central nervous system neurodegeneration in MS. OCT-angiography (OCT-A) is a noninvasive tool allowing the study of retinal vasculature and the detection of microvascular damage in neuro-retinal diseases. In this study, we aimed to assess structural and microvascular retinal changes in patients with MS with and without ON and to correlate the findings with visual function and MS disability. METHODS We conducted a cross-sectional study including patients diagnosed with MS according to the 2017 McDonald criteria. All patients underwent complete neurological examination with evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Severity Score (MSSS) and an ophthalmological examination including OCT and OCT-A. Patients were compared with age- and sex-matched healthy subjects. The primary endpoints were assessment of retinal nerve fiber layer (RNFL) thickness, ganglion cell layer (GCL+), and ganglion cell complex (GCL++) thicknesses on OCT. Vascular densities in the superficial capillary plexus (SCP), deep capillary plexus (DCP), and choriocapillaris (CC) were assessed on OCT-A, as well as central avascular zone (CAZ) parameters, lacunarity and fractal dimension. RESULTS A total of 160 MS eyes with and without a previous history of ON and 64 age- and gender-matched healthy eyes were analyzed. Among 160 eyes with MS, 69 had a history of ON. We observed a decrease in RNFL and GCL++ thickness in all 12 quadrants in MS patients when compared to healthy controls. Multivariate analysis by linear regression noted a significant correlation for temporal GCL++ and inferonasal RNFL thickness that were decreased in the MS group. A greater decrease in retinal layers thickness was identified in MS patients with a history of ON. On OCT-A, vascular density in (SCP) was significantly reduced in the MS group (P<0.002). A significant correlation between RNFL thickness and retinal vascular density was found but only in less than half of the hourly quadrants. A significant correlation was noted between visual acuity and CC density (P<0.0001). We also noted an inverse correlation between EDSS scores and CC density (P=0.02 and r=-0.275) and between MSSS and RNFL/GCL++ thicknesses. CONCLUSIONS RNFL and GCL++ layers were thinner in MS patients with a history of ON and were reversely correlated with disease severity. Moreover, retinal vascular changes were observed in MS even in eyes without ON, and CC was reversely correlated with visual function and current disability. Thus, structural OCT coupled with OCT-A could represent a noninvasive and dynamic biomarker of MS severity and progression.
Collapse
Affiliation(s)
- S Mrabet
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, 2010 Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - Y Falfoul
- Department B, Hedi Raies Institute of Ophthalmology, Oculogenetic Laboratory LR14SP01, Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - M Bouassida
- Department B, Hedi Raies Institute of Ophthalmology, Oculogenetic Laboratory LR14SP01, Tunis, Tunisia
| | - A Souissi
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, 2010 Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - K El Matri
- Department B, Hedi Raies Institute of Ophthalmology, Oculogenetic Laboratory LR14SP01, Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - A Gharbi
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, 2010 Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - A Chebil
- Department B, Hedi Raies Institute of Ophthalmology, Oculogenetic Laboratory LR14SP01, Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - I Kacem
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, 2010 Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - L El Matri
- Department B, Hedi Raies Institute of Ophthalmology, Oculogenetic Laboratory LR14SP01, Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia
| | - R Gouider
- Department of Neurology, Clinical Investigation Centre Neurosciences and Mental Health LR 18SP03, Razi University Hospital - Manouba, 2010 Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 Tunis, Tunisia.
| |
Collapse
|
5
|
Williams T, Lange F, Smith KJ, Tachtsidis I, Chataway J. Investigating cortical hypoxia in multiple sclerosis via time-domain near-infrared spectroscopy. Ann Clin Transl Neurol 2024; 11:2372-2381. [PMID: 39037277 PMCID: PMC11537135 DOI: 10.1002/acn3.52150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVES Hypoperfusion and tissue hypoxia have been implicated as contributory mechanisms in the neuropathology of multiple sclerosis (MS). Our objective has been to study cortical oxygenation in vivo in patients with MS and age-matched controls. METHODS A custom, multiwavelength time-domain near-infrared spectroscopy system was developed for assessing tissue hypoxia from the prefrontal cortex. A cross-sectional case-control study was undertaken assessing patients with secondary progressive MS (SPMS) and age-matched controls. Co-registered magnetic resonance imaging was used to verify the location from which near-infrared spectroscopy data were obtained through Monte Carlo simulations of photon propagation. Additional clinical assessments of MS disease severity were carried out by trained neurologists. Linear mixed effect models were used to compare cortical oxygenation between cases and controls, and against measures of MS severity. RESULTS Thirty-three patients with secondary progressive MS (median expanded disability status scale 6 [IQR: 5-6.5]; median age 53.0 [IQR: 49-58]) and 20 age-matched controls were recruited. Modeling of photon propagation confirmed spectroscopy data were obtained from the prefrontal cortex. Patients with SPMS had significantly lower cortical hemoglobin oxygenation compared with controls (-6.0% [95% CI: -10.0 to -1.9], P = 0.004). There were no significant associations between cortical oxygenation and MS severity. INTERPRETATION Using an advanced, multiwavelength time-domain near-infrared spectroscopy system, we demonstrate that patients with SPMS have lower cortical oxygenation compared with controls.
Collapse
Affiliation(s)
- Thomas Williams
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Frédéric Lange
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Kenneth J. Smith
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Jeremy Chataway
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
6
|
Eker S, Karaküçük Y, Gumus H. Assessment of macular microcirculation in patients with multiple sclerosis by swept-source optical coherence tomography angiography. MARMARA MEDICAL JOURNAL 2024; 37:192-197. [DOI: 10.5472/marumj.1487767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Objective: To investigate the changes in the retinal microcirculation in multiple sclerosis (MS) patients by swept-source optical
coherence tomography angiography (SS-OCTA).
Patients and Methods: Thirty-seven patients with relapsing-remitting MS and 40 healthy volunteers were included into this crosssectional
study. Clinical history, Expanded Disability Status Scale and duration of MS were collected. SS-OCTA by deep range imaging
(DRI) OCT measurements were performed on all subjects. Macular perfusion parameters including superficial and deep foveal
avascular zones (FAZs, FAZd, respectively) (%), vascular densities of superficial capillary plexus (SCP) (%), deep capillary plexus
(DCP) (%) and choriocapillaris (CC) (%) were compared with healthy subjects.
Results: Vascular densities of SCP, DCP and CC were found to be statistically lower in the study group compared to the control group
(p = 0.02, p = 0.03, p = 0.03, respectively). FAZs and FAZd, areas were significantly higher in the study group (p = 0.02, p = 0.02,
respectively). Central macular thickness and subfoveal choroidal thickness were significantly lower than in the control group (p =
0.015, p = 0.047, respectively).
Conclusion: Evaluation of retinal blood flow in patients with MS is useful both for understanding the physiopathology of the disease
and in the clinical follow-up.
Collapse
|
7
|
Yazdan-Panah A, Bodini B, Soulier T, Veronese M, Bottlaender M, Tonietto M, Stankoff B. Simultaneous assessment of blood flow and myelin content in the brain white matter with dynamic [11 C]PiB PET: a test-retest study in healthy controls. EJNMMI Res 2024; 14:50. [PMID: 38801594 PMCID: PMC11130116 DOI: 10.1186/s13550-024-01107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Exploring the relationship between oxygen supply and myelin damage would benefit from a simultaneous quantification of myelin and cerebral blood flow (CBF) in the brain's white matter (WM). To validate an analytical method for quantifying both CBF and myelin content in the WM using dynamic [11C]PiB positron emission tomography (PET). METHODS A test-retest study was performed on eight healthy subjects who underwent two consecutive dynamic [11 C]PiB-PET scans. Three quantitative approaches were compared: simplified reference tissue model 2 (SRTM2), LOGAN graphical model, and standardized uptake value ratio (SUVR). The sensitivity of methods to the size of the region of interest was explored by simulating lesion masks obtained from 36 subjects with multiple sclerosis. Reproducibility was assessed using the relative difference and interclass correlation coefficient. Repeated measures correlations were used to test for cross-correlations between metrics. RESULTS Among the CBF measures, the relative delivery (R1) of the simplified reference tissue model 2 (SRTM2) displayed the best reproducibility in the white matter, with a strong influence of the size of regions analyzed, the test-retest variability being below 10% for regions above 68 mm3 in the supratentorial white matter. [11C]PiB PET-derived proxies of CBF demonstrated lower perfusion of white matter compared to grey matter with an overall ratio equal to 1.71 ± 0.09 when the SRTM2-R1 was employed. Tissue binding in the white matter was well estimated by the Logan graphical model through estimation of the distribution volume ratio (LOGAN-DVR) and SRTM2 distribution volume ratio (SRTM2-DVR), with test-retest variability being below 10% for regions exceeding 106 mm3 for LOGAN-DVR and 300 mm3 for SRTM2-DVR. SRTM2-DVR provided a better contrast between white matter and grey matter. The interhemispheric variability was also dependent on the size of the region analyzed, being below 10% for regions above 103 mm3 for SRTM2-R1 and above 110 mm3 for LOGAN-DVR. Whereas the 1 to 8-minute standardized uptake value ratio (SUVR1-8) showed an intermediary reproducibility for CBF assessment, SUVR0-2 for perfusion or SUVR50-70 for tissue binding showed poor reproducibility and correlated only mildly with SRTM2-R1 and LOGAN-DVR estimations respectively. CONCLUSIONS [11C]PiB PET imaging can simultaneously quantify perfusion and myelin content in WM diseases associated with focal lesions. For longitudinal studies, SRTM2-R1 and DVR should be preferred over SUVR for the assessment of regional CBF and myelin content, respectively. TRIAL REGISTRATION European Union Clinical Trials Register EUDRACT; EudraCT Number: 2008-004174-40; Date: 2009-03-06; https//www.clinicaltrialsregister.eu ; number 2008-004174-40.
Collapse
Affiliation(s)
- Arya Yazdan-Panah
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, F-75013, Inserm, France
| | - Benedetta Bodini
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -, ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, F-75013, France
| | - Théodore Soulier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -, ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, F-75013, France
| | - Mattia Veronese
- Department of Information Engineering (DEI), University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Michel Bottlaender
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Matteo Tonietto
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -, ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, F-75013, France
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
- Roche Pharma Research and Early Development, Biomarkers & Translational Technologies, Roche Innovation Center Basel, Basel, Switzerland
| | - Bruno Stankoff
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -, ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, F-75013, France.
| |
Collapse
|
8
|
Fursova AZ, Zubkova MY, Vasilyeva MA, Karlash YA, Derbeneva AS. [Optical coherence tomography angiography in the diagnosis of multiple sclerosis]. Vestn Oftalmol 2024; 140:63-70. [PMID: 38742500 DOI: 10.17116/oftalma202414002163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
PURPOSE This study analyzes the main changes in retinal microcirculation in patients with multiple sclerosis (MS) and their relationship with the type of disease course. MATERIAL AND METHODS 159 patients (318 eyes) were examined. The groups were formed according to the type of course and duration of MS: group 1 - 37 patients (74 eyes; 23.27%) with relapsing-remitting MS (RRMS) less than 1 year; group 2 - 47 patients (94 eyes; 29.56%) with RRMS from 1 year to 10 years; group 3 - 44 patients (86 eyes; 27.05%) with RRMS >10 years; group 4 - 32 patients (64 eyes; 20.12%) with secondary progressive MS (SPMS). Subgroups A and B were allocated within each group depending on the absence or presence of optic neuritis (ON). Patients underwent standard ophthalmological examination, including optical coherence tomography angiography (OCTA). RESULTS A decrease in the vessel density (wiVD) and perfusion density (wiPD) in the macular and peripapillary regions was revealed, progressing with the duration of the disease and with its transition to the progressive type. The minimum values were observed in patients with SPMS (group 4), with the most pronounced in the subgroup with ON (wiVD = 16.06±3.65 mm/mm2, wiPD = 39.38±9.46%, ppwiPD = 44.06±3.09%, ppwiF = 0.41±0.05). CONCLUSION OCTA provides the ability to detect subclinical vascular changes and can be considered a comprehensive, reliable method for early diagnosis and monitoring of MS progression.
Collapse
Affiliation(s)
- A Zh Fursova
- Novosibirsk State Regional Hospital, Novosibirsk, Russia
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - M Yu Zubkova
- Novosibirsk State Regional Hospital, Novosibirsk, Russia
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - M A Vasilyeva
- Novosibirsk State Regional Hospital, Novosibirsk, Russia
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - Yu A Karlash
- Novosibirsk State Regional Hospital, Novosibirsk, Russia
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - A S Derbeneva
- Novosibirsk State Regional Hospital, Novosibirsk, Russia
- Novosibirsk State Medical University, Novosibirsk, Russia
| |
Collapse
|
9
|
Patitucci E, Lipp I, Stickland RC, Wise RG, Tomassini V. Changes in brain perfusion with training-related visuomotor improvement in MS. Front Mol Neurosci 2023; 16:1270393. [PMID: 38025268 PMCID: PMC10665528 DOI: 10.3389/fnmol.2023.1270393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. A better understanding of the mechanisms supporting brain plasticity in MS would help to develop targeted interventions to promote recovery. A total of 29 MS patients and 19 healthy volunteers underwent clinical assessment and multi-modal MRI acquisition [fMRI during serial reaction time task (SRT), DWI, T1w structural scans and ASL of resting perfusion] at baseline and after 4-weeks of SRT training. Reduction of functional hyperactivation was observed in MS patients following the training, shown by the stronger reduction of the BOLD response during task execution compared to healthy volunteers. The functional reorganization was accompanied by a positive correlation between improvements in task accuracy and the change in resting perfusion after 4 weeks' training in right angular and supramarginal gyri in MS patients. No longitudinal changes in WM and GM measures and no correlation between task performance improvements and brain structure were observed in MS patients. Our results highlight a potential role for CBF as an early marker of plasticity, in terms of functional (cortical reorganization) and behavioral (performance improvement) changes in MS patients that may help to guide future interventions that exploit preserved plasticity mechanisms.
