1
|
Mäntynen S, Sundberg LR, Oksanen HM, Poranen MM. Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology. Viruses 2019; 11:E76. [PMID: 30669250 PMCID: PMC6356626 DOI: 10.3390/v11010076] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. Membrane-containing phages have provided a framework for understanding virus evolution. The original observation on membrane-containing bacteriophage PRD1 and human pathogenic adenovirus has been fundamental in delineating the concept of "viral lineages", postulating that the fold of the major capsid protein can be used as an evolutionary fingerprint to trace long-distance evolutionary relationships that are unrecognizable from the primary sequences. This has brought the early evolutionary paths of certain eukaryotic, bacterial, and archaeal viruses together, and potentially enables the reorganization of the nearly immeasurable virus population (~1 × 1031) on Earth into a reasonably low number of groups representing different architectural principles. In addition, the research on membrane-containing phages can support the development of novel tools and strategies for human therapy and crop protection.
Collapse
Affiliation(s)
- Sari Mäntynen
- Center of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| | - Lotta-Riina Sundberg
- Center of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
2
|
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. RNA Phage Biology in a Metagenomic Era. Viruses 2018; 10:E386. [PMID: 30037084 PMCID: PMC6071253 DOI: 10.3390/v10070386] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
The number of novel bacteriophage sequences has expanded significantly as a result of many metagenomic studies of phage populations in diverse environments. Most of these novel sequences bear little or no homology to existing databases (referred to as the "viral dark matter"). Also, these sequences are primarily derived from DNA-encoded bacteriophages (phages) with few RNA phages included. Despite the rapid advancements in high-throughput sequencing, few studies enrich for RNA viruses, i.e., target viral rather than cellular fraction and/or RNA rather than DNA via a reverse transcriptase step, in an attempt to capture the RNA viruses present in a microbial communities. It is timely to compile existing and relevant information about RNA phages to provide an insight into many of their important biological features, which should aid in sequence-based discovery and in their subsequent annotation. Without comprehensive studies, the biological significance of RNA phages has been largely ignored. Future bacteriophage studies should be adapted to ensure they are properly represented in phageomic studies.
Collapse
Affiliation(s)
- Julie Callanan
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - Stephen R Stockdale
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| |
Collapse
|
3
|
Abstract
Segmented RNA viruses are widespread in nature and include important human, animal and plant pathogens, such as influenza viruses and rotaviruses. Although the origin of RNA virus genome segmentation remains elusive, a major consequence of this genome structure is the capacity for reassortment to occur during co-infection, whereby segments are exchanged among different viral strains. Therefore, reassortment can create viral progeny that contain genes that are derived from more than one parent, potentially conferring important fitness advantages or disadvantages to the progeny virus. However, for segmented RNA viruses that package their multiple genome segments into a single virion particle, reassortment also requires genetic compatibility between parental strains, which occurs in the form of conserved packaging signals, and the maintenance of RNA and protein interactions. In this Review, we discuss recent studies that examined the mechanisms and outcomes of reassortment for three well-studied viral families - Cystoviridae, Orthomyxoviridae and Reoviridae - and discuss how these findings provide new perspectives on the replication and evolution of segmented RNA viruses.
Collapse
|
4
|
Sistrom M, Park D, O’Brien HE, Wang Z, Guttman DS, Townsend JP, Turner PE. Genomic and Gene-Expression Comparisons among Phage-Resistant Type-IV Pilus Mutants of Pseudomonas syringae pathovar phaseolicola. PLoS One 2015; 10:e0144514. [PMID: 26670219 PMCID: PMC4687649 DOI: 10.1371/journal.pone.0144514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/19/2015] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas syringae pv. phaseolicola (Pph) is a significant bacterial pathogen of agricultural crops, and phage Φ6 and other members of the dsRNA virus family Cystