1
|
Rönkä K, Eroukhmanoff F, Kulmuni J, Nouhaud P, Thorogood R. Beyond genes-for-behaviour: The potential for genomics to resolve long-standing questions in avian brood parasitism. Ecol Evol 2024; 14:e70335. [PMID: 39575141 PMCID: PMC11581780 DOI: 10.1002/ece3.70335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 11/24/2024] Open
Abstract
Behavioural ecology by definition of its founding 'Tinbergian framework' is an integrative field, however, it lags behind in incorporating genomic methods. 'Finding the gene/s for a behaviour' is still rarely feasible or cost-effective in the wild but as we show here, genomic data can be used to address broader questions. Here we use avian brood parasitism, a model system in behavioural ecology as a case study to highlight how behavioural ecologists could use the full potential of state-of-the-art genomic tools. Brood parasite-host interactions are one of the most easily observable and amenable natural laboratories of antagonistic coevolution, and as such have intrigued evolutionary biologists for decades. Using worked examples, we demonstrate how genomic data can be used to study the causes and mechanisms of (co)evolutionary adaptation and answer three key questions for the field: (i) Where and when should brood parasitism evolve?, (ii) When and how should hosts defend?, and (iii) Will coevolution persist with ecological change? In doing so, we discuss how behavioural and molecular ecologists can collaborate to integrate Tinbergen's questions and achieve the coherent science that he promoted to solve the mysteries of nature.
Collapse
Affiliation(s)
- Katja Rönkä
- HiLIFE Helsinki Institute of Life SciencesUniversity of HelsinkiHelsinkiFinland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Fabrice Eroukhmanoff
- Centre for Ecological and Evolutionary Synthesis, Department of BiologyUniversity of OsloOsloNorway
| | - Jonna Kulmuni
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Department of Evolution and Population Biology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Pierre Nouhaud
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgroUniv MontpellierMontpellierFrance
| | - Rose Thorogood
- HiLIFE Helsinki Institute of Life SciencesUniversity of HelsinkiHelsinkiFinland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Ruiz-Raya F. Ecophysiology of egg rejection in hosts of avian brood parasites: new insights and perspectives. Curr Zool 2021; 67:631-638. [PMID: 34805540 PMCID: PMC8599070 DOI: 10.1093/cz/zoab042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022] Open
Abstract
Egg rejection is the most effective and widespread defense used by host species to counteract the extreme fitness costs frequently imposed by obligate avian brood parasites. Yet, the proximate mechanisms underlying between- and within-individual variation in host responses remain poorly explored. Emerging evidence suggests that egg rejection is dependent on individual physiological states, and draws attention to the role of hormones as mediators of flexible antiparasitic responses. In this perspective article, I outline recent advances in our understanding of the proximate factors that mediate egg rejection. I also point out some areas where knowledge remains still lacking, especially those related to the development and maintenance of effective cognitive functions, the potential role of oxidative stress, immunological state, and developmental stressors. I propose new hypotheses that stimulate future research on behavioral host responses toward brood parasitism.
Collapse
Affiliation(s)
- Francisco Ruiz-Raya
- Centro de Investigación Mariña, Universidade de Vigo, GEA, Vigo 36310, Spain
| |
Collapse
|
3
|
Craig TP, Itami JK. A geographic mosaic of coevolution between Eurosta solidaginis (Fitch) and its host plant tall goldenrod Solidago altissima (L.). Evolution 2021; 75:3056-3070. [PMID: 34726264 DOI: 10.1111/evo.14391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022]
Abstract
A geographic mosaic of coevolution has produced local reciprocal adaptation in tall goldenrod, Solidago altissima (L.), and the goldenrod ball-gall fly, Eurosta solidaginis (Fitch 1855). The fly is selected to induce gall diameters that minimize mortality from natural enemies, and the plant is selected to limit gall growth that reduces plant fitness. We conducted a double reciprocal transplant experiment where S. altissima and E. solidaginis from three sites were grown in gardens at each site to partition the gall morphology variation into fly genotype, plant genotype, and the environment components. The host plant gall diameter induced by each E. solidaginis population was adapted to inhibit local natural enemies from ovipositing on or consuming enclosed larvae. Reciprocally, increasing the gall size induced by the local fly population increased the resistance of the local plant host population to gall growth. Differences among sites in natural enemies produced a mosaic of hotspots of coevolutionary arms races between flies selecting for greater gall diameter and plants for smaller diameters, and coldspots where there is no selection on plant or fly for a change in gall diameter. In contrast, the geographic variations of gall length and gall shape were not due to coevolutionary interactions.
Collapse
Affiliation(s)
- Timothy P Craig
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - Joanne K Itami
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| |
Collapse
|
4
|
Ruiz-Raya F, Soler M. Signal detection and optimal acceptance thresholds in avian brood parasite-host systems: implications for egg rejection. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190477. [PMID: 32420851 DOI: 10.1098/rstb.2019.0477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Signal detection theory addresses the challenge of successfully identifying informative signals in noisy information contexts, allowing optimal behavioural decisions in diverse ecological contexts. The optimal acceptance threshold hypothesis proposed by Reeve (Reeve 1989 Am. Nat. 133, 407-435. (doi:10.1086/284926)) is an elegant theoretical model to predict the flexibility of acceptance thresholds for conspecific discrimination. This model has provided a robust framework used to explore recognition systems in a broad range of contexts such as animal communication, nest-mate discrimination or anti-parasitic host responses. In this review, we discuss key concepts related to the optimal acceptance threshold hypothesis applied to egg rejection decisions in avian brood parasite-host interactions. We explore those factors determining signal detectability in parasitized nests and how hosts adjust their rejection decisions to both the risk of parasitism and the potential costs associated with egg rejection. In addition, we discuss recent results that challenge some traditional assumptions of the optimal acceptance threshold hypothesis and provide a novel perspective to explore rejection decisions, such as the existence of single-threshold decision rules or acceptance decisions. An integrative view combining current evidence with traditional theory is needed to further advance the comprehension of optimal acceptance thresholds. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
- Francisco Ruiz-Raya
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Manuel Soler
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| |
Collapse
|
5
|
Soler M, Pérez-Contreras T, Soler JJ. Great spotted cuckoos show dynamic patterns of host selection during the breeding season. The importance of laying stage and parasitism status of magpie nests. Behav Ecol 2019. [DOI: 10.1093/beheco/arz208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Avian brood parasites depend entirely on their hosts to raise their nestlings until independence. Thus, parasite females should select suitable host nests for egg laying according to traits that enhance offspring survival. The availability of nests of certain characteristics influencing the survival of parasitic offspring is, however, temporally dynamic and, thus, patterns of host selection should be evaluated considering characteristics of available host nests the day of parasitism. This allows detecting possible seasonal changes and, therefore, a more realistic picture of host selection by brood parasites. In this paper, we adopt such a new approach and consider daily availability of magpie (Pica pica) host nests at different breeding stage that were or were not parasitized by the great spotted cuckoo (Clamator glandarius). Theory predicts that cuckoos should select host nests at the laying stage. Accordingly, we detected that cuckoos preferred to parasitize magpie nests at the laying stage but, mainly, those that already harbored one or two cuckoo eggs, which may seem counterintuitive. We also showed that patterns of host selection by cuckoos varied during the breeding season, which implies that brood parasite–host interaction is dynamic depending on phenology. These patterns are hidden when not considering the temporally dynamic nature of the availability of host nests of characteristics of interest. We discuss the importance of such patterns and considering diary hosts nests availability for detecting them.