Collapse
Affiliation(s)
- Eleonora Patitucci
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
| | - Ilona Lipp
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Rachael Cecilia Stickland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
| | - Richard G. Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
| | - Valentina Tomassini
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
10
|
Mascali D, Villani A, Chiarelli AM, Biondetti E, Lipp I, Digiovanni A, Pozzilli V, Caporale AS, Rispoli MG, Ajdinaj P, D'Apolito M, Grasso E, Sensi SL, Murphy K, Tomassini V, Wise RG. Pathophysiology of multiple sclerosis damage and repair: Linking cerebral hypoperfusion to the development of irreversible tissue loss in multiple sclerosis using magnetic resonance imaging. Eur J Neurol 2023; 30:2348-2356. [PMID: 37154298 PMCID: PMC7615142 DOI: 10.1111/ene.15827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/10/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND PURPOSE Reduced cerebral perfusion has been observed in multiple sclerosis (MS) and may contribute to tissue loss both acutely and chronically. Here, we test the hypothesis that hypoperfusion occurs in MS and relates to the presence of irreversible tissue damage. METHODS In 91 patients with relapsing MS and 26 healthy controls (HC), gray matter (GM) cerebral blood flow (CBF) was assessed using pulsed arterial spin labeling. GM volume, T1 hypointense and T2 hyperintense lesion volumes (T1LV and T2LV, respectively), and the proportion of T2-hyperintense lesion volume that appears hypointense on T1-weighted magnetic resonance imaging (T1LV/T2LV) were quantified. GM CBF and GM volume were evaluated globally, as well as regionally, using an atlas-based approach. RESULTS Global GM CBF was lower in patients (56.9 ± 12.3 mL/100 g/min) than in HC (67.7 ± 10.0 mL/100 g/min; p < 0.001), a difference that was widespread across brain regions. Although total GM volume was comparable between groups, significant reductions were observed in a subset of subcortical structures. GM CBF negatively correlated with T1LV (r = -0.43, p = 0.0002) and T1LV/T2LV (r = -0.37, p = 0.0004), but not with T2LV. CONCLUSIONS GM hypoperfusion occurs in MS and is associated with irreversible white matter damage, thus suggesting that cerebral hypoperfusion may actively contribute and possibly precede neurodegeneration by hampering tissue repair abilities in MS.
Collapse
Affiliation(s)
- Daniele Mascali
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical TechnologiesG. d'Annunzio University of Chieti‐PescaraChietiItaly
| | - Alessandro Villani
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical TechnologiesG. d'Annunzio University of Chieti‐PescaraChietiItaly
| | - Antonio M. Chiarelli
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical TechnologiesG. d'Annunzio University of Chieti‐PescaraChietiItaly
| | - Emma Biondetti
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical TechnologiesG. d'Annunzio University of Chieti‐PescaraChietiItaly
| | - Ilona Lipp
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUK
| | - Anna Digiovanni
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- MS Centre, Department of Clinical NeurologySS. Annunziata University HospitalChietiItaly
| | - Valeria Pozzilli
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- MS Centre, Department of Clinical NeurologySS. Annunziata University HospitalChietiItaly
| | - Alessandra S. Caporale
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical TechnologiesG. d'Annunzio University of Chieti‐PescaraChietiItaly
| | - Marianna G. Rispoli
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- MS Centre, Department of Clinical NeurologySS. Annunziata University HospitalChietiItaly
| | - Paola Ajdinaj
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- MS Centre, Department of Clinical NeurologySS. Annunziata University HospitalChietiItaly
| | - Maria D'Apolito
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- MS Centre, Department of Clinical NeurologySS. Annunziata University HospitalChietiItaly
| | - Eleonora Grasso
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- Department of PaediatricsSS. Annunziata University HospitalChietiItaly
| | - Stefano L. Sensi
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical TechnologiesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- Behavioral Neurology and Molecular Neurology Units, Centre for Advanced Studies and TechnologyG. d'Annunzio University of Chieti‐PescaraChietiItaly
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre, School of Physics and AstronomyCardiff UniversityCardiffUK
| | - Valentina Tomassini
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical TechnologiesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUK
- MS Centre, Department of Clinical NeurologySS. Annunziata University HospitalChietiItaly
| | - Richard G. Wise
- Department of Neurosciences, Imaging, and Clinical SciencesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical TechnologiesG. d'Annunzio University of Chieti‐PescaraChietiItaly
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUK
| |
Collapse
|
11
|
Mohammadi S, Gouravani M, Salehi MA, Arevalo JF, Galetta SL, Harandi H, Frohman EM, Frohman TC, Saidha S, Sattarnezhad N, Paul F. Optical coherence tomography angiography measurements in multiple sclerosis: a systematic review and meta-analysis. J Neuroinflammation 2023; 20:85. [PMID: 36973708 PMCID: PMC10041805 DOI: 10.1186/s12974-023-02763-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Recent literature on multiple sclerosis (MS) demonstrates the growing implementation of optical coherence tomography-angiography (OCT-A) to discover potential qualitative and quantitative changes in the retina and optic nerve. In this review, we analyze OCT-A studies in patients with MS and examine its utility as a surrogate or precursor to changes in central nervous system tissue. METHODS PubMed and EMBASE were systematically searched to identify articles that applied OCT-A to evaluate the retinal microvasculature measurements in patients with MS. Quantitative data synthesis was performed on all measurements which were evaluated in at least two unique studies with the same OCT-A devices, software, and study population compared to controls. A fixed-effects or random-effects model was applied for the meta-analysis based on the heterogeneity level. RESULTS The study selection process yielded the inclusion of 18 studies with a total of 1552 evaluated eyes in 673 MS-associated optic neuritis (MSON) eyes, 741 MS without optic neuritis (MSNON eyes), and 138 eyes without specification for the presence of optic neuritis (ON) in addition to 1107 healthy control (HC) eyes. Results indicated that MS cases had significantly decreased whole image superficial capillary plexus (SCP) vessel density when compared to healthy control subjects in the analyses conducted on Optovue and Topcon studies (both P < 0.0001). Likewise, the whole image vessel densities of deep capillary plexus (DCP) and radial peripapillary capillary (RPC) were significantly lower in MS cases compared to HC (all P < 0.05). Regarding optic disc area quadrants, MSON eyes had significantly decreased mean RPC vessel density compared to MSNON eyes in all quadrants except for the inferior (all P < 0.05). Results of the analysis of studies that used prototype Axsun machine revealed that MSON and MSNON eyes both had significantly lower ONH flow index compared to HC (both P < 0.0001). CONCLUSIONS This systematic review and meta-analysis of the studies reporting OCT-A measurements of people with MS confirmed the tendency of MS eyes to exhibit reduced vessel density in the macular and optic disc areas, mainly in SCP, DCP, and RPC vessel densities.
Collapse
Affiliation(s)
- Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Keshavarz Blvd, Tehran, 1417613151 Iran
| | - Mahdi Gouravani
- School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Keshavarz Blvd, Tehran, 1417613151 Iran
| | - Mohammad Amin Salehi
- School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Keshavarz Blvd, Tehran, 1417613151 Iran
| | - J. Fernando Arevalo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Steven L. Galetta
- Department of Neurology, New York University Langone Medical Center, New York, NY USA
| | - Hamid Harandi
- School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Keshavarz Blvd, Tehran, 1417613151 Iran
| | - Elliot M. Frohman
- Laboratory of Neuroimmunology, Stanford University School of Medicine, Stanford, CA USA
| | - Teresa C. Frohman
- Laboratory of Neuroimmunology, Stanford University School of Medicine, Stanford, CA USA
| | - Shiv Saidha
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University, Baltimore, MD USA
| | - Neda Sattarnezhad
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, Stanford Multiple Sclerosis Center, Stanford University, Stanford, USA
| | - Friedemann Paul
- Department of Neurology, Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Tonietto M, Poirion E, Lazzarotto A, Ricigliano V, Papeix C, Bottlaender M, Bodini B, Stankoff B. Periventricular remyelination failure in multiple sclerosis: a substrate for neurodegeneration. Brain 2023; 146:182-194. [PMID: 36097347 DOI: 10.1093/brain/awac334] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023] Open
Abstract
In multiple sclerosis, spontaneous remyelination is generally incomplete and heterogeneous across patients. A high heterogeneity in remyelination may also exist across lesions within the same individual, suggesting the presence of local factors interfering with myelin regeneration. In this study we explored in vivo the regional distribution of myelin repair and investigated its relationship with neurodegeneration. We first took advantage of the myelin binding property of the amyloid radiotracer 11C-PiB to conduct a longitudinal 11C-PiB PET study in an original cohort of 19 participants with a relapsing-remitting form of multiple sclerosis, followed-up over a period of 1-4 months. We then replicated our results on an independent cohort of 40 people with multiple sclerosis followed-up over 1 year with magnetization transfer imaging, an MRI metrics sensitive to myelin content. For each imaging method, voxel-wise maps of myelin content changes were generated according to modality-specific thresholds. We demonstrated a selective failure of remyelination in periventricular white matter lesions of people with multiple sclerosis in both cohorts. In both the original and the replication cohort, we estimated that the probability of demyelinated voxels to remyelinate over the follow-up increased significantly as a function of the distance from ventricular CSF. Enlarged choroid plexus, a recently discovered biomarker linked to neuroinflammation, was found to be associated with the periventricular failure of remyelination in the two cohorts (r = -0.79, P = 0.0018; r = -0.40, P = 0.045, respectively), suggesting a role of the brain-CSF barrier in affecting myelin repair in surrounding tissues. In both cohorts, the failure of remyelination in periventricular white matter lesions was associated with lower thalamic volume (r = 0.86, P < 0.0001; r = 0.33; P = 0.069, respectively), an imaging marker of neurodegeneration. Interestingly, we also showed an association between the periventricular failure of remyelination and regional cortical atrophy that was mediated by the number of cortex-derived tracts passing through periventricular white matter lesions, especially in patients at the relapsing-remitting stage. Our findings demonstrate that lesion proximity to ventricles is associated with a failure of myelin repair and support the hypothesis that a selective periventricular remyelination failure in combination with the large number of tracts connecting periventricular lesions with cortical areas is a key mechanism contributing to cortical damage in multiple sclerosis.
Collapse
Affiliation(s)
- Matteo Tonietto
- Paris Brain Institute, Sorbonne Université, ICM, CNRS, Inserm, Paris, France.,Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| | - Emilie Poirion
- Paris Brain Institute, Sorbonne Université, ICM, CNRS, Inserm, Paris, France
| | - Andrea Lazzarotto
- Paris Brain Institute, Sorbonne Université, ICM, CNRS, Inserm, Paris, France.,Neurology Department, St Antoine Hospital, APHP, Paris, France
| | - Vito Ricigliano
- Paris Brain Institute, Sorbonne Université, ICM, CNRS, Inserm, Paris, France.,Neurology Department, St Antoine Hospital, APHP, Paris, France
| | - Caroline Papeix
- Paris Brain Institute, Sorbonne Université, ICM, CNRS, Inserm, Paris, France.,Neurology Department, Pitié-Salpêtrière Hospital, APHP, Paris, France
| | - Michel Bottlaender
- Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Orsay, France
| | - Benedetta Bodini
- Paris Brain Institute, Sorbonne Université, ICM, CNRS, Inserm, Paris, France.,Neurology Department, St Antoine Hospital, APHP, Paris, France
| | - Bruno Stankoff
- Paris Brain Institute, Sorbonne Université, ICM, CNRS, Inserm, Paris, France.,Neurology Department, St Antoine Hospital, APHP, Paris, France
| |
Collapse
|
13
|
Lincoln JA, Hasan KM, Gabr RE, Wolinsky JS. Characterizing the time course of cerebrovascular reactivity in multiple sclerosis. J Neuroimaging 2022; 32:430-435. [PMID: 35165962 PMCID: PMC9090952 DOI: 10.1111/jon.12979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Changes in cerebral perfusion occur early in relapsing and progressive multiple sclerosis (MS) patients, though whether cerebral blood flow (CBF) can be altered by therapy is unknown. We sought to characterize the time course of change in CBF (cerebral vascular reactivity [CVR]), following intravenous (IV) acetazolamide (ACZ) in whole brain and within various gray and white matter brain regions in MS patients. METHODS We enrolled five relapsing MS patients on injectable therapies. Participants received a 1000 mg IV bolus of ACZ and CBF was measured using pseudocontinuous arterial spin labeling MRI. To quantify differences in time course between patients, we calculated the numerical integration of CVR over time using the trapezoidal rule to estimate area under the curve (AUC(CVR) ). RESULTS A change in whole brain CBF of 30%-65% was seen in all participants at 15 minutes after ACZ challenge. CBF increases >20% above baseline were sustained for 90 minutes within whole-brain, normal-appearing white matter and total T2-hyperintense lesioned tissue. AUC(CVR) values for both gray (cortical and deep gray matter) and white (normal-appearing and T2-lesioned) matter regions were similar between patients. CONCLUSION Our findings show a prolonged time course in vascular reactivity after ACZ stimulus in MS patients with a similar time course for both gray and white matter brain regions, including in previously injured tissue. Our preliminary results suggest that blood flow can be augmented in the established MS lesion suggesting that even previously injured tissue might be responsive to treatment.
