1
|
Mazzarella AB, Boessenkool S, Østbye K, Vøllestad LA, Trucchi E. Genomic signatures of the plateless phenotype in the threespine stickleback. Ecol Evol 2016; 6:3161-73. [PMID: 27096077 PMCID: PMC4829042 DOI: 10.1002/ece3.2072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 12/15/2022] Open
Abstract
Understanding the genetic basis of traits involved in adaptive divergence and speciation is one of the most fundamental objectives in evolutionary biology. Toward that end, we look for signatures of extreme plate loss in the genome of freshwater threespine sticklebacks (Gasterosteus aculeatus). Plateless stickleback have been found in only a few lakes and streams across the world; they represent the far extreme of a phenotypic continuum (plate number) that has been studied for years, although plateless individuals have not yet been the subject of much investigation. We use a dense single nucleotide polymorphism dataset made using RADseq to study fish from three freshwater populations containing plateless and low plated individuals, as well as fish from full plated marine populations. Analyses were performed using FastStructure, sliding windows FST, Bayescan and latent factor mixed models to search for genomic differences between the low plated and plateless phenotypes both within and among the three lakes. At least 18 genomic regions which may contribute to within‐morph plate number variation were detected in our low plated stickleback populations. We see no evidence of a selective sweep between low and plateless fish; rather reduction of plate number within the low plated morph seems to be polygenic.
Collapse
Affiliation(s)
- Anna B Mazzarella
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis University of Oslo PO Box 1066 Blindern Norway
| | - Sanne Boessenkool
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis University of Oslo PO Box 1066 Blindern Norway
| | - Kjartan Østbye
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis University of Oslo PO Box 1066 Blindern Norway; Faculty of Applied Ecology and Agricultural Sciences Hedmark University College Campus Evenstad No-2480 Koppang Norway
| | - Leif Asbjørn Vøllestad
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis University of Oslo PO Box 1066 Blindern Norway
| | - Emiliano Trucchi
- Department of Biosciences Centre for Ecological and Evolutionary Synthesis University of Oslo PO Box 1066 Blindern Norway; Department of Botany and Biodiversity Research University of Vienna Rennweg 14A-1030 Vienna Austria
| |
Collapse
|
2
|
Lee YW, Gould BA, Stinchcombe JR. Identifying the genes underlying quantitative traits: a rationale for the QTN programme. AOB PLANTS 2014; 6:plu004. [PMID: 24790125 PMCID: PMC4038433 DOI: 10.1093/aobpla/plu004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/01/2014] [Indexed: 05/19/2023]
Abstract
The goal of identifying the genes or even nucleotides underlying quantitative and adaptive traits has been characterized as the 'QTN programme' and has recently come under severe criticism. Part of the reason for this criticism is that much of the QTN programme has asserted that finding the genes and nucleotides for adaptive and quantitative traits is a fundamental goal, without explaining why it is such a hallowed goal. Here we outline motivations for the QTN programme that offer general insight, regardless of whether QTNs are of large or small effect, and that aid our understanding of the mechanistic dynamics of adaptive evolution. We focus on five areas: (i) vertical integration of insight across different levels of biological organization, (ii) genetic parallelism and the role of pleiotropy in shaping evolutionary dynamics, (iii) understanding the forces maintaining genetic variation in populations, (iv) distinguishing between adaptation from standing variation and new mutation, and (v) the role of genomic architecture in facilitating adaptation. We argue that rather than abandoning the QTN programme, we should refocus our efforts on topics where molecular data will be the most effective for testing hypotheses about phenotypic evolution.
Collapse
Affiliation(s)
- Young Wha Lee
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, CanadaM5S 3B2
| | - Billie A. Gould
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, CanadaM5S 3B2
| | - John R. Stinchcombe
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, CanadaM5S 3B2
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, CanadaM5S 3B2
- Corresponding author's e-mail address:
| |
Collapse
|
3
|
Pavey SA, Sutherland BJG, Leong J, Robb A, von Schalburg K, Hamon TR, Koop BF, Nielsen JL. Ecological transcriptomics of lake-type and riverine sockeye salmon (Oncorhynchus nerka). BMC Ecol 2011; 11:31. [PMID: 22136247 PMCID: PMC3295673 DOI: 10.1186/1472-6785-11-31] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 12/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are a growing number of genomes sequenced with tentative functions assigned to a large proportion of the individual genes. Model organisms in laboratory settings form the basis for the assignment of gene function, and the ecological context of gene function is lacking. This work addresses this shortcoming by investigating expressed genes of sockeye salmon (Oncorhynchus nerka) muscle tissue. We compared morphology and gene expression in natural juvenile sockeye populations related to river and lake habitats. Based on previously documented divergent morphology, feeding strategy, and predation in association with these distinct environments, we expect that burst swimming is favored in riverine population and continuous swimming is favored in lake-type population. In turn we predict that morphology and expressed genes promote burst swimming in riverine sockeye and continuous swimming in lake-type sockeye. RESULTS We found the riverine sockeye population had deep, robust bodies and lake-type had shallow, streamlined bodies. Gene expression patterns were measured using a 16 k microarray, discovering 141 genes with significant differential expression. Overall, the identity and function of these genes was consistent with our hypothesis. In addition, Gene Ontology (GO) enrichment analyses with a larger set of differentially expressed genes found the "biosynthesis" category enriched for the riverine population and the "metabolism" category enriched for the lake-type population. CONCLUSIONS This study provides a framework for understanding sockeye life history from a transcriptomic perspective and a starting point for more extensive, targeted studies determining the ecological context of genes.