Collapse
Affiliation(s)
- Manuel Soler
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Unidad Asociada Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, Granada, Spain
| | - Tomás Pérez-Contreras
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Juan José Soler
- Unidad Asociada Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, Granada, Spain
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain
| |
Collapse
|
6
|
|
7
|
Soler M, de Neve L, Roldán M, Pérez-Contreras T, Soler JJ. Great spotted cuckoo nestlings have no antipredatory effect on magpie or carrion crow host nests in southern Spain. PLoS One 2017; 12:e0173080. [PMID: 28422953 PMCID: PMC5396876 DOI: 10.1371/journal.pone.0173080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 02/12/2017] [Indexed: 11/18/2022] Open
Abstract
Host defences against cuckoo parasitism and cuckoo trickeries to overcome them are a classic example of antagonistic coevolution. Recently it has been reported that this relationship may turn to be mutualistic in the case of the carrion crow (Corvus corone) and its brood parasite, the great spotted cuckoo (Clamator glandarius), given that experimentally and naturally parasitized nests were depredated at a lower rate than non-parasitized nests. This result was interpreted as a consequence of the antipredatory properties of a fetid cloacal secretion produced by cuckoo nestlings, which presumably deters predators from parasitized host nests. This potential defensive mechanism would therefore explain the detected higher fledgling success of parasitized nests during breeding seasons with high predation risk. Here, in a different study population, we explored the expected benefits in terms of reduced nest predation in naturally and experimentally parasitized nests of two different host species, carrion crows and magpies (Pica pica). During the incubation phase non-parasitized nests were depredated more frequently than parasitized nests. However, during the nestling phase, parasitized nests were not depredated at a lower rate than non-parasitized nests, neither in magpie nor in carrion crow nests, and experimental translocation of great spotted cuckoo hatchlings did not reveal causal effects between parasitism state and predation rate of host nests. Therefore, our results do not fit expectations and, thus, do not support the fascinating possibility that great spotted cuckoo nestlings could have an antipredatory effect for host nestlings, at least in our study area. We also discuss different possibilities that may conciliate these with previous results, but also several alternative explanations, including the lack of generalizability of the previously documented mutualistic association.
Collapse
Affiliation(s)
- Manuel Soler
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- * E-mail:
| | - Liesbeth de Neve
- Dep. Biology, Terrestrial Ecology Unit, Ghent University, Gent, Belgium
| | - María Roldán
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Tomás Pérez-Contreras
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain
| |
Collapse
|
8
|
Soler JJ, Soler M. Evolutionary change: facultative virulence by brood parasites and tolerance and plastic resistance by hosts. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
|
10
|
Baglione V, Bolopo D, Canestrari D, Martínez JG, Roldan M, Vila M, Soler M. Spatiotemporal variation of host use in a brood parasite: the role of the environment. Behav Ecol 2016. [DOI: 10.1093/beheco/arw131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Liang W, Møller AP, Stokke BG, Yang C, Kovařík P, Wang H, Yao CT, Ding P, Lu X, Moksnes A, Røskaft E, Grim T. Geographic variation in egg ejection rate by great tits across 2 continents. Behav Ecol 2016. [DOI: 10.1093/beheco/arw061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Laying date, incubation and egg breakage as determinants of bacterial load on bird eggshells: experimental evidence. Oecologia 2015; 179:63-74. [PMID: 25912895 DOI: 10.1007/s00442-015-3322-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
Exploring factors guiding interactions of bacterial communities with animals has become of primary importance for ecologists and evolutionary biologists during the last years because of their likely central role in the evolution of animal life history traits. We explored the association between laying date and eggshell bacterial load (mesophilic bacteria, Enterobacteriaceae, Staphylococci, and Enterococci) in natural and artificial magpie (Pica pica) nests containing fresh commercial quail (Coturnix coturnix) eggs. We manipulated hygiene conditions by spilling egg contents on magpie and artificial nests and explored experimental effects during the breeding season. Egg breakage is a common outcome of brood parasitism by great spotted cuckoos (Clamator glandarius) on the nests of magpie, one of its main hosts. We found that the treatment increased eggshell bacterial load in artificial nests, but not in magpie nests with incubating females, which suggests that parental activity prevents the proliferation of bacteria on the eggshells in relation to egg breakage. Moreover, laying date was positively related to eggshell bacterial load in active magpie nests, but negatively in artificial nests. The results suggest that variation in parental characteristics of magpies rather than climatic variation during the breeding season explained the detected positive association. Because the eggshell bacterial load is a proxy of hatching success, the detected positive association between eggshell bacterial loads and laying date in natural, but not in artificial nests, suggests that the generalized negative association between laying date and avian breeding success can be, at least partially, explained by differential bacterial effects.
Collapse
|
13
|
Molina-Morales M, Martínez JG, Martín-Gálvez D, Dawson DA, Burke T, Avilés JM. Cuckoo hosts shift from accepting to rejecting parasitic eggs across their lifetime. Evolution 2014; 68:3020-9. [PMID: 24916150 DOI: 10.1111/evo.12471] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 05/20/2014] [Indexed: 11/29/2022]
Abstract
One of the best-known outcomes of coevolution between species is the rejection of mimetic parasite eggs by avian hosts, which has evolved to reduce costly cuckoo parasitism. How this behavioral adaptation varies along the life of individual hosts remains poorly understood. Here, we identify for the first time, lifetime patterns of egg rejection in a parasitized long-lived bird, the magpie Pica pica and show that, during the years they were studied, some females accept, others reject, and some others modify their response to model eggs, in all cases switching from acceptance to rejection. Females tested in their first breeding attempt always accepted the model egg, even those individuals whose mothers were egg rejecters. A longitudinal analysis showed that the probability of egg rejection increased with the relative age of the female, but was not related to the risk of parasitism in the population. We conclude that ontogeny plays a fundamental role in the process leading to egg rejection in magpies.
Collapse
Affiliation(s)
- Mercedes Molina-Morales
- Departamento de Zoología, Universidad de Granada, E-18071, Granada, Spain; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
14
|
Avilés JM, Molina-Morales M, Martínez JG. Climatic effects and phenological mismatch in cuckoo-host interactions: a role for host phenotypic plasticity in laying date? OIKOS 2014. [DOI: 10.1111/oik.01124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jesús M. Avilés
- Depto de Ecología Morfológica y Funcional; Estación Experimental de Zonas Áridas, C.S.I.C.; Carretera de Sacramento s/n Cañada de San Urbano ES-04001 Almería Spain
| | | | | |
Collapse
|
15
|
Soler JJ, Pérez-Contreras T, De Neve L, Macías-Sánchez E, Møller AP, Soler M. Recognizing odd smells and ejection of brood parasitic eggs. An experimental test in magpies of a novel defensive trait against brood parasitism. J Evol Biol 2014; 27:1265-70. [PMID: 24725170 DOI: 10.1111/jeb.12377] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 11/26/2022]
Abstract
One of the most important defensive host traits against brood parasitism is the detection and ejection of parasitic eggs from their nests. Here, we explore the possible role of olfaction in this defensive behaviour. We performed egg-recognition tests in magpie Pica pica nests with model eggs resembling those of parasitic great spotted cuckoos Clamator glandarius. In one of the experiment, experimental model eggs were exposed to strong or moderate smell of tobacco smoke, whereas those of a third group (control) were cleaned with disinfecting wipes and kept in boxes containing odourless cotton. Results showed that model eggs with strong tobacco scent were more frequently ejected compared with control ones. In another experiment, models were smeared with scents from cloacal wash from magpies (control), cloacal wash or uropygial secretions from cuckoos, or human scents. This experiment resulted in a statistically significant effect of treatment in unparasitized magpie nests in which control model eggs handled by humans were more often rejected. These results provide the first evidence that hosts of brood parasites use their olfactory ability to detect and eject foreign eggs from their nests. These findings may have important consequences for handling procedures of experimental eggs used in egg-recognition tests, in addition to our understanding of interactions between brood parasites and their hosts.
Collapse
Affiliation(s)
- J J Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas - CSIC, Almería, Spain; Grupo Coevolución, Unidad Asociada al CSIC, Universidad de Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Procházka P, Konvičková-Patzenhauerová H, Požgayová M, Trnka A, Jelínek V, Honza M. Host genotype and age have no effect on rejection of parasitic eggs. Naturwissenschaften 2014; 101:417-26. [PMID: 24718778 DOI: 10.1007/s00114-014-1171-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/20/2014] [Accepted: 03/29/2014] [Indexed: 12/12/2022]
Abstract
Egg rejection belongs to a widely used host tactic to prevent the costs incurred by avian brood parasitism. However, the genetic basis of this behaviour and the effect of host age on the probability of rejecting the parasitic egg remain largely unknown. Here, we used a set of 15 polymorphic microsatellite loci, including a previously detected candidate locus (Ase64), to link genotypes of female great reed warblers (Acrocephalus arundinaceus), a known rejecter, with their egg rejection responses in two host populations. We also tested whether host female age, as a measure of the experience with own eggs, plays a role in rejection of common cuckoo (Cuculus canorus) eggs. We failed to find any consistent association of egg rejection responses with host female genotypes or age. It seems that host decisions on egg rejection show high levels of phenotypic plasticity and are likely to depend on the spatiotemporal variation in the parasitism pressure. Future studies exploring the repeatability of host responses towards parasitic eggs and the role of host individual experience with parasitic eggs would greatly improve our understanding of the variations in host behaviours considering the persistence of brood parasitism in host populations with rejecter phenotypes.