Collapse
Affiliation(s)
- John A Lincoln
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Refaat E Gabr
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Jerry S Wolinsky
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| |
Collapse
|
14
|
Quantified hemodynamic parameters of the venous system in multiple sclerosis: A systematic review. Mult Scler Relat Disord 2022; 57:103477. [PMID: 34990911 DOI: 10.1016/j.msard.2021.103477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Multiple Sclerosis (MS) is a complex neurodegenerative condition that is influenced by a combination of genetic and environmental factors. Included in these factors is the venous system, however, the extent to which it influences the etiology of MS has yet to be fully characterised. The aim of this review is to critically summarize the literature available concerning the venous system in MS, primarily concerning specific data on the venous pressure and blood flow in this system. METHODS A systematic review was conducted with the application of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The advanced search functions of both the Scopus and PubMed databases were used to conduct the literature search, resulting in 136 unique articles initially identified. Applying relevant exclusion criteria, 22 of the studies were chosen for this review. RESULTS The selected studies were analysed for venous pressure and blood flow related findings, with 14 studies contributing data on the internal jugular vein (IJV) flow rate, 5 on blood flows of the intracranial venous sinuses, 2 on blood flow pulsatility and 6 supplying information relevant to the venous pressure (3 studies contributed to multiple areas). The general findings of the review included that the IJV flow was not significantly different between MS patients and controls, however, there were variances between stenotic (S) and non-stenotic (NS) MS patients. Due to the limited data in the other two areas defined in this review, further research is required to establish if any variances in MS are present. CONCLUSION It remains unclear if there are significant differences in many flow variables between MS patients and controls considered in this review. It would be advantageous if future work in this area focused on understanding the hemodynamics of this system, primarily concerning how the flow rate, venous pressure and vascular resistance are related, and any impact that these factors have on the etiology of MS.
Collapse
|
15
|
Balıkçı A, Parmak Yener N, Seferoğlu M. Optical Coherence Tomography and Optical Coherence Tomography Angiography Findings in Multiple Sclerosis Patients. Neuroophthalmology 2021; 46:19-33. [DOI: 10.1080/01658107.2021.1963787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ayşe Balıkçı
- Department of Ophthalmology, Bursa Yüksek Ihtisas Education and Research Hospital, Bursa, Turkey
| | - Neslihan Parmak Yener
- Department of Ophthalmology, Bursa Yüksek Ihtisas Education and Research Hospital, Bursa, Turkey
| | - Meral Seferoğlu
- Department of Neurology, Bursa Yüksek Ihtisas Education and Research Hospital, Bursa, Turkey
| |
Collapse
|
16
|
Sisco NJ, Borazanci A, Dortch R, Stokes AM. Investigating the relationship between multi-scale perfusion and white matter microstructural integrity in patients with relapsing-remitting MS. Mult Scler J Exp Transl Clin 2021; 7:20552173211037002. [PMID: 34377529 PMCID: PMC8330486 DOI: 10.1177/20552173211037002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background Multiple sclerosis is characterized by the formation of central nervous system demyelinating lesions with microvasculature inflammation. Objective Evaluate how lesion cerebral perfusion relates to white matter microstructural integrity in patients with RRMS using perfusion MRI and myelin-related T1-weighted to T2-weighted (T1w/T2w) ratios. Methods Forty-eight patients with RRMS were imaged with dynamic susceptibility contrast imaging using SAGE (spin- and gradient-echo) to calculate global and capillary-sized perfusion parameters, including cerebral blood flow (CBF), volume (CBV), and mean transit time (MTT). T1w/T2w ratios were used to indirectly assess white matter microstructural integrity. Results For global perfusion metrics, CBF was reduced 28.4% in lesion regions of interest (ROIs) compared to normal appearing white matter (NAWM), CBV was reduced 25.9% in lesion ROIs compared to NAWM, and MTT increased 12.9%. For capillary perfusion metrics (via spin-echo (SE)), CBF-SE was reduced 35.7% in lesion ROIs compared to NAWM, CBV-SE was reduced 35.2% in lesion ROIs compared to NAWM, and MTT-SE increased 9.1%. Capillary-level CBF was correlated (ρ = 0.34, p = 0.024) with white matter microstructural integrity in lesion ROIs. Conclusion This study demonstrates that lesion perfusion is reduced at both the global and capillary level and capillary-associated hypoperfusion is associated with reduced white matter microstructural integrity in RRMS.
Collapse
Affiliation(s)
- Nicholas J Sisco
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Aimee Borazanci
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Richard Dortch
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ashley M Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
17
|
Hermann I, Golla AK, Martínez-Heras E, Schmidt R, Solana E, Llufriu S, Gass A, Schad LR, Zöllner FG. Lesion probability mapping in MS patients using a regression network on MR fingerprinting. BMC Med Imaging 2021; 21:107. [PMID: 34238246 PMCID: PMC8265034 DOI: 10.1186/s12880-021-00636-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND To develop a regression neural network for the reconstruction of lesion probability maps on Magnetic Resonance Fingerprinting using echo-planar imaging (MRF-EPI) in addition to [Formula: see text], [Formula: see text], NAWM, and GM- probability maps. METHODS We performed MRF-EPI measurements in 42 patients with multiple sclerosis and 6 healthy volunteers along two sites. A U-net was trained to reconstruct the denoised and distortion corrected [Formula: see text] and [Formula: see text] maps, and to additionally generate NAWM-, GM-, and WM lesion probability maps. RESULTS WM lesions were predicted with a dice coefficient of [Formula: see text] and a lesion detection rate of [Formula: see text] for a threshold of 33%. The network jointly enabled accurate [Formula: see text] and [Formula: see text] times with relative deviations of 5.2% and 5.1% and average dice coefficients of [Formula: see text] and [Formula: see text] for NAWM and GM after binarizing with a threshold of 80%. CONCLUSION DL is a promising tool for the prediction of lesion probability maps in a fraction of time. These might be of clinical interest for the WM lesion analysis in MS patients.
Collapse
Affiliation(s)
- Ingo Hermann
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Department of Imaging Physics, Delft University of Technology, Delft, Netherlands.
| | - Alena K Golla
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eloy Martínez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Ralf Schmidt
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Sara Llufriu
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
18
|
Granziera C, Wuerfel J, Barkhof F, Calabrese M, De Stefano N, Enzinger C, Evangelou N, Filippi M, Geurts JJG, Reich DS, Rocca MA, Ropele S, Rovira À, Sati P, Toosy AT, Vrenken H, Gandini Wheeler-Kingshott CAM, Kappos L. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain 2021; 144:1296-1311. [PMID: 33970206 PMCID: PMC8219362 DOI: 10.1093/brain/awab029] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Quantitative MRI provides biophysical measures of the microstructural integrity of the CNS, which can be compared across CNS regions, patients, and centres. In patients with multiple sclerosis, quantitative MRI techniques such as relaxometry, myelin imaging, magnetization transfer, diffusion MRI, quantitative susceptibility mapping, and perfusion MRI, complement conventional MRI techniques by providing insight into disease mechanisms. These include: (i) presence and extent of diffuse damage in CNS tissue outside lesions (normal-appearing tissue); (ii) heterogeneity of damage and repair in focal lesions; and (iii) specific damage to CNS tissue components. This review summarizes recent technical advances in quantitative MRI, existing pathological validation of quantitative MRI techniques, and emerging applications of quantitative MRI to patients with multiple sclerosis in both research and clinical settings. The current level of clinical maturity of each quantitative MRI technique, especially regarding its integration into clinical routine, is discussed. We aim to provide a better understanding of how quantitative MRI may help clinical practice by improving stratification of patients with multiple sclerosis, and assessment of disease progression, and evaluation of treatment response.
Collapse
Affiliation(s)
- Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Center, Basel, Switzerland
- Quantitative Biomedical Imaging Group (qbig), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, multiple sclerosis Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
- UCL Institutes of Healthcare Engineering and Neurology, London, UK
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicola De Stefano
- Neurology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Christian Enzinger
- Department of Neurology and Division of Neuroradiology, Medical University of Graz, Graz, Austria
| | - Nikos Evangelou
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, multiple sclerosis Center Amsterdam, Neuroscience Amsterdam, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefan Ropele
- Neuroimaging Research Unit, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Àlex Rovira
- Section of Neuroradiology (Department of Radiology), Vall d'Hebron University Hospital and Research Institute, Barcelona, Spain
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ahmed T Toosy
- Queen Square multiple sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, multiple sclerosis Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square multiple sclerosis Centre, Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Bergsland N, Dwyer MG, Jakimovski D, Weinstock-Guttman B, Zivadinov R. Diffusion tensor imaging reveals greater microstructure damage in lesional tissue that shrinks into cerebrospinal fluid in multiple sclerosis. J Neuroimaging 2021; 31:995-1002. [PMID: 34081373 DOI: 10.1111/jon.12891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Atrophied T2 lesion volume (LV), reflecting the complete transformation of lesions into cerebrospinal fluid (CSF), has been associated with disease progression in multiple sclerosis (MS). The underlying damage leading to lesion destruction remains poorly understood. The objective of this study was to use diffusion tensor imaging (DTI) to investigate the extent of microstructural tissue damage at baseline in lesions that subsequently transform into CSF. METHODS Ninety-nine MS patients (67 relapsing-remitting MS [RRMS] and 32 progressive PMS [PMS]) were imaged at baseline and after an average of 5.3 ± 0.6 years of follow-up. Assessments included T2 LV and DTI at baseline and atrophied T2 LV over follow-up. Lesioned areas that became atrophied T2 LV were compared to those that did not. Baseline lesional DTI metrics were compared between RRMS versus PMS patients and between patients with disability progression (DP, n = 35) versus non-DP (n = 64), using ANCOVA models. RESULTS Lesion tissue that developed into atrophied T2 LV had significantly different baseline DTI parameters compared to nonatrophied T2-LV tissue (p<0.001), with the largest effect for free-water (d = 2.739). Baseline tissue characteristics of future atrophied T2 LV were not significantly different between groups. However, DP patients developed greater atrophied T2 LV (377 vs. 83 mm3 , p < 0.001). CONCLUSIONS Extensive microstructural damage characterizes lesions replaced by CSF, independently of disease phenotype or future DP. Greater atrophied T2 LV predicts DP.
Collapse
Affiliation(s)
- Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
20
|
Cox LM, Maghzi AH, Liu S, Tankou SK, Dhang FH, Willocq V, Song A, Wasén C, Tauhid S, Chu R, Anderson MC, De Jager PL, Polgar-Turcsanyi M, Healy BC, Glanz BI, Bakshi R, Chitnis T, Weiner HL. Gut Microbiome in Progressive Multiple Sclerosis. Ann Neurol 2021; 89:1195-1211. [PMID: 33876477 DOI: 10.1002/ana.26084] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study was undertaken to investigate the gut microbiome in progressive multiple sclerosis (MS) and how it relates to clinical disease. METHODS We sequenced the microbiota from healthy controls and relapsing-remitting MS (RRMS) and progressive MS patients and correlated the levels of bacteria with clinical features of disease, including Expanded Disability Status Scale (EDSS), quality of life, and brain magnetic resonance imaging lesions/atrophy. We colonized mice with MS-derived Akkermansia and induced experimental autoimmune encephalomyelitis (EAE). RESULTS Microbiota β-diversity differed between MS patients and controls but did not differ between RRMS and progressive MS or differ based on disease-modifying therapies. Disease status had the greatest effect on the microbiome β-diversity, followed by body mass index, race, and sex. In both progressive MS and RRMS, we found increased Clostridium bolteae, Ruthenibacterium lactatiformans, and Akkermansia and decreased Blautia wexlerae, Dorea formicigenerans, and Erysipelotrichaceae CCMM. Unique to progressive MS, we found elevated Enterobacteriaceae and Clostridium g24 FCEY and decreased Blautia and Agathobaculum. Several Clostridium species were associated with higher EDSS and fatigue scores. Contrary to the view that elevated Akkermansia in MS has a detrimental role, we found that Akkermansia was linked to lower disability, suggesting a beneficial role. Consistent with this, we found that Akkermansia isolated from MS patients ameliorated EAE, which was linked to a reduction in RORγt+ and IL-17-producing γδ T cells. INTERPRETATION Whereas some microbiota alterations are shared in relapsing and progressive MS, we identified unique bacteria associated with progressive MS and clinical measures of disease. Furthermore, elevated Akkermansia in MS may be a compensatory beneficial response in the MS microbiome. ANN NEUROL 2021;89:1195-1211.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Amir Hadi Maghzi
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Shirong Liu
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | | | - Fyonn H Dhang
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Valerie Willocq
- Department of Neurology, Harvard Medical School, Harvard University Wyss Institute for Biologically Inspired Engineering, Boston, MA
| | - Anya Song
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Shahamat Tauhid
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Renxin Chu
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Mark C Anderson
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Philip L De Jager
- Department of Neurology, Columbia University Medical Center, New York, NY
| | - Mariann Polgar-Turcsanyi
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Brian C Healy
- Department of Neurology, Biostatistics Center, Massachusetts General Hospital, Brigham and Women's Hospital, Boston, MA
| | - Bonnie I Glanz
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Rohit Bakshi
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
21
|
Haacke EM, Ge Y, Sethi SK, Buch S, Zamboni P. An Overview of Venous Abnormalities Related to the Development of Lesions in Multiple Sclerosis. Front Neurol 2021; 12:561458. [PMID: 33981281 PMCID: PMC8107266 DOI: 10.3389/fneur.2021.561458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
The etiology of multiple sclerosis (MS) is currently understood to be autoimmune. However, there is a long history and growing evidence for disrupted vasculature and flow within the disease pathology. A broad review of the literature related to vascular effects in MS revealed a suggestive role for abnormal flow in the medullary vein system. Evidence for venous involvement in multiple sclerosis dates back to the early pathological work by Charcot and Bourneville, in the mid-nineteenth century. Pioneering work by Adams in the 1980s demonstrated vasculitis within the walls of veins and venules proximal to active MS lesions. And more recently, magnetic resonance imaging (MRI) has been used to show manifestations of the central vein as a precursor to the development of new MS lesions, and high-resolution MRI using Ferumoxytol has been used to reveal the microvasculature that has previously only been demonstrated in cadaver brains. Both approaches may shed new light into the structural changes occurring in MS lesions. The material covered in this review shows that multiple pathophysiological events may occur sequentially, in parallel, or in a vicious circle which include: endothelial damage, venous collagenosis and fibrin deposition, loss of vessel compliance, venous hypertension, perfusion reduction followed by ischemia, medullary vein dilation and local vascular remodeling. We come to the conclusion that a potential source of MS lesions is due to locally disrupted flow which in turn leads to remodeling of the medullary veins followed by endothelial damage with the subsequent escape of glial cells, cytokines, etc. These ultimately lead to the cascade of inflammatory and demyelinating events which ensue in the course of the disease.