Collapse
Affiliation(s)
- Scott A Pavey
- National Park Service, Katmai National Park; PO Box 7, King Salmon, AK 99613, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Song BH, Mitchell-Olds T. Evolutionary and Ecological Genomics of Non-Model Plants. JOURNAL OF SYSTEMATICS AND EVOLUTION 2011; 49:17-24. [PMID: 21394233 PMCID: PMC3050529 DOI: 10.1111/j.1759-6831.2010.00111.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Dissecting evolutionary dynamics of ecologically important traits is a long-term challenge for biologists. Attempts to understand natural variation and molecular mechanisms have motivated a move from laboratory model systems to non-model systems in diverse natural environments. Next generation sequencing methods, along with an expansion of genomic resources and tools, have fostered new links between diverse disciplines, including molecular biology, evolution, and ecology, and genomics. Great progress has been made in a few non-model wild plants, such as Arabidopsis relatives, monkey flowers, and wild sunflowers. Until recently, the lack of comprehensive genomic information has limited evolutionary and ecological studies to larger QTL regions rather than single gene resolution, and has hindered recognition of general patterns of natural variation and local adaptation. Further efforts in accumulating genomic data and developing bioinformatic and biostatistical tools are now poised to move this field forward. Integrative national and international collaborations and research communities are needed to facilitate development in the field of evolutionary and ecological genomics.
Collapse
Affiliation(s)
- Bao-Hua Song
- Institute for Genome Sciences and Policy, Department of Biology, Duke University, Durham, North Carolina 27708
| | | |
Collapse
|
5
|
Abstract
Ecological speciation is the process by which barriers to gene flow between populations evolve due to adaptive divergence via natural selection. A relatively unexplored area in ecological speciation is the role of gene expression. Gene expression may be associated with ecologically important phenotypes not evident from morphology and play a role during colonization of new environments. Here we review two potential roles of gene expression in ecological speciation: (1) its indirect role in facilitating population persistence and (2) its direct role in contributing to genetically based reproductive isolation. We find indirect evidence that gene expression facilitates population persistence, but direct tests are lacking. We also find clear examples of gene expression having effects on phenotypic traits and adaptive genetic divergence, but links to the evolution of reproductive isolation itself remain indirect. Gene expression during adaptive divergence seems to often involve complex genetic architectures controlled by gene networks, regulatory regions, and “eQTL hotspots.” Nonetheless, we review how approaches for isolating the functional mutations contributing to adaptive divergence are proving to be successful. The study of gene expression has promise for increasing our understanding ecological speciation, particularly when integrative approaches are applied.
Collapse
Affiliation(s)
- Scott A Pavey
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
6
|
Anderson JT, Mitchell-Olds T. Ecological genetics and genomics of plant defenses: Evidence and approaches. Funct Ecol 2010; 25:312-324. [PMID: 21532968 DOI: 10.1111/j.1365-2435.2010.01785.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herbivores exert significant selection on plants, and plants have evolved a variety of constitutive and inducible defenses to resist and tolerate herbivory. Assessing the genetic mechanisms that influence defenses against herbivores will deepen our understanding of the evolution of essential phenotypic traits.Ecogenomics is a powerful interdisciplinary approach that can address fundamental questions about the ecology and evolutionary biology of species, such as: which evolutionary forces maintain variation within a population? and What is the genetic architecture of adaptation? This field seeks to identify gene regions that influence ecologically-important traits, assess the fitness consequences under natural conditions of alleles at key quantitative trait loci (QTLs), and test how the abiotic and biotic environment affects gene expression.Here, we review ecogenomics techniques and emphasize how this framework can address long-standing and emerging questions relating to anti-herbivore defenses in plants. For example, ecogenomics tools can be used to investigate: inducible vs. constitutive defenses; tradeoffs between resistance and tolerance; adaptation to the local herbivore community; selection on alleles that confer resistance and tolerance in natural populations; and whether different genes are activated in response to specialist vs. generalist herbivores and to different types of damage.Ecogenomic studies can be conducted with model species, such as Arabidopsis, or their relatives, in which case myriad molecular tools are already available. Burgeoning sequence data will also facilitate ecogenomic studies of non-model species. Throughout this paper, we highlight approaches that are particularly suitable for ecological studies of non-model organisms, discuss the benefits and disadvantages of specific techniques, and review bioinformatic tools for analyzing data.We focus on established and promising techniques, such as QTL mapping with pedigreed populations, genome wide association studies, transcription profiling strategies, population genomics, and transgenic methodologies. Many of these techniques are complementary and can be used jointly to investigate the genetic architecture of defense traits and selection on alleles in nature.