Collapse
Affiliation(s)
- Petr Procházka
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65, Brno, Czech Republic,
| | | | | | | | | | | |
Collapse
|
17
|
Eavesdropping cuckoos: further insights on great spotted cuckoo preference by magpie nests and egg colour. Oecologia 2014; 175:105-15. [DOI: 10.1007/s00442-014-2901-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/28/2014] [Indexed: 12/01/2022]
|
18
|
Soler M. Long-term coevolution between avian brood parasites and their hosts. Biol Rev Camb Philos Soc 2013; 89:688-704. [PMID: 24330159 DOI: 10.1111/brv.12075] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022]
Abstract
Coevolutionary theory predicts that the most common long-term outcome of the relationships between brood parasites and their hosts should be coevolutionary cycles based on a dynamic change selecting the currently least-defended host species, given that when well-defended hosts are abandoned, hosts will be selected to decrease their defences as these are usually assumed to be costly. This is assumed to be the case also in brood parasite-host systems. Here I examine the frequency of the three potential long-term outcomes of brood parasite-host coevolution (coevolutionary cycles, lack of rejection, and successful resistance) in 182 host species. The results of simple exploratory comparisons show that coevolutionary cycles are very scarce while the lack of rejection and successful resistance, which are considered evolutionary enigmas, are much more frequent. I discuss these results considering (i) the importance of different host defences at all stages of the breeding cycle, (ii) the role of phenotypic plasticity in long-term coevolution, and (iii) the evolutionary history of host selection. I suggest that in purely antagonistic coevolutionary interactions, such as those involving brood parasites and their hosts, that although cycles will exist during an intermediate phase of the interactions, the arms race will end with the extinction of the host or with the host acquiring successful resistance. As evolutionary time passes, this resistance will force brood parasites to use previously less suitable host species. Furthermore, I present a model that represents the long-term trajectories and outcomes of coevolutionary interactions between brood parasites and their hosts with respect to the evolution of egg-rejection defence. This model suggests that as an increasing number of species acquire successful resistance, other unparasitized host species become more profitable and their parasitism rate and the costs imposed by brood parasitism at the population level will increase, selecting for the evolution of host defences. This means that although acceptance is adaptive when the parasitism rate and the costs of parasitism are very low, this cannot be considered to represent an evolutionary equilibrium, as conventional theory has done to date, because it is not stable.
Collapse
Affiliation(s)
- Manuel Soler
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Avenida Severo Ochoa s/n, E-18071, Granada, Spain; Grupo Coevolución, Unidad Asociada al CSIC, Universidad de Granada, Avenida Severo Ochoa s/n, E-18071, Granada, Spain
| |
Collapse
|
19
|
Do climatic conditions affect host and parasite phenotypes differentially? A case study of magpies and great spotted cuckoos. Oecologia 2013; 174:327-38. [PMID: 24078079 DOI: 10.1007/s00442-013-2772-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
Climatic conditions, through their effects on resource availability, may affect important life history strategies and trade-offs in animals, as well as their interactions with other organisms such as parasites. This impact may depend on species-specific pathways of development that differ even among species with similar resource requirements (e.g., avian brood parasites and their hosts). Here we explore the degree of covariation between environmental-climatic conditions and nestling phenotypes (i.e., tarsus length, body mass, immune response to phytohemagglutinin injection) and ectoparasite loads of great spotted cuckoos (Clamator glandarius) and those of their magpie (Pica pica) hosts, both within and among 11 study years (1997-2011). Our main results were that (1) nestling phenotypes differed among years, but differently for great spotted cuckoos and magpies; (2) nestling phenotypes showed significant among-year covariation with breeding climatic conditions (temperature and precipitation); and (3) these associations differed for cuckoos and magpies for some phenotypic traits. As the average temperature at the beginning of the breeding season (April) increased, body mass and tarsus length increased only for cuckoos, but not for magpie hosts, while immune response decreased in both species. Finally, (4) the strength of the within-year relationships between the probability of ectoparasitism by Carnus hemapterus flies and laying date (used as an estimate of the within-year variation in climatic conditions) was negatively affected by the annual accumulated precipitation in April. These results strongly suggest that variation in climatic conditions would result in asymmetric effects on different species with respect to the probability of ectoparasitism, immunity and body size. Such asymmetric effects may affect animal interactions in general and those of brood parasites and their hosts in particular.
Collapse
|
20
|
Thorogood R, Davies NB. Reed warbler hosts fine-tune their defenses to track three decades of cuckoo decline. Evolution 2013; 67:3545-55. [PMID: 24299407 PMCID: PMC4209118 DOI: 10.1111/evo.12213] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/16/2013] [Indexed: 11/29/2022]
Abstract
Interactions between avian hosts and brood parasites can provide a model for how animals adapt to a changing world. Reed warbler (Acrocephalus scirpaceus) hosts employ costly defenses to combat parasitism by common cuckoos (Cuculus canorus). During the past three decades cuckoos have declined markedly across England, reducing parasitism at our study site (Wicken Fen) from 24% of reed warbler nests in 1985 to 1% in 2012. Here we show with experiments that host mobbing and egg rejection defenses have tracked this decline in local parasitism risk: the proportion of reed warbler pairs mobbing adult cuckoos (assessed by responses to cuckoo mounts and models) has declined from 90% to 38%, and the proportion rejecting nonmimetic cuckoo eggs (assessed by responses to model eggs) has declined from 61% to 11%. This is despite no change in response to other nest enemies or mimetic model eggs. Individual variation in both defenses is predicted by parasitism risk during the host's egg-laying period. Furthermore, the response of our study population to temporal variation in parasitism risk can also explain spatial variation in egg rejection behavior in other populations across Europe. We suggest that spatial and temporal variation in parasitism risk has led to the evolution of plasticity in reed warbler defenses.
Collapse
Affiliation(s)
- Rose Thorogood
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
21
|
Soler JJ, Martín-Gálvez D, de Neve L, Soler M. Brood parasitism correlates with the strength of spatial autocorrelation of life history and defensive traits in Magpies. Ecology 2013; 94:1338-46. [PMID: 23923497 DOI: 10.1890/12-1350.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Environmental characteristics of neighboring locations are generally more similar than those of distant locations. Selection pressures due to parasitism and other environmental conditions shape life history traits of hosts; thus, the probability of parasitism should be associated with the strength of spatial autocorrelation in life history and defensive traits of their hosts. Here we test this hypothesis in three different subpopulations of Magpie (Pica pica) parasitized by the Great Spotted Cuckoo (Clamator glandarius) during three breeding seasons. In some of the years and study plots, we found evidence of positive spatial autocorrelations for clutch size and parasitism rate, but not for laying date. As predicted, brood parasitism was associated with the strength of these spatial autocorrelations. Magpies that bred close to each other in areas of high risk of parasitism responded similarly to experimental parasitic eggs. Moreover, an elevated risk of parasitism eliminated the spatial autocorrelation for clutch size, which became randomly distributed. We discuss possible mechanisms explaining these associations, which may have important consequences for estimating evolutionary responses of hosts to parasitic infections and, therefore, for epidemiological, ecological, and evolutionary studies of host-parasite relationships.
Collapse
Affiliation(s)
- Juan J Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Aridas (CSIC), E-4120 Almeria, Spain.