Collapse
Affiliation(s)
- E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean K. Sethi
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Paolo Zamboni
- Vascular Diseases Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Pardini M, Brown JWL, Magliozzi R, Reynolds R, Chard DT. Surface-in pathology in multiple sclerosis: a new view on pathogenesis? Brain 2021; 144:1646-1654. [PMID: 33876200 DOI: 10.1093/brain/awab025] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/03/2020] [Accepted: 11/17/2020] [Indexed: 11/12/2022] Open
Abstract
While multiple sclerosis can affect any part of the CNS, it does not do so evenly. In white matter it has long been recognized that lesions tend to occur around the ventricles, and grey matter lesions mainly accrue in the outermost (subpial) cortex. In cortical grey matter, neuronal loss is greater in the outermost layers. This cortical gradient has been replicated in vivo with magnetization transfer ratio and similar gradients in grey and white matter magnetization transfer ratio are seen around the ventricles, with the most severe abnormalities abutting the ventricular surface. The cause of these gradients remains uncertain, though soluble factors released from meningeal inflammation into the CSF has the most supporting evidence. In this Update, we review this 'surface-in' spatial distribution of multiple sclerosis abnormalities and consider the implications for understanding pathogenic mechanisms and treatments designed to slow or stop them.
Collapse
Affiliation(s)
- Matteo Pardini
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London (UCL) Institute of Neurology, London, UK.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, and IRCCS AOU San Martino-IST, Genoa, Italy
| | - J William L Brown
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London (UCL) Institute of Neurology, London, UK.,Department of Clinical Neurosciences, University of Cambridge, Box 165, Cambridge Biomedical Campus, Cambridge, UK.,Clinical Outcomes Research Unit (CORe), University of Melbourne, Melbourne, Australia
| | - Roberta Magliozzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy.,Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.,Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Declan T Chard
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London (UCL) Institute of Neurology, London, UK.,National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, UK
| |
Collapse
|
23
|
Halder SK, Milner R. Hypoxia in multiple sclerosis; is it the chicken or the egg? Brain 2021; 144:402-410. [PMID: 33351069 PMCID: PMC8453297 DOI: 10.1093/brain/awaa427] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/03/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Over the past 50 years, intense research effort has taught us a great deal about multiple sclerosis. We know that it is the most common neurological disease affecting the young-middle aged, that it affects two to three times more females than males, and that it is characterized as an autoimmune disease, in which autoreactive T lymphocytes cross the blood-brain barrier, resulting in demyelinating lesions. But despite all the knowledge gained, a key question still remains; what is the initial event that triggers the inflammatory demyelinating process? While most research effort to date has focused on the immune system, more recently, another potential candidate has emerged: hypoxia. Specifically, a growing number of studies have described the presence of hypoxia (both 'virtual' and real) at an early stage of demyelinating lesions, and several groups, including our own, have begun to investigate how manipulation of inspired oxygen levels impacts disease progression. In this review we summarize the findings of these hypoxia studies, and in particular, address three main questions: (i) is the hypoxia found in demyelinating lesions 'virtual' or real; (ii) what causes this hypoxia; and (iii) how does manipulation of inspired oxygen impact disease progression?
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA 92121, USA
| |
Collapse
|
24
|
Ouellette R, Treaba CA, Granberg T, Herranz E, Barletta V, Mehndiratta A, De Leener B, Tauhid S, Yousuf F, Dupont SM, Klawiter EC, Sloane JA, Bakshi R, Cohen-Adad J, Mainero C. 7 T imaging reveals a gradient in spinal cord lesion distribution in multiple sclerosis. Brain 2021; 143:2973-2987. [PMID: 32935834 DOI: 10.1093/brain/awaa249] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
We used 7 T MRI to: (i) characterize the grey and white matter pathology in the cervical spinal cord of patients with early relapsing-remitting and secondary progressive multiple sclerosis; (ii) assess the spinal cord lesion spatial distribution and the hypothesis of an outside-in pathological process possibly driven by CSF-mediated immune cytotoxic factors; and (iii) evaluate the association of spinal cord pathology with brain burden and its contribution to neurological disability. We prospectively recruited 20 relapsing-remitting, 15 secondary progressive multiple sclerosis participants and 11 age-matched healthy control subjects to undergo 7 T imaging of the cervical spinal cord and brain as well as conventional 3 T brain acquisition. Cervical spinal cord imaging at 7 T was used to segment grey and white matter, including lesions therein. Brain imaging at 7 T was used to segment cortical and white matter lesions and 3 T imaging for cortical thickness estimation. Cervical spinal cord lesions were mapped voxel-wise as a function of distance from the inner central canal CSF pool to the outer subpial surface. Similarly, brain white matter lesions were mapped voxel-wise as a function of distance from the ventricular system. Subjects with relapsing-remitting multiple sclerosis showed a greater predominance of spinal cord lesions nearer the outer subpial surface compared to secondary progressive cases. Inversely, secondary progressive participants presented with more centrally located lesions. Within the brain, there was a strong gradient of lesion formation nearest the ventricular system that was most evident in participants with secondary progressive multiple sclerosis. Lesion fractions within the spinal cord grey and white matter were related to the lesion fraction in cerebral white matter. Cortical thinning was the primary determinant of the Expanded Disability Status Scale, white matter lesion fractions in the spinal cord and brain of the 9-Hole Peg Test and cortical thickness and spinal cord grey matter cross-sectional area of the Timed 25-Foot Walk. Spinal cord lesions were localized nearest the subpial surfaces for those with relapsing-remitting and the central canal CSF surface in progressive disease, possibly implying CSF-mediated pathogenic mechanisms in lesion development that may differ between multiple sclerosis subtypes. These findings show that spinal cord lesions involve both grey and white matter from the early multiple sclerosis stages and occur mostly independent from brain pathology. Despite the prevalence of cervical spinal cord lesions and atrophy, brain pathology seems more strongly related to physical disability as measured by the Expanded Disability Status Scale.
Collapse
Affiliation(s)
- Russell Ouellette
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Tobias Granberg
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden.,Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Valeria Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Benjamin De Leener
- Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Shahamat Tauhid
- Harvard Medical School, Boston, MA, USA.,Brigham and Women's Hospital, Boston, MA, USA
| | - Fawad Yousuf
- Harvard Medical School, Boston, MA, USA.,Brigham and Women's Hospital, Boston, MA, USA
| | - Sarah M Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Eric C Klawiter
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jacob A Sloane
- Harvard Medical School, Boston, MA, USA.,Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rohit Bakshi
- Harvard Medical School, Boston, MA, USA.,Brigham and Women's Hospital, Boston, MA, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Kerbrat A, Gros C, Badji A, Bannier E, Galassi F, Combès B, Chouteau R, Labauge P, Ayrignac X, Carra-Dalliere C, Maranzano J, Granberg T, Ouellette R, Stawiarz L, Hillert J, Talbott J, Tachibana Y, Hori M, Kamiya K, Chougar L, Lefeuvre J, Reich DS, Nair G, Valsasina P, Rocca MA, Filippi M, Chu R, Bakshi R, Callot V, Pelletier J, Audoin B, Maarouf A, Collongues N, De Seze J, Edan G, Cohen-Adad J. Multiple sclerosis lesions in motor tracts from brain to cervical cord: spatial distribution and correlation with disability. Brain 2020; 143:2089-2105. [PMID: 32572488 DOI: 10.1093/brain/awaa162] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 11/12/2022] Open
Abstract
Despite important efforts to solve the clinico-radiological paradox, correlation between lesion load and physical disability in patients with multiple sclerosis remains modest. One hypothesis could be that lesion location in corticospinal tracts plays a key role in explaining motor impairment. In this study, we describe the distribution of lesions along the corticospinal tracts from the cortex to the cervical spinal cord in patients with various disease phenotypes and disability status. We also assess the link between lesion load and location within corticospinal tracts, and disability at baseline and 2-year follow-up. We retrospectively included 290 patients (22 clinically isolated syndrome, 198 relapsing remitting, 39 secondary progressive, 31 primary progressive multiple sclerosis) from eight sites. Lesions were segmented on both brain (T2-FLAIR or T2-weighted) and cervical (axial T2- or T2*-weighted) MRI scans. Data were processed using an automated and publicly available pipeline. Brain, brainstem and spinal cord portions of the corticospinal tracts were identified using probabilistic atlases to measure the lesion volume fraction. Lesion frequency maps were produced for each phenotype and disability scores assessed with Expanded Disability Status Scale score and pyramidal functional system score. Results show that lesions were not homogeneously distributed along the corticospinal tracts, with the highest lesion frequency in the corona radiata and between C2 and C4 vertebral levels. The lesion volume fraction in the corticospinal tracts was higher in secondary and primary progressive patients (mean = 3.6 ± 2.7% and 2.9 ± 2.4%), compared to relapsing-remitting patients (1.6 ± 2.1%, both P < 0.0001). Voxel-wise analyses confirmed that lesion frequency was higher in progressive compared to relapsing-remitting patients, with significant bilateral clusters in the spinal cord corticospinal tracts (P < 0.01). The baseline Expanded Disability Status Scale score was associated with lesion volume fraction within the brain (r = 0.31, P < 0.0001), brainstem (r = 0.45, P < 0.0001) and spinal cord (r = 0.57, P < 0.0001) corticospinal tracts. The spinal cord corticospinal tracts lesion volume fraction remained the strongest factor in the multiple linear regression model, independently from cord atrophy. Baseline spinal cord corticospinal tracts lesion volume fraction was also associated with disability progression at 2-year follow-up (P = 0.003). Our results suggest a cumulative effect of lesions within the corticospinal tracts along the brain, brainstem and spinal cord portions to explain physical disability in multiple sclerosis patients, with a predominant impact of intramedullary lesions.
Collapse
Affiliation(s)
- Anne Kerbrat
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada.,CHU Rennes, Neurology department, Empenn U 1128 Inserm, CIC1414 Inserm, Rennes, France
| | - Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
| | - Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Elise Bannier
- CHU Rennes, Radiology department, Rennes, France.,Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1128, Rennes, France
| | - Francesca Galassi
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1128, Rennes, France
| | - Benoit Combès
- Univ Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn U1128, Rennes, France
| | - Raphaël Chouteau
- CHU Rennes, Neurology department, Empenn U 1128 Inserm, CIC1414 Inserm, Rennes, France
| | - Pierre Labauge
- MS Unit, Department of Neurology, CHU Montpellier, Montpellier, France
| | - Xavier Ayrignac
- MS Unit, Department of Neurology, CHU Montpellier, Montpellier, France
| | | | - Josefina Maranzano
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada.,University of Quebec in Trois-Rivieres, Quebec, Canada
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Leszek Stawiarz
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jason Talbott
- Department of Radiology and Biomedical Imaging, Zuckerberg San Francisco General Hospital, University of California, San Francisco, CA, USA
| | | | - Masaaki Hori
- Toho University Omori Medical Center, Tokyo, Japan
| | | | - Lydia Chougar
- Department of Neuroradiology, La Pitié Salpêtrière Hospital, Paris, France
| | - Jennifer Lefeuvre
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Maryland, USA
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Renxin Chu
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Rohit Bakshi
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Virginie Callot
- AP-HM, Pôle d'imagerie médicale, Hôpital de la Timone, CEMEREM, Marseille, France.,Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Jean Pelletier
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Bertrand Audoin
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Adil Maarouf
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,AP-HM, CHU Timone, Pôle de Neurosciences Cliniques, Department of Neurology, Marseille, France
| | - Nicolas Collongues
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 67 000 Strasbourg, France.,Département de Neurologie, Centre Hospitalier Universitaire de Strasbourg, 67200 Strasbourg, France.,Centre d'investigation Clinique, INSERM U1434, Centre Hospitalier Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Jérôme De Seze
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 67 000 Strasbourg, France.,Département de Neurologie, Centre Hospitalier Universitaire de Strasbourg, 67200 Strasbourg, France.,Centre d'investigation Clinique, INSERM U1434, Centre Hospitalier Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Gilles Edan
- CHU Rennes, Neurology department, Empenn U 1128 Inserm, CIC1414 Inserm, Rennes, France
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada.,Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Canada
| |
Collapse
|
26
|
Buch S, Subramanian K, Jella PK, Chen Y, Wu Z, Shah K, Bernitsas E, Ge Y, Haacke EM. Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO. Neuroimage Clin 2020; 29:102525. [PMID: 33338965 PMCID: PMC7750444 DOI: 10.1016/j.nicl.2020.102525] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Multiple Sclerosis (MS) is a progressive, inflammatory, neuro-degenerative disease of the central nervous system (CNS) characterized by a wide range of histopathological features including vascular abnormalities. In this study, an ultra-small superparamagnetic iron oxide (USPIO) contrast agent, Ferumoxytol, was administered to induce an increase in susceptibility for both arteries and veins to help better reveal the cerebral microvasculature. The purpose of this work was to examine the presence of vascular abnormalities and vascular density in MS lesions using high-resolution susceptibility weighted imaging (SWI). METHODS Six subjects with relapsing remitting MS (RRMS, age = 47.3 ± 11.8 years with 3 females and 3 males) and fourteen age-matched healthy controls were scanned at 3 T with SWI acquired before and after the infusion of Ferumoxytol. Composite data was generated by registering the FLAIR data to the high resolution SWI data in order to highlight the vascular information in MS lesions. Both the central vein sign (CVS) and, a new measure, the multiple vessel sign (MVS) were identified, along with any vascular abnormalities, in the lesions on pre- and post-contrast SWI-FLAIR fusion data. The small vessel density within the periventricular normal-appearing white matter (NAWM) and the periventricular lesions were compared for all subjects. RESULTS Averaged across two independent raters, a total of 530 lesions were identified across all patients. The total number of lesions with vascularity on pre- and post-contrast data were 287 and 488, respectively. The lesions with abnormal vascular behavior were broken up into following categories: small lesions appearing only at the vessel boundary; dilated vessels within the lesions; and developmental venous angiomas. These vessel abnormalities observed within lesions increased from 55 on pre-contrast data to 153 on post-contrast data. Finally, across all the patients, the periventricular lesional vessel density was significantly higher (p < 0.05) than that of the periventricular NAWM. CONCLUSIONS By inducing a super-paramagnetic susceptibility in the blood using Ferumoxytol, the vascular abnormalities in the RRMS patients were revealed and small vessel densities were obtained. This approach has the potential to monitor the venous vasculature present in MS lesions, catalogue their characteristics and compare the vascular structures spatially to the presence of lesions. These enhanced vascular features may provide new insight into the pathophysiology of MS.