Collapse
Affiliation(s)
- Jill T Anderson
- Institute for Genome Sciences and Policy, Department of Biology, Duke University, P.O. Box 90338, Durham, North Carolina 27708, USA
| | | |
Collapse
|
7
|
Moyle LC, Muir CD. Reciprocal insights into adaptation from agricultural and evolutionary studies in tomato. Evol Appl 2010; 3:409-21. [PMID: 25567935 PMCID: PMC3352507 DOI: 10.1111/j.1752-4571.2010.00143.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 02/05/2023] Open
Abstract
Although traditionally separated by different aims and methodologies, research on agricultural and evolutionary problems shares a common goal of understanding the mechanisms underlying functionally important traits. As such, research in both fields offers potential complementary and reciprocal insights. Here, we discuss adaptive stress responses (specifically to water stress) as an example of potentially fruitful research reciprocity, where agricultural research has clearly produced advances that could benefit evolutionary studies, while evolutionary studies offer approaches and insights underexplored in crop studies. We focus on research on Solanum species that include the domesticated tomato and its wild relatives. Integrated approaches to understanding ecological adaptation are particularly attractive in tomato and its wild relatives: many presumptively adaptive phenotypic differences characterize wild species, and the physiological and mechanistic basis of many relevant traits and environmental responses has already been examined in the context of cultivated tomato and some wild species. We highlight four specific instances where these reciprocal insights can be combined to better address questions that are fundamental both to agriculture and evolution.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
8
|
Aguileta G, Lengelle J, Marthey S, Chiapello H, Rodolphe F, Gendrault A, Yockteng R, Vercken E, Devier B, Fontaine MC, Wincker P, Dossat C, Cruaud C, Couloux A, Giraud T. Finding candidate genes under positive selection in Non-model species: examples of genes involved in host specialization in pathogens. Mol Ecol 2009; 19:292-306. [PMID: 20041992 DOI: 10.1111/j.1365-294x.2009.04454.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous genes in diverse organisms have been shown to be under positive selection, especially genes involved in reproduction, adaptation to contrasting environments, hybrid inviability, and host-pathogen interactions. Looking for genes under positive selection in pathogens has been a priority in efforts to investigate coevolution dynamics and to develop vaccines or drugs. To elucidate the functions involved in host specialization, here we aimed at identifying candidate sequences that could have evolved under positive selection among closely related pathogens specialized on different hosts. For this goal, we sequenced c. 17,000-32,000 ESTs from each of four Microbotryum species, which are fungal pathogens responsible for anther smut disease on host plants in the Caryophyllaceae. Forty-two of the 372 predicted orthologous genes showed significant signal of positive selection, which represents a good number of candidate genes for further investigation. Sequencing 16 of these genes in 9 additional Microbotryum species confirmed that they have indeed been rapidly evolving in the pathogen species specialized on different hosts. The genes showing significant signals of positive selection were putatively involved in nutrient uptake from the host, secondary metabolite synthesis and secretion, respiration under stressful conditions and stress response, hyphal growth and differentiation, and regulation of expression by other genes. Many of these genes had transmembrane domains and may therefore also be involved in pathogen recognition by the host. Our approach thus revealed fruitful and should be feasible for many non-model organisms for which candidate genes for diversifying selection are needed.
Collapse
Affiliation(s)
- G Aguileta
- Ecologie, Systématique et Evolution, Université Paris-Sud, F-91405 Orsay cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Brown AR, Hosken DJ, Balloux F, Bickley LK, LePage G, Owen SF, Hetheridge MJ, Tyler CR. Genetic variation, inbreeding and chemical exposure--combined effects in wildlife and critical considerations for ecotoxicology. Philos Trans R Soc Lond B Biol Sci 2009; 364:3377-90. [PMID: 19833649 PMCID: PMC2781846 DOI: 10.1098/rstb.2009.0126] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure to environmental chemicals can have negative consequences for wildlife and even cause localized population extinctions. Resistance to chemical stress, however, can evolve and the mechanisms include desensitized target sites, reduced chemical uptake and increased metabolic detoxification and sequestration. Chemical resistance in wildlife populations can also arise independently of exposure and may be spread by gene flow between populations. Inbreeding-matings between closely related individuals-can have negative fitness consequences for natural populations, and there is evidence of inbreeding depression in many wildlife populations. In some cases, reduced fitness in inbred populations has been shown to be exacerbated under chemical stress. In chemical testing, both inbred and outbred laboratory animals are used and for human safety assessments, iso-genic strains (virtual clones) of mice and rats are often employed that reduce response variation, the number of animals used and associated costs. In contrast, for environmental risk assessment, strains of animals are often used that have been selectively bred to maintain heterozygosity, with the assumption that they are better able to predict adverse effects in wild, genetically variable, animals. This may not necessarily be the case however, as one outbred strain may not be representative of another or of a wild population. In this paper, we critically discuss relationships between genetic variation, inbreeding and chemical effects with the intention of seeking to support more effective chemical testing for the protection of wildlife.
Collapse
Affiliation(s)
- A Ross Brown
- School of Biosciences, University of Exeter, Exeter, UK
| | | | | | | | | | | | | | | |
Collapse
|