| | | | | | | |
Collapse
|
22
|
Soler M, Martín-Vivaldi M, Fernández-Morante J. Conditional response by hosts to parasitic eggs: the extreme case of the rufous-tailed scrub robin. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Soler M, Pérez-Contreras T. Location of suitable nests by great spotted cuckoos: an empirical and experimental study. Behav Ecol Sociobiol 2012. [DOI: 10.1007/s00265-012-1385-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Soler M, Fernández-Morante J, Espinosa F, Martín-Vivaldi M. Pecking but Accepting the Parasitic Eggs may not Reflect Ejection Failure: The Role of Motivation. Ethology 2012. [DOI: 10.1111/j.1439-0310.2012.02058.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Francisco Espinosa
- Departamento de Zoología; Facultad de Ciencias, Universidad de Granada; Granada; Spain
| | | |
Collapse
|
25
|
Avilés JM, Vikan JR, Fossøy F, Antonov A, Moksnes A, Røskaft E, Shykoff JA, Møller AP, Stokke BG. Egg phenotype matching by cuckoos in relation to discrimination by hosts and climatic conditions. Proc Biol Sci 2012; 279:1967-76. [PMID: 22237911 PMCID: PMC3311906 DOI: 10.1098/rspb.2011.2498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/15/2011] [Indexed: 11/12/2022] Open
Abstract
Although parasites and their hosts often coexist in a set of environmentally differentiated populations connected by gene flow, few empirical studies have considered a role of environmental variation in shaping correlations between traits of hosts and parasites. Here, we studied for the first time the association between the frequency of adaptive parasitic common cuckoo Cuculus canorus phenotypes in terms of egg matching and level of defences exhibited by its reed warbler Acrocephalus scirpaceus hosts across seven geographically distant populations in Europe. We also explored the influence of spring climatic conditions experienced by cuckoos and hosts on cuckoo-host egg matching. We found that between-population differences in host defences against cuckoos (i.e. rejection rate) covaried with between-population differences in degree of matching. Between-population differences in host egg phenotype were associated with between-population differences in parasitism rate and spring climatic conditions, but not with host level of defences. Between-population differences in cuckoo egg phenotype covaried with between-population differences in host defences and spring climatic conditions. However, differences in host defences still explained differences in mimicry once differences in climatic conditions were controlled, suggesting that selection exerted by host defences must be strong relative to selection imposed by climatic factors on egg phenotypes.
Collapse
Affiliation(s)
- Jesús M Avilés
- Departamento de Ecología Morfológica y Funcional, Estación Experimental de Zonas Áridas, C.S.I.C., Carretera de Sacramento s/n, Cañada de San Urbano, 04001 Almería, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ibáñez-Álamo JD, De Neve L, Roldán M, Rodríguez J, Trouvé C, Chastel O, Soler M. Corticosterone levels in host and parasite nestlings: is brood parasitism a hormonal stressor? Horm Behav 2012; 61:590-7. [PMID: 22366505 DOI: 10.1016/j.yhbeh.2012.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
Parasite chicks from non-evictor species usually try to monopolize host parental care, thereby increasing considerably the level of food competition in the nest. Here, we propose that brood parasitism is an important stressor for host and parasite nestlings and explore this hypothesis in the non-evictor great spotted cuckoo (Clamator glandarius) and its main hosts, the same-sized black-billed magpie (Pica pica) and the larger carrion crow (Corvus corone). We experimentally created 3-nestling broods of different brood compositions (only cuckoo chicks, only host chicks, or cuckoo and host chicks together) and measured baseline corticosterone levels of nestlings along their developmental period (early, middle and late). We found that brood parasitism increased corticosterone levels in magpie nestlings in the mid and late nestling period compared to those raised in unparasitized nests. Interestingly, carrion crow nestlings from parasitized nests only increased their corticosterone levels in the mid nestling period, when the competition for food with the cuckoo nestling was highest. Our results suggest that brood parasitism could be a potential physiological stressor for host nestlings, especially during the developmental stages where food requirements are highest. Conversely, cuckoo nestlings could be physiologically adapted to high competition levels since they did not show significant differences in corticosterone levels in relation to brood composition.
Collapse
|
27
|
SOLER JUANJ, PERALTA-SÁNCHEZ JUANM, MARTÍNEZ-BUENO MANUEL, MARTÍN-VIVALDI MANUEL, MARTÍN-GÁLVEZ DAVID, VELA ANAISABEL, BRIONES VICTOR, PÉREZ-CONTRERAS TOMÁS. Brood parasitism is associated with increased bacterial contamination of host eggs: bacterial loads of host and parasitic eggs. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01672.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Soler JJ, Martín-Gálvez D, Martínez JG, Soler M, Canestrari D, Abad-Gómez JM, Møller AP. Evolution of tolerance by magpies to brood parasitism by great spotted cuckoos. Proc Biol Sci 2010; 278:2047-52. [PMID: 21123258 DOI: 10.1098/rspb.2010.2218] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hosts may use two different strategies to ameliorate negative effects of a given parasite burden: resistance or tolerance. Although both resistance and tolerance of parasitism should evolve as a consequence of selection pressures owing to parasitism, the study of evolutionary patterns of tolerance has traditionally been neglected by animal biologists. Here, we explore geographical covariation between tolerance of magpies (Pica pica) and brood parasitism by the great spotted cuckoo (Clamator glandarius) in nine different sympatric populations. We estimated tolerance as the slope of the regression of number of magpie fledglings (i.e. host fitness) on number of cuckoo eggs laid in non-depredated nests (which broadly equals parasite burden). We also estimated prevalence of parasitism and level of host resistance (i.e. rejection rates of mimetic model eggs) in these nine populations. In accordance with the hypothetical role of tolerance in the coevolutionary process between magpies and cuckoos we found geographical variation in tolerance estimates that positively covaried with prevalence of parasitism. Levels of resistance and tolerance were not associated, possibly suggesting the lack of a trade-off between the two kinds of defences against great spotted cuckoo parasitism for magpies. We discuss the results in the framework of a mosaic of coevolutionary interactions along the geographical distribution of magpies and great spotted cuckoos for which we found evidence that tolerance plays a major role.