Collapse
Affiliation(s)
- Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | | | - Pavan K Jella
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Zhen Wu
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Kamran Shah
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | | | - Yulin Ge
- Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA; Department of Neurology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
27
|
Karaküçük Y, Gümüş H, Eker S. Evaluation of the effect of fingolimod (FTY720) on macular perfusion by swept-source optical coherence tomography angiography in patients with multiple sclerosis. Cutan Ocul Toxicol 2020; 39:281-286. [PMID: 32657164 DOI: 10.1080/15569527.2020.1790591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/27/2020] [Indexed: 12/17/2022]
Abstract
AIM To determine changes in retinal microcirculation, caused by fingolimod (FTY720) use, via swept-source optical coherence tomography angiography (SS-OCTA) in relapsing-remitting multiple sclerosis (RR-MS) patients. MATERIALS AND METHODS 80 patients with RR-MS, who were using fingolimod, and 50 healthy control subjects were included in the study. Group 1 consisted of 40 eyes from 40 RR-MS patients, who had been using fingolimod for less than six months, and Group 2 consisted of 40 eyes from 40 RR-MS patients, who had been using fingolimod for longer than six months. All participants underwent SS-OCTA via DRI OCT Triton (Topcon, Tokyo, Japan), analysing their central macular thickness (CMT) (µm), subfoveal choroidal thickness (SFCT) (µm), superficial (VDs) (%) and deep vascular plexuses (VDd) (%), choriocapillaris (VDcc) (%), and superficial and deep foveal avascular zones (FAZs, FAZd, respectively) (%) in mean values. RESULTS The mean follow-up times for patients in Groups 1 and 2 were 2.9 ± 1.5 months and 22.5 ± 11.3 months, respectively. The FAZs value in Group 2 was found to be significantly higher than that in both Group 1 and the control group (p = 0.034, p = 0.042, respectively). The VDs central value in Group 2 did not differ significantly from that in Group 1 or the control group (p > 0.05), while the VDs central value was higher in Group 1 than in the control group (p = 0.008). In Group 1, the VDd central value was significantly higher than in Group 2 and the control group (p = 0.047; p = 0.020, respectively). The CMT measurement for Group 2 was significantly lower than in Group 1 and the control group (p = 0.008, p = 0.003, respectively). CONCLUSION Fingolimod use seems to remarkably increase VDs and VDd measurements in the early period of administration and decrease CMT over a longer period of administration in patients with RR-MS.
Collapse
Affiliation(s)
- Yalçın Karaküçük
- Faculty of Medicine, Department of Ophthalmology, Selcuk University, Konya, Turkey
| | - Haluk Gümüş
- Faculty of Medicine, Department of Neurology, Selcuk University, Konya, Turkey
| | - Serhat Eker
- Faculty of Medicine, Department of Ophthalmology, Selcuk University, Konya, Turkey
| |
Collapse
|
28
|
Jakimovski D, Bergsland N, Dwyer MG, Traversone J, Hagemeier J, Fuchs TA, Ramasamy DP, Weinstock-Guttman B, Benedict RHB, Zivadinov R. Cortical and Deep Gray Matter Perfusion Associations With Physical and Cognitive Performance in Multiple Sclerosis Patients. Front Neurol 2020; 11:700. [PMID: 32765407 PMCID: PMC7380109 DOI: 10.3389/fneur.2020.00700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Reports suggest presence of cerebral hypoperfusion in multiple sclerosis (MS). Currently there are no studies that examine if the cerebral MS perfusion is affected by presence of cardiovascular comorbidities. Objective: To investigate associations between cerebral perfusion and disease outcomes in MS patients with and without comorbid cardiovascular diseases (CVD). Materials: One hundred three MS patients (75.7% female) with average age of 54.4 years and 21.1 years of disease duration underwent 3T MRI dynamic susceptibility contrast (DSC) imaging and were tested with Expanded Disability Status Scale, Multiple Sclerosis Severity Score (MSSS), Timed 25-Foot Walk (T25FW), 9-Hole Peg Test (9HPT) and Symbol Digit Modalities Test (SDMT). Structural and perfusion-based normalized measures of cerebral blood flow (nCBF), cerebral blood volume (nCBV) and mean transit time (MTT) of global, tissue-specific and deep gray matter (DGM) areas were derived. CBV and CBF were normalized by the normal-appearing white matter counterpart. Results: In linear step-wise regression analysis, age- and sex-adjusted, MSSS (R 2 = 0.186) was associated with whole brain volume (WBV) (β = -0.244, p = 0.046) and gray matter (GM) nCBF (β = -0.22, p = 0.035). T25FW (R 2 = 0.278) was associated with WBV (β = -0.289, p = 0.012) and hippocampus nCBV (β = -0.225, p = 0.03). 9HPT (R 2 = 0.401) was associated with WBV (β = 0.195, p = 0.049) and thalamus MTT (β = -0.198, p=0.032). After adjustment for years of education, SDMT (R 2 = 0.412) was explained by T2-lesion volume (β = -0.305, p = 0.001), and GM nCBV (β = 0.236, p = 0.013). No differences in MTT, nCBF nor nCBV measures between patients with (n = 42) and without CVD (n = 61) were found. Perfusion-measures were also not able to distinguish CVD status in a logistic regression model. Conclusion: Decreased GM and deep GM perfusion is associated with poorer MS outcomes, but not with presence of CVD.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.,IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - John Traversone
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jesper Hagemeier
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Tom A Fuchs
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.,Department of Neurology, Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Deepa P Ramasamy
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Ralph H B Benedict
- Department of Neurology, Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
29
|
Pandya S, Kaunzner UW, Hurtado Rúa SM, Nealon N, Perumal J, Vartanian T, Nguyen TD, Gauthier SA. Impact of Lesion Location on Longitudinal Myelin Water Fraction Change in Chronic Multiple Sclerosis Lesions. J Neuroimaging 2020; 30:537-543. [PMID: 32579281 DOI: 10.1111/jon.12716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/02/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE To examine the impact of lesion location on longitudinal myelin water fraction (MWF) changes in chronic multiple sclerosis (MS) lesions. Relative hypoxia, due to vascular watershed regions of the cerebrum, has been implicated in lesion development but impact on ongoing demyelination is unknown. METHODS Forty-eight patients with relapsing-remitting and secondary progressive MS had two MWF scans with fast acquisition, spiral trajectory, and T2prep (FAST-T2) sequence, at an interval of 2.0 (±.3) years. Lesion location was identified based upon cerebral lobe and relation to the ventricles. Change in MWF was assessed using a mixed effects model, controlling for lesion location and patient covariates. RESULTS Average age was 42.3 (±12) years, mean disease duration was 9.7 (±9.1) years, and median Expanded Disability Status Score (EDSS) was 2.5 (±2.3). The majority of 512 chronic lesions was located in the frontal and parietal lobes (75.6%) and more often periventricular (44.7%). All occipital lesions were periventricular. The average lesion MWF decreased from baseline (.07 ± .03) to 2 years (.06 ±.03) P < .01. Lesions within the occipital lobe showed a significant reduction in MWF as compared to other lobes. CONCLUSIONS Chronic lesions in the occipital lobe showed the greatest reduction in MWF. Neuroanatomical localization of lesions to the occipital horns of the lateral ventricles, a watershed region, may contribute to ongoing demyelination in this lesion type.
Collapse
Affiliation(s)
- Sneha Pandya
- Department of Radiology, Weil Cornell Medicine, New York City, NY
| | - Ulrike W Kaunzner
- Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY
| | - Sandra M Hurtado Rúa
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH
| | - Nancy Nealon
- Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY
| | - Jai Perumal
- Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY
| | - Timothy Vartanian
- Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY
| | - Thanh D Nguyen
- Department of Radiology, Weil Cornell Medicine, New York City, NY
| | - Susan A Gauthier
- Department of Radiology, Weil Cornell Medicine, New York City, NY.,Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY
| |
Collapse
|
30
|
Gaetano L, Magnusson B, Kindalova P, Tomic D, Silva D, Altermatt A, Magon S, Müller-Lenke N, Radue EW, Leppert D, Kappos L, Wuerfel J, Häring DA, Sprenger T. White matter lesion location correlates with disability in relapsing multiple sclerosis. Mult Scler J Exp Transl Clin 2020; 6:2055217320906844. [PMID: 32128236 PMCID: PMC7031799 DOI: 10.1177/2055217320906844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Background Lesion location is a prognostic factor of disease progression and disability accrual. Objective To investigate lesion formation in 11 brain regions, assess correlation between lesion location and physical and cognitive disability measures and investigate treatment effects by region. Methods In 2355 relapsing–remitting multiple sclerosis patients from the FREEDOMS and FREEDOMS II studies, we extracted T2-weighted lesion number, volume and density for each brain region; we investigated the (Spearman) correlation in lesion formation between brain regions, studied association between location and disability (at baseline and change over 2 years) using linear/logistic regression and assessed the regional effects of fingolimod versus placebo in negative binomial models. Results At baseline, the majority of lesions were found in the supratentorial brain. New and enlarging lesions over 24 months developed mainly in the frontal and sublobar regions and were substantially correlated to pre-existing lesions at baseline in the supratentorial brain (p = 0.37–0.52), less so infratentorially (p = −0.04–0.23). High sublobar lesion density was consistently and significantly associated with most disability measures at baseline and worsening of physical disability over 24 months. The treatment effect of fingolimod 0.5 mg was consistent across the investigated areas and tracts. Conclusion These results highlight the role of sublobar lesions for the accrual of disability in relapsing–remitting multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Switzerland
| | | | | | | |
Collapse
|
31
|
Ulusoy MO, Horasanlı B, Işık-Ulusoy S. Optical coherence tomography angiography findings of multiple sclerosis with or without optic neuritis. Neurol Res 2020; 42:319-326. [PMID: 32048550 DOI: 10.1080/01616412.2020.1726585] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective: Nowadays, retinal microvascular structures can be investigated using optical coherence tomography angiography (OCTA). We aimed to evaluate the probable vascular changes in the foveal and peripapillary regions of patients with multiple sclerosis (MS).Methods: A total of 20 patients with relapsing remitting multiple sclerosis (RRMS) and 24 healthy controls were recruited in this study. All participants' superficial and deeper retinal and peripapillary layers were evaluated using OCTA after a total ophthalmologic examination.Results: In the superficial plexus, the whole image (49.53 ± 3.9% and 51.83 ± 2.1%, p = 0.009), superior hemisphere (49.44 ± 4.11% and 51.63 ± 2.3%, p = 0.018), inferior hemisphere (49.75 ± 3.9% and 52.03 ± 2.2%, p = 0.012), parafoveal (51.87 ± 3.9% and 53.08 ± 3.46%, p = 0.048) and perifoveal (50.41 ± 3.86% and 52.76 ± 2.1%, p = 0.007) vascular densities were statistically significant lesser in patients with RRMS than in controls. In the optic disc OCTA parameters, the vessel density of the inferior (50.15 ± 6.99% and 53.04 ± 3.63% p = 0.043) and temporal sector (48.09 ± 5.47% and 50.85 ± 5.24%, p = 0.045) were statistically significantly lesser in patients with RRMS than in controls.Conclusion: The reductions in vessel density of the retinal or peripapillary area of patients with RRMS shown in this study should be investigated further to determine whether it is a secondary lesion to optic neuritis (ON) or a primary vasculopathic condition of MS.
Collapse
Affiliation(s)
- Mahmut Oğuz Ulusoy
- Department of Ophthalmology, Başkent University, Faculty of Medicine, Konya Research Hospital, Konya, Turkey
| | - Bahriye Horasanlı
- Department of Neurology, Başkent University, Faculty of Medicine, Konya Research Hospital, Konya, Turkey
| | - Selen Işık-Ulusoy
- Department of Psychiatry, Başkent University, Faculty of Medicine, Konya Research Hospital, Konya, Turkey
| |
Collapse
|
32
|
Lagana MM, Pelizzari L, Baglio F. Relationship between MRI perfusion and clinical severity in multiple sclerosis. Neural Regen Res 2020; 15:646-652. [PMID: 31638086 PMCID: PMC6975150 DOI: 10.4103/1673-5374.266906] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Perfusion alterations within several brain regions have been shown in multiple sclerosis patients using different magnetic resonance imaging (MRI) techniques. Furthermore, MRI-derived brain perfusion metrics have been investigated in association with multiple sclerosis phenotypes, physical disability, and cognitive impairment. However, a review focused on these aspects is still missing. Our aim was to review all the studies investigating the relationship between perfusion MRI and clinical severity during the last fifteen years to understand the clinical relevance of these findings. Perfusion differences among phenotypes were observed both with 1.5T and 3T scanners, with progressive multiple sclerosis presenting with lower perfusion values than relapsing-remitting multiple sclerosis patients. However, only 3T scanners showed a statistically significant distinction. Controversial results about the association between MRI-derived perfusion metrics and physical disability scores were found. However, the majority of the studies showed that lower brain perfusion and longer transit time are associated with more severe physical disability and worse cognitive performances.
Collapse
|
33
|
Zamboni P, Galeotti R, Salvi F, Giaquinta A, Setacci C, Alborino S, Guzzardi G, Sclafani SJ, Maietti E, Veroux P. Effects of Venous Angioplasty on Cerebral Lesions in Multiple Sclerosis: Expanded Analysis of the Brave Dreams Double-Blind, Sham-Controlled Randomized Trial. J Endovasc Ther 2019; 27:1526602819890110. [PMID: 31735108 PMCID: PMC6970429 DOI: 10.1177/1526602819890110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: To evaluate if jugular vein flow restoration in various venographic defects indicative of chronic cerebrospinal venous insufficiency (CCSVI) in multiple sclerosis (MS) patients can have positive effects on cerebral lesions identified using magnetic resonance imaging (MRI). Materials and Methods: The Brave Dreams trial (ClinicalTrials.gov identifier NCT01371760) was a multicenter, randomized, parallel group, double-blind, sham-controlled trial to assess the efficacy of jugular venoplasty in MS patients with CCSVI. Between August 2012 and March 2016, 130 patients (mean age 39.9±10.6 years; 81 women) with relapsing/remitting (n=115) or secondary/progressive (n=15) MS were randomized 2:1 to venography plus angioplasty (n=86) or venography (sham; n=44). Patients and study personnel (except the interventionist) were masked to treatment assignment. MRI data acquired at 6 and 12 months after randomization were compared to the preoperative scan for new and/or >30% enlargement of T2 lesions plus new gadolinium enhancement of pre-existing lesions. The relative risks (RR) with 95% confidence interval (CI) were estimated and compared. In a post hoc assessment, venograms of patients who underwent venous angioplasty were graded as “favorable” (n=38) or “unfavorable” (n=30) for dilation according to the Giaquinta grading system by 4 investigators blinded to outcomes. These subgroups were also compared. Results: Of the 130 patients enrolled, 125 (96%) completed the 12-month MRI follow-up. Analysis showed that the likelihood of being free of new cerebral lesions at 1 year was significantly higher after venoplasty compared to the sham group (RR 1.42, 95% CI 1.00 to 2.01, p=0.032). Patients with favorable venograms had a significantly higher probability of being free of new cerebral lesions than patients with unfavorable venograms (RR 1.82, 95% CI 1.17 to 2.83, p=0.005) or patients in the sham arm (RR 1.66, 95% CI 1.16 to 2.37, p=0.005). Conclusion: Expanded analysis of the Brave Dreams data that included secondary/progressive MS patients in addition to the relapsing/remitting patients analyzed previously showed that venoplasty decreases new cerebral lesions at 1 year. Post hoc analysis confirmed the efficacy of the Giaquinta grading system in selecting patients appropriate for venoplasty who were more likely to be free from accumulation of new cerebral lesions at MRI.
Collapse
Affiliation(s)
- Paolo Zamboni
- HUB Center for Venous and Lymphatics Disorders of the Emilia Romagna Region, S. Anna University Hospital, Ferrara, Italy
| | - Roberto Galeotti
- Unit of Interventional Radiology, S. Anna University Hospital, Ferrara, Italy
| | - Fabrizio Salvi
- IRCCS of the Neurosciences, Bellaria Hospital, Bologna, Italy
| | - Alessia Giaquinta
- Unit of Vascular Surgery and Transplantation, University of Catania, Italy
| | - Carlo Setacci
- Unit of Vascular Surgery, University of Siena, Siena, Italy
| | | | | | | | - Elisa Maietti
- Department of Biomedical and Neuromotor Sciences, University of Bologna Center for Clinical Epidemiology, School of Medicine, University of Ferrara, Italy
| | | | | |
Collapse
|
34
|
Zamboni P, Tesio L, Galimberti S, Massacesi L, Salvi F, D'Alessandro R, Cenni P, Galeotti R, Papini D, D'Amico R, Simi S, Valsecchi MG, Filippini G. Efficacy and Safety of Extracranial Vein Angioplasty in Multiple Sclerosis: A Randomized Clinical Trial. JAMA Neurol 2019; 75:35-43. [PMID: 29150995 PMCID: PMC5833494 DOI: 10.1001/jamaneurol.2017.3825] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Question What is the efficacy of venous percutaneous transluminal angioplasty (PTA) for chronic cerebrospinal venous insufficiency in patients with multiple sclerosis? Findings In the Brave Dreams trial, which included 115 patients with relapsing-remitting multiple sclerosis, venous PTA did not increase the proportion of patients who improved functionally nor did it reduce the mean number of new combined brain lesions on magnetic resonance imaging at 12 months. However, there was a tendency for more patients to become free of new lesions after venous PTA mainly because of a reduction in new lesions appearing 6 to 12 months after randomization. Meaning Venous PTA cannot be recommended for patients with relapsing-remitting multiple sclerosis. Importance Chronic cerebrospinal venous insufficiency (CCSVI) is characterized by restricted venous outflow from the brain and spinal cord. Whether this condition is associated with multiple sclerosis (MS) and whether venous percutaneous transluminal angioplasty (PTA) is beneficial in persons with MS and CCSVI is controversial. Objective To determine the efficacy and safety of venous PTA in patients with MS and CCSVI. Design, Setting, and Participants We analyzed 177 patients with relapsing-remitting MS; 62 were ineligible, including 47 (26.6%) who did not have CCSVI on color Doppler ultrasonography screening. A total of 115 patients were recruited in the study timeframe. All patients underwent a randomized, double-blind, sham-controlled, parallel-group trial in 6 MS centers in Italy. The trial began in August 2012 and concluded in March 2016; data were analyzed from April 2016 to September 2016. The analysis was intention to treat. Interventions Patients were randomly allocated (2:1) to either venous PTA or catheter venography without venous angioplasty (sham). Main Outcomes and Measures Two primary end points were assessed at 12 months: (1) a composite functional measure (ie, walking control, balance, manual dexterity, postvoid residual urine volume, and visual acuity) and (2) a measure of new combined brain lesions on magnetic resonance imaging, including the proportion of lesion-free patients. Combined lesions included T1 gadolinium-enhancing lesions plus new or enlarged T2 lesions. Results Of the included 115 patients with relapsing-remitting MS, 76 were allocated to the PTA group (45 female [59%]; mean [SD] age, 40.0 [10.3] years) and 39 to the sham group (29 female [74%]; mean [SD] age, 37.5 [10.6] years); 112 (97.4%) completed follow-up. No serious adverse events occurred. Flow restoration was achieved in 38 of 71 patients (54%) in the PTA group. The functional composite measure did not differ between the PTA and sham groups (41.7% vs 48.7%; odds ratio, 0.75; 95% CI, 0.34-1.68; P = .49). The mean (SD) number of combined lesions on magnetic resonance imaging at 6 to 12 months were 0.47 (1.19) in the PTA group vs 1.27 (2.65) in the sham group (mean ratio, 0.37; 95% CI, 0.15-0.91; P = .03: adjusted P = .09) and were 1.40 (4.21) in the PTA group vs 1.95 (3.73) in the sham group at 0 to 12 months (mean ratio, 0.72; 95% CI, 0.32-1.63; P = .45; adjusted P = .45). At follow-up after 6 to 12 months, 58 of 70 patients (83%) in the PTA group and 22 of 33 (67%) in the sham group were free of new lesions on magnetic resonance imaging (odds ratio, 2.64; 95% CI, 1.11-6.28; P = .03; adjusted P = .09). At 0 to 12 months, 46 of 73 patients (63.0%) in the PTA group and 18 of 37 (49%) in the sham group were free of new lesions on magnetic resonance imaging (odds ratio, 1.80; 95% CI, 0.81-4.01; P = .15; adjusted P = .30). Conclusion and Relevance Venous PTA has proven to be a safe but largely ineffective technique; the treatment cannot be recommended in patients with MS. Trial Registration clinicaltrials.gov Identifier: NCT01371760
Collapse
Affiliation(s)
- Paolo Zamboni
- Translational Surgery and Vascular Diseases Centre, University of Ferrara Hospital, Ferrara, Italy
| | - Luigi Tesio
- Department of Biomedical Sciences for Health, Chair of Physical and Rehabilitation Medicine, University of Milan, Milan, Italy.,Italian Auxologico Institute, Milan, Italy
| | - Stefania Galimberti
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Luca Massacesi
- Department of Neurosciences Drugs and Child Health, University of Florence, Florence, Italy
| | - Fabrizio Salvi
- Institute of the Neurological Science, Bellaria Hospital, Bologna, Italy
| | | | | | | | - Donato Papini
- Regional Agency for Health and Social Care, Regione Emilia-Romagna, Italy
| | - Roberto D'Amico
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvana Simi
- MS Cochrane Group. Institute of Clinical Physiology, Pisa, Italy
| | - Maria Grazia Valsecchi
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Graziella Filippini
- Scientific Director's Office, Carlo Besta Foundation and Neurological Institute, Milan, Italy
| | | |
Collapse
|
35
|
Jakimovski D, Guan Y, Ramanathan M, Weinstock-Guttman B, Zivadinov R. Lifestyle-based modifiable risk factors in multiple sclerosis: review of experimental and clinical findings. Neurodegener Dis Manag 2019; 9:149-172. [PMID: 31116081 DOI: 10.2217/nmt-2018-0046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a lifelong inflammatory and neurodegenerative disease influenced by multiple lifestyle-based factors. We provide a narrative review of the effects of modifiable risk factors that are identified as being associated with risk to develop MS and/or influencing the future clinical disease outcomes. The emerging data regarding the beneficial effects of diet modifications and exercise are further reviewed. In contrast, obesity and comorbid cardiovascular diseases are associated with increased MS susceptibility and worse disease progression. In addition, the potential influence of smoking, coffee and alcohol consumption on MS onset and disability development are discussed. Successful management of the modifiable risk factors may lead to better long-term outcomes and improve patients' quality of life. MS specialists should participate in educating and facilitating lifestyle-based modifications as part of their neurological consults.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Yi Guan
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Bianca Weinstock-Guttman
- Jacobs MS Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
36
|
Jakimovski D, Topolski M, Genovese AV, Weinstock-Guttman B, Zivadinov R. Vascular aspects of multiple sclerosis: emphasis on perfusion and cardiovascular comorbidities. Expert Rev Neurother 2019; 19:445-458. [PMID: 31003583 DOI: 10.1080/14737175.2019.1610394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. Over the last two decades, more favorable MS long-term outcomes have contributed toward increase in prevalence of the aged MS population. Emergence of age-associated pathology, such as cardiovascular diseases, may interact with the MS pathophysiology and further contribute to disease progression. Areas covered: This review summarizes the cardiovascular involvement in MS pathology, its disease activity, and progression. The cardiovascular health, the presence of various cardiovascular diseases, and their effect on MS cognitive performance are further explored. In similar fashion, the emerging evidence of a higher incidence of extracranial arterial pathology and its association with brain MS pathology are discussed. Finally, the authors outline the methodologies behind specific perfusion magnetic resonance imaging (MRI) and ultrasound Doppler techniques, which allow measurement of disease-specific and age-specific vascular changes in the aging population and MS patients. Expert opinion: Cardiovascular pathology significantly contributes to worse clinical and MRI-derived disease outcomes in MS. Global and regional cerebral hypoperfusion may be associated with poorer physical and cognitive performance. Prevention, improved detection, and treatment of the cardiovascular-based pathology may improve the overall long-term health of MS patients.