Collapse
Affiliation(s)
- J J Soler
- Departamento de Ecología Evolutiva y Funcional, Estación Experimental de Zonas Áridas (CSIC), 04120 Almería, Spain.
| | | | | | | | | | | | | |
Collapse
|
29
|
Požgayová M, Procházka P, Polačiková L, Honza M. Closer clutch inspection—quicker egg ejection: timing of host responses toward parasitic eggs. Behav Ecol 2010. [DOI: 10.1093/beheco/arq163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Abstract
Coevolution--reciprocal evolutionary change in interacting species--is one of the central biological processes organizing the web of life, and most species are involved in one or more coevolved interactions. We have learned in recent years that coevolution is a highly dynamic process that continually reshapes interactions among species across ecosystems, creating geographic mosaics over timescales sometimes as short as thousands or even hundreds of years. If we take that as our starting point, what should we now be asking about the coevolutionary process? Here I suggest five major questions that we need to answer if we are to understand how coevolution shapes the web of life. How evolutionarily dynamic is specialization to other species, and what is the role of coevolutionary alternation in driving those dynamics? Does the geographic mosaic of coevolution shape adaptation in fundamentally different ways in different forms of interaction? How does the geographic mosaic of coevolution shape speciation? How does the structure of reciprocal selection change during the assembly of large webs of interacting species? How important are genomic events such as whole-genome duplication (i.e., polyploidy) and whole-genome capture (i.e., hybridization) in generating novel webs of interacting species? I end by suggesting four points about coevolution that we should tell every new student or researcher in biology.
Collapse
Affiliation(s)
- John N Thompson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA.
| |
Collapse
|
31
|
Evolution of defences against cuckoo (Cuculus canorus) parasitism in bramblings (Fringilla montifringilla): a comparison of four populations in Fennoscandia. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9360-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Antonov A, Stokke BG, Moksnes A, Røskaft E. Evidence for egg discrimination preceding failed rejection attempts in a small cuckoo host. Biol Lett 2008; 5:169-71. [PMID: 19126530 DOI: 10.1098/rsbl.2008.0645] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Given the high costs of avian obligate brood parasitism, host individuals are selected to reject parasitic eggs they recognize as foreign. We show that rejection may not necessarily follow egg discrimination when selective removal of the parasitic egg is difficult. We studied egg rejection behaviour in a small host of the common cuckoo Cuculus canorus, the eastern olivaceous warbler Hippolais pallida, by experimental parasitism with model and real non-mimetic cuckoo eggs and video recordings of host behaviour. Hosts pecked 87 per cent (20 out of 23) of the model eggs but eventually accepted 43.5 per cent (10 out of 23) of them. A similar pattern was found for real cuckoo eggs, which were all pecked, but as many as 47 per cent (7 out of 15) of them were accepted. To our knowledge, this is the first demonstration of a cuckoo host discriminating against real parasitic eggs but often accepting them. Our results also show that in host species experiencing difficulties in performing puncture ejection, non-mimetic cuckoo eggs may avoid rejection by means of their unusually high structural strength.
Collapse
Affiliation(s)
- Anton Antonov
- Department of Biology, Norwegian University of Science and Technology (NTNU), Realfagbygget 7491, Trondheim, Norway.
| | | | | | | |
Collapse
|
33
|
Abstract
The geographic mosaic theory is fast becoming a unifying framework for coevolutionary studies. A recent experimental study of interactions between pines and mycorrhizal fungi in BMC Biology is the first to rigorously test geographical selection mosaics, one of the cornerstones of the theory.
Collapse
Affiliation(s)
- David R Nash
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|