Collapse
Affiliation(s)
- Dejan Jakimovski
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,b Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Matthew Topolski
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Antonia Valentina Genovese
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,c Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences , University of Pavia , Pavia , Italy
| | - Bianca Weinstock-Guttman
- b Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, The State University of New York , Buffalo , NY , USA
| | - Robert Zivadinov
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,b Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, The State University of New York , Buffalo , NY , USA.,d Center for Biomedical Imaging at Clinical Translational Science Institute , University at Buffalo, State University of New York , Buffalo , NY , USA
| |
Collapse
|
37
|
Abstract
Purpose of review Neuromyelitis optica spectrum disorders (NMOSD) are severe inflammatory diseases of the central nervous system (CNS), with the presence of aquaporin 4 (AQP4)-specific serum antibodies in the vast majority of patients, and with the presence of myelin oligodendrocyte glycoprotein (MOG)-specific antibodies in approximately 40% of all AQP4-antibody negative NMOSD patients. Despite differences in antigen recognition, the preferred sites of lesions are similar in both groups of patients: They localize to the spinal cord and to the anterior visual pathway including retina, optic nerves, chiasm, and optic tracts, and – to lesser extent – also to certain predilection sites in the brain. Recent findings The involvement of T cells in the formation of NMOSD lesions has been challenged for quite some time. However, several recent findings demonstrate the key role of T cells for lesion formation and localization. Studies on the evolution of lesions in the spinal cord of NMOSD patients revealed a striking similarity of early NMOSD lesions with those observed in corresponding T-cell-induced animal models, both in lesion formation and in lesion localization. Studies on retinal abnormalities in NMOSD patients and corresponding animals revealed the importance of T cells for the very early stages of retinal lesions which eventually culminate in damage to Müller cells and to the retinal nerve fiber layer. Finally, a study on cerebrospinal fluid (CSF) barrier pathology demonstrated that NMOSD immunopathology extends beyond perivascular astrocytic foot processes to include the pia, the ependyma, and the choroid plexus, and that diffusion of antibodies from the CSF could further influence lesion formation in NMOSD patients. Summary The pathological changes observed in AQP4-antibody positive and MOG-antibody positive NMOSD patients are strikingly similar to those found in corresponding animal models, and many mechanisms which determine lesion localization in experimental animals seem to closely reflect the human situation.
Collapse
|
38
|
Jakimovski D, Benedict RH, Marr K, Gandhi S, Bergsland N, Weinstock-Guttman B, Zivadinov R. Lower total cerebral arterial flow contributes to cognitive performance in multiple sclerosis patients. Mult Scler 2019; 26:201-209. [PMID: 30625030 DOI: 10.1177/1352458518819608] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The cognitive performance in multiple sclerosis (MS) patients declines with aging, longer disease duration, and possibly cardiovascular comorbidities. OBJECTIVES We investigated whether lower total cerebral arterial blood flow (CABF) measured at the level of the carotid and vertebral arteries may contribute to worse cognitive performance in 132 MS patients and 47 healthy controls. METHODS Total CABF was evaluated with extracranial Doppler, whereas structural T2-lesion volume (LV) and gray matter volume (GMV) were measured on 3T MRI. The cognitive performance was assessed by Symbol Digit Modalities Test (SDMT), Brief Visuospatial Memory Test-Revised (BVMT-R), and California Verbal Learning Test-Second Edition (CVLT-II). Analysis of covariance, partial correlation, and regression models were used to test the differences between study groups and cognition/CABF correlations. False discovery rate (FDR)-corrected (Benjamini-Hochberg) p-values (i.e. q-values) less than 0.05 were considered significant. RESULTS Association between lower total CABF and the lower cognitive performance was observed only in MS patients (r = 0.318, q < 0.001 and r = 0.244, q = 0.012 for SDMT and BVMT-R, respectively). Lower GMV, higher T2-LV, and CABF were significantly associated with poorer performance on the processing speed measure of SDMT (adjusted R2 = 0.295, t-statistics = 2.538, standardized β = 0.203, and q = 0.020), but not with memory tests. Cognitively impaired MS patients had lower total CABF compared to cognitively preserved (884.5 vs 1020.2 mL/min, q = 0.008). CONCLUSION Cognitively impaired MS patients presented with lower total CABF. Altered CABF may be a result of reduced metabolic rate and might contribute to abnormal cognitive aging in MS.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Ralph Hb Benedict
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Karen Marr
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Sirin Gandhi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA/Center for Biomedical Imaging, Clinical Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
39
|
Zamboni P, Menegatti E, Cittanti C, Sisini F, Gianesini S, Salvi F, Mascoli F. Fixing the jugular flow reduces ventricle volume and improves brain perfusion. J Vasc Surg Venous Lymphat Disord 2018; 4:434-45. [PMID: 27638998 DOI: 10.1016/j.jvsv.2016.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Increased ventricle volume and brain hypoperfusion are linked to neurodegeneration. We hypothesized that in patients with restricted jugular flow, surgical restoration may reduce brain ventricle volume, because it should improve the pressure gradient, hence promoting cerebrospinal fluid reabsorption into the venous system. METHODS The effects of restoring the jugular flow were assessed by means of a validated echocardiography with color Doppler (ECD) protocol of flow quantification, magnetic resonance venography, and single-photon emission computed tomography combined with computed tomography (SPECT-CT). The main outcome measurement was the cerebral ventricle volume blindly assessed at SPECT-CT. Secondary outcomes were brain perfusion in the whole brain and in another 12 cerebral regions. The mean follow-up of the SPECT-CT and ECD parameters was 30 days. Patency rate was subsequently monitored by means of the same ECD protocol every 3 months. RESULTS Among 56 patients (28 male and 28 female; mean age, 44 ± 10 years) with ECD screening positive for chronic cerebrospinal venous insufficiency due to nonmobile jugular leaflets, 15 patients were excluded from the initial cohort because they did not meet the inclusion and exclusion criteria. Of the remaining 41 patients, 27 patients (14 male, 13 female; mean age, 48 ± 7 years) underwent endophlebectomy and autologous vein patch angioplasty. Omohyoid muscle section was performed when appropriate. The control group comprised 14 patients matched by age and gender (8 male, 6 female; mean age, 44 ± 11 years) who were not treated. Comorbidity was multiple sclerosis without significant differences in relapsing remitting (RR) and secondary progressive (SP) clinical course among groups. In the control group, neither ECD nor SPECT-CT showed any significant changes at follow-up. On the contrary, in the group operated on, the collateral flow index went from 70% to 30% (P < .0003) thanks to improved flow through the internal jugular vein. Correspondingly, ventricle volume dramatically decreased in the treated group (from 34 ± 14 cm(3) to 31 ± 13 cm(3); P < .01). The effect was much more evident in the RR subgroup (P = .009), whereas in the SP subgroup, it was not significant. Perfusion was found to be improved in the surgical group with respect to controls, particularly in the occipital and parietal regions of the RR subgroup (P < .0001 and P = .017, respectively), but not in the SP subgroup. The probability of reducing ventricle size is increased by 13-fold (P < .03) when restoration of the jugular flow achieves a postoperative collateral flow index ≤20%. Finally, the 18-month patency rate was 74%. CONCLUSIONS Fixing the flow in the jugulars in patients with chronic cerebrospinal venous insufficiency might significantly reduce brain ventricle volume and improve cerebral perfusion. These changes are more evident in patients in the earlier stages of neurodegenerative disease.
Collapse
Affiliation(s)
- Paolo Zamboni
- Unit of Translational Surgery, Azienda Ospedaliera Universitaria di Ferrara, Cona, Ferrara, Italy.
| | - Erica Menegatti
- Unit of Translational Surgery, Azienda Ospedaliera Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Corrado Cittanti
- Unit of Nuclear Medicine, Azienda Ospedaliera Universitaria di Ferrara, Cona, Ferrara, Italy
| | | | - Sergio Gianesini
- Unit of Translational Surgery, Azienda Ospedaliera Universitaria di Ferrara, Cona, Ferrara, Italy
| | | | - Francesco Mascoli
- Unit of Vascular Surgery, Azienda Ospedaliera Universitaria di Ferrara, Cona, Ferrara, Italy
| |
Collapse
|
40
|
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), which gives rise to focal lesions in the gray and white matter and to diffuse neurodegeneration in the entire brain. In this review, the spectrum of MS lesions and their relation to the inflammatory process is described. Pathology suggests that inflammation drives tissue injury at all stages of the disease. Focal inflammatory infiltrates in the meninges and the perivascular spaces appear to produce soluble factors, which induce demyelination or neurodegeneration either directly or indirectly through microglia activation. The nature of these soluble factors, which are responsible for demyelinating activity in sera and cerebrospinal fluid of the patients, is currently undefined. Demyelination and neurodegeneration is finally accomplished by oxidative injury and mitochondrial damage leading to a state of "virtual hypoxia."
Collapse
Affiliation(s)
- Hans Lassmann
- Center for Brain Research, Medical University of Vienna, A-1090 Wien, Austria
| |
Collapse
|
41
|
Beggs CB, Giaquinta A, Veroux M, De Marco E, Mociskyte D, Veroux P. Mid-term sustained relief from headaches after balloon angioplasty of the internal jugular veins in patients with multiple sclerosis. PLoS One 2018; 13:e0191534. [PMID: 29360844 PMCID: PMC5779669 DOI: 10.1371/journal.pone.0191534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/05/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Multiple sclerosis (MS) patients frequently suffer from headaches and fatigue, and many reports have linked headaches with intracranial and/or extracranial venous obstruction. We therefore designed a study involving MS patients diagnosed with obstructive disease of internal jugular veins (IJVs), with the aim of evaluating the impact of percutaneous transluminal angioplasty (PTA) on headache and fatigue indicators. METHODS 286 MS patients (175 relapsing remitting (RR), 75 secondary progressive (SP), and 36 primary progressive (PP)), diagnosed with obstructive disease of IJVs, underwent PTA of IJVs during the period 2011-2015. This included 113 headache positive patients (82 RR, 22 SP, and 9 PP) and 277 fatigue positive patients (167 RR, 74 SP, and 36 PP). Migraine Disability Assessment (MIDAS), and the Fatigue Severity Scale (FSS) were evaluated: before PTA; 3-months after PTA; and at final follow-up in 2017. Patients were evaluated with Doppler sonography of the IJVs at 1, 6 and 12 months after PTA and yearly thereafter. Non-parametric statistical analysis was performed using a combination of the Friedman test and Spearman correlation analysis. RESULTS With the exception of the PP patients there were significant reductions (all p < 0.001) in the MIDAS and FSS scores in the 3-month following PTA. The improvement in MIDAS score following PTA was maintained throughout the follow-up period in both the RR (p < 0.001; mean of 3.55 years) and SP (p = 0.002; mean of 3.52 years) MS cohorts. With FSS, significant improvement was only observed at 2017 follow-up in the RR patients (p < 0.001; mean of 3.37 years). In the headache-positive patients, post-PTA MIDAS score was significantly negatively correlated with the change in the blood flow score in the left (r = -0.238, p = 0.031) and right (r = -0.250, p = 0.023) IJVs in the RR patients and left IJV (r = -0.727, p = 0.026) in the PP patients. In the fatigue-positive cohort, post-PTA FSS score was also significantly negatively correlated with the change in blood flow in the right IJV in the PP patients (r = -0.423, p = 0.010). In addition, the pre and post-PTA FSS scores were significantly positively correlated in the fatigue-positive RR (r = 0.249, p = 0.001) and SP patients (r = 0.272, p = 0.019). CONCLUSIONS The intervention of PTA was associated with a large and sustained (>3 years) reduction in MIDAS score in both RR and SP MS patients. While a similar initial post-PTA reduction in FSS score was also observed, this was not maintained in the SP and PP patients, although it remained significant at follow-up (>3 years) in the RR MS patients. This suggests that venoplasty might be a useful intervention for treating patients with persistent headaches and selected concomitant obstructive disease of the IJVs.
Collapse
Affiliation(s)
- Clive B. Beggs
- Institute for Sport, Physical Activity and Leisure, School of Sport, Leeds Beckett University, Leeds, United Kingdom
| | - Alessia Giaquinta
- Vascular Surgery and Organ Transplant Unit, Azienda Ospedaliero-Universitaria Policlinico, Catania, Italy
| | - Massimiliano Veroux
- Vascular Surgery and Organ Transplant Unit, Azienda Ospedaliero-Universitaria Policlinico, Catania, Italy
| | - Ester De Marco
- Vascular Surgery and Organ Transplant Unit, Azienda Ospedaliero-Universitaria Policlinico, Catania, Italy
| | - Dovile Mociskyte
- Vascular Surgery and Organ Transplant Unit, Azienda Ospedaliero-Universitaria Policlinico, Catania, Italy
| | - Pierfrancesco Veroux
- Vascular Surgery and Organ Transplant Unit, Azienda Ospedaliero-Universitaria Policlinico, Catania, Italy
| |
Collapse
|
42
|
Hensen HA, Krishnan AV, Eckert DJ. Sleep-Disordered Breathing in People with Multiple Sclerosis: Prevalence, Pathophysiological Mechanisms, and Disease Consequences. Front Neurol 2018; 8:740. [PMID: 29379466 PMCID: PMC5775511 DOI: 10.3389/fneur.2017.00740] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 12/26/2022] Open
Abstract
Sleep problems are common in people with multiple sclerosis (MS). Reported prevalence rates of sleep-disordered breathing (SDB) vary between 0 and 87%. Differences in recruitment procedures and study designs likely contribute to the wide variance in reported prevalence rates of SBD in MS. This can make attempts to compare SDB rates in people with MS to the general population challenging. Little is known about the pathophysiological mechanisms that contribute to SDB in people with MS or whether MS contributes to SDB disease progression. However, compared to the general obstructive sleep apnea (OSA) population, there are clear differences in the clinical phenotypes of SDB in the MS population. For instance they are typically not obese and rates of SDB are often comparable or higher to the general population, despite the high female predominance of MS. Thus, the risk factors and pathophysiological causes of SDB in people with MS are likely to be different compared to people with OSA who do not have MS. There may be important bidirectional relationships between SDB and MS. Demyelinating lesions of MS in the brain stem and spinal cord could influence breathing control and upper airway muscle activity to cause SDB. Intermittent hypoxia caused by apneas during the night can increase oxidative stress and may worsen neurodegeneration in people with MS. In addition, inflammation and changes in cytokine levels may play a key role in the relationship between SDB and MS and their shared consequences. Indeed, fatigue, neurocognitive dysfunction, and depression may worsen considerably if both disorders coexist. Recent studies indicate that treatment of SDB in people with MS with conventional first-line therapy, continuous positive airway pressure therapy, can reduce fatigue and cognitive impairment. However, if the causes of SDB differ in people with MS, so too may the optimal therapy. Thus, many questions remain concerning the relationship between these two disorders and the underlying mechanisms and shared consequences. Improved understanding of these factors has the potential to unlock new therapeutic targets.
Collapse
Affiliation(s)
- Hanna A Hensen
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Danny J Eckert
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
43
|
Lapointe E, Li DKB, Traboulsee AL, Rauscher A. What Have We Learned from Perfusion MRI in Multiple Sclerosis? AJNR Am J Neuroradiol 2018; 39:994-1000. [PMID: 29301779 DOI: 10.3174/ajnr.a5504] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Using MR imaging, perfusion can be assessed either by dynamic susceptibility contrast MR imaging or arterial spin-labeling. Alterations of cerebral perfusion have repeatedly been described in multiple sclerosis compared with healthy controls. Acute lesions exhibit relative hyperperfusion in comparison with normal-appearing white matter, a finding mostly attributed to inflammation in this stage of lesion development. In contrast, normal-appearing white and gray matter of patients with MS has been mostly found to be hypoperfused compared with controls, and correlations with cognitive impairment as well as fatigue in multiple sclerosis have been described. Mitochondrial failure, axonal degeneration, and vascular dysfunction have been hypothesized to underlie the perfusion MR imaging findings. Clinically, perfusion MR imaging could allow earlier detection of the acute focal inflammatory changes underlying relapses and new lesions, and could constitute a marker for cognitive dysfunction in MS. Nevertheless, the clinical relevance and pathogenesis of the brain perfusion changes in MS remain to be clarified.
Collapse
Affiliation(s)
- E Lapointe
- From the Division of Neurology (E.L., A.L.T.) .,Department of Medicine (E.L., A.L.T.)
| | - D K B Li
- Radiology (D.K.B.L.), University of British Columbia, Djavad Mowafaghian Center for Brain Health, Vancouver, British Columbia, Canada
| | - A L Traboulsee
- From the Division of Neurology (E.L., A.L.T.).,Department of Medicine (E.L., A.L.T.)
| | - A Rauscher
- MRI Research Center (A.R.).,Departments of Pediatrics (A.R.)
| |
Collapse
|
44
|
Abstract
Highly effective anti-inflammatory therapies have so far been developed for patients with relapsing/remitting multiple sclerosis, which also show some benefits in the early progressive stage of the disease. However, treatment options for patients, who have entered the progressive phase, are still limited. Disease starts as an inflammatory process, which induces focal demyelinating lesions in the gray and white matter. This stage of the disease dominates in the relapsing phase, extends into the early stages of progressive disease, and can be targeted by current anti-inflammatory treatments. In parallel, inflammation accumulates behind a closed or repaired blood brain barrier, and this process peaks in the late relapsing and early progressive stage and then declines. Some data suggest that this process may be targeted by immune ablation and hematopoietic stem cell transplantation. In the late stage, inflammation may decline to levels seen in age-matched controls, but age and disease burden–related neurodegeneration ensues. Such neurodegeneration affects the damaged brain and spinal cord, in which functional reserve capacity is exhausted, giving rise to further disability progression. Anti-inflammatory treatments are unlikely to be beneficial in this stage of the disease, but neuroprotective and repair-inducing strategies may still be effective.
Collapse
Affiliation(s)
- Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Wien, Austria
| |
Collapse
|
45
|
Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis. Clin Sci (Lond) 2017; 131:2503-2524. [PMID: 29026001 DOI: 10.1042/cs20170981] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/01/2017] [Accepted: 08/15/2017] [Indexed: 12/28/2022]
Abstract
The deep and periventricular white matter is preferentially affected in several neurological disorders, including cerebral small vessel disease (SVD) and multiple sclerosis (MS), suggesting that common pathogenic mechanisms may be involved in this injury. Here we consider the potential pathogenic role of tissue hypoxia in lesion development, arising partly from the vascular anatomy of the affected white matter. Specifically, these regions are supplied by a sparse vasculature fed by long, narrow end arteries/arterioles that are vulnerable to oxygen desaturation if perfusion is reduced (as in SVD, MS and diabetes) or if the surrounding tissue is hypoxic (as in MS, at least). The oxygen crisis is exacerbated by a local preponderance of veins, as these can become highly desaturated 'sinks' for oxygen that deplete it from surrounding tissues. Additional haemodynamic deficiencies, including sluggish flow and impaired vasomotor reactivity and vessel compliance, further exacerbate oxygen insufficiency. The cells most vulnerable to hypoxic damage, including oligodendrocytes, die first, resulting in demyelination. Indeed, in preclinical models, demyelination is prevented if adequate oxygenation is maintained by raising inspired oxygen concentrations. In agreement with this interpretation, there is a predilection of lesions for the anterior and occipital horns of the lateral ventricles, namely regions located at arterial watersheds, or border zones, known to be especially susceptible to hypoperfusion and hypoxia. Finally, mitochondrial dysfunction due to genetic causes, as occurs in leucodystrophies or due to free radical damage, as occurs in MS, will compound any energy insufficiency resulting from hypoxia. Viewing lesion formation from the standpoint of tissue oxygenation not only reveals that lesion distribution is partly predictable, but may also inform new therapeutic strategies.
Collapse
|
46
|
Nandoskar A, Raffel J, Scalfari AS, Friede T, Nicholas RS. Pharmacological Approaches to the Management of Secondary Progressive Multiple Sclerosis. Drugs 2017; 77:885-910. [PMID: 28429241 DOI: 10.1007/s40265-017-0726-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It is well recognised that the majority of the impact of multiple sclerosis (MS), both personal and societal, arises in the progressive phase where disability accumulates inexorably. As such, progressive MS (PMS) has been the target of pharmacological therapies for many years. However, there are no current licensed treatments for PMS. This stands in marked contrast to relapsing remitting MS (RRMS) where trials have resulted in numerous licensed therapies. PMS has proven to be a more difficult challenge compared to RRMS and this review focuses on secondary progressive MS (SPMS), where relapses occur before the onset of gradual, irreversible disability, and not primary progressive MS where disability accumulation occurs without prior relapses. Although there are similarities between the two forms, in both cases pinpointing when PMS starts is difficult in a condition in which disability can vary from day to day. There is also an overlap between the pathology of relapsing and progressive MS and this has contributed to the lack of well-defined outcomes, both surrogates and clinically relevant outcomes in PMS. In this review, we used the search term 'randomised controlled clinical drug trials in secondary progressive MS' in publications since 1988 together with recently completed trials where results were available. We found 34 trials involving 21 different molecules, of which 38% were successful in reaching their primary outcome. In general, the trials were well designed (e.g. double blind) with sample sizes ranging from 35 to 1949 subjects. The majority were parallel group, but there were also multi-arm and multidose trials as well as the more recent use of adaptive designs. The disability outcome most commonly used was the Expanded Disability Status Scale (EDSS) in all phases, but also magnetic resonance imaging (MRI)-measured brain atrophy has been utilised as a surrogate endpoint in phase II studies. The majority of the treatments tested in SPMS over the years were initially successful in RRMS. This has a number of implications in terms of targeting SPMS, but principally implies that the optimal strategy to target SPMS is to utilise the prodrome of relapses to initiate a therapy that will aim to both prevent progression and slow its accumulation. This approach is in agreement with the early targeting of MS but requires treatments that are both effective and safe if it is to be used before disability is a major problem. Recent successes will hopefully result in the first licensed therapy for PMS and enable us to test this approach.
Collapse
Affiliation(s)
- A Nandoskar
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, 160 Du Cane Road, London, W12 0NN, UK
| | - J Raffel
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, 160 Du Cane Road, London, W12 0NN, UK
| | - A S Scalfari
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, 160 Du Cane Road, London, W12 0NN, UK
| | - T Friede
- Department of Medical Statistics, University Medical Center Göttingen, Humboltallee 32, 37073, Göttingen, Germany
| | - R S Nicholas
- Wolfson Neuroscience Laboratories, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, 160 Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
47
|
Geraldes R, Esiri MM, DeLuca GC, Palace J. Age-related small vessel disease: a potential contributor to neurodegeneration in multiple sclerosis. Brain Pathol 2017; 27:707-722. [PMID: 27864848 DOI: 10.1111/bpa.12460] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central nervous system wherein, after an initial phase of transient neurological defects, slow neurological deterioration due to progressive neuronal loss ensues. Age is a major determinant of MS progression onset and disability. Over the past years, several mechanisms have been proposed to explain the key drivers of neurodegeneration and disability accumulation in MS. However, the effect of commonly encountered age-related cerebral vessel disease, namely small vessel disease (SVD), has been largely neglected and constitutes the aim of this review. SVD shares some features with MS, that is, white matter demyelination and brain atrophy, and has been shown to contribute to the neuronal damage seen in vascular cognitive impairment. Several lines of evidence suggest that an interaction between MS and SVD may influence MS-related neurodegeneration. SVD may contribute to hypoperfusion, reduced vascular reactivity and tissue hypoxia, features seen in MS. Venule and endothelium abnormalities have been documented in MS but the role of arterioles and of other neurovascular unit structures, such as the pericyte, has not been explored. Vascular risk factors (VRF) have recently been associated with faster progression in MS, though the mechanisms are unclear since very few studies have addressed the impact of VRF and SVD on MS imaging and pathology outcomes. Therapeutic agents targeting the microvasculature and the neurovascular unit may impact both SVD and MS and may benefit patients with dual pathology.
Collapse
Affiliation(s)
- Ruth Geraldes
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Margaret M Esiri
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
48
|
The pathophysiological role of astrocytic endothelin-1. Prog Neurobiol 2016; 144:88-102. [DOI: 10.1016/j.pneurobio.2016.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/23/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
|
49
|
Hayashida S, Masaki K, Yonekawa T, Suzuki SO, Hiwatashi A, Matsushita T, Watanabe M, Yamasaki R, Suenaga T, Iwaki T, Murai H, Kira JI. Early and extensive spinal white matter involvement in neuromyelitis optica. Brain Pathol 2016; 27:249-265. [PMID: 27082714 DOI: 10.1111/bpa.12386] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/12/2016] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Studies of longitudinally extensive spinal cord lesions (LESCLs) in neuromyelitis optica (NMO) have focused on gray matter, where the relevant antigen, aquaporin-4 (AQP4), is abundant. Because spinal white matter pathology in NMO is not well characterized, we aimed to clarify spinal white matter pathology of LESCLs in NMO. METHODS We analyzed 50 spinal cord lesions from eleven autopsied NMO/NMO spectrum disorder (NMOSD) cases. We also evaluated LESCLs with three or fewer spinal cord attacks by 3-tesla MRI in 15 AQP4 antibody-positive NMO/NMOSD patients and in 15 AQP4 antibody-negative multiple sclerosis (MS) patients. RESULTS Pathological analysis revealed seven cases of AQP4 loss and four predominantly demyelinating cases. Forty-four lesions from AQP4 loss cases involved significantly more frequently posterior columns (PC) and lateral columns (LC) than anterior columns (AC) (59.1%, 63.6%, and 34.1%, respectively). The posterior horn (PH), central portion (CP), and anterior horn (AH) were similarly affected (38.6%, 36.4% and 31.8%, respectively). Isolated perivascular inflammatory lesions with selective loss of astrocyte endfoot proteins, AQP4 and connexin 43, were present only in white matter and were more frequent in PC and LC than in AC (22.7%, 29.5% and 2.3%, Pcorr = 0.020, and Pcorr = 0.004, respectively). MRI indicated LESCLs more frequently affected PC and LC than AC in anti-AQP4 antibody-seropositive NMO/NMOSD (86.7%, 60.0% and 20.0%, Pcorr = 0.005, and Pcorr = 0.043, respectively) and AQP4 antibody-seronegative MS patients (86.7%, 73.3% and 33.3%, Pcorr = 0.063, and Pcorr = 0.043, respectively). PH, CP and AH were involved in 93.3%, 86.7% and 73.3% of seropositive patients, respectively, and in 53.3%, 60.0% and 40.0% of seronegative patients, respectively. CONCLUSIONS NMO frequently and extensively affects spinal white matter in addition to central gray matter, especially in PC and LC, where isolated perivascular lesions with astrocyte endfoot protein loss may emerge. Spinal white matter involvement may also appear in early NMO, similar to cerebral white matter lesions.
Collapse
Affiliation(s)
| | | | | | | | - Akio Hiwatashi
- Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | - Hiroyuki Murai
- Neurological Therapeutics, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
50
|
Lassmann H. Demyelination and neurodegeneration in multiple sclerosis: The role of hypoxia. Ann Neurol 2016; 79:520-1. [PMID: 26967708 DOI: 10.1002/ana.24632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/07/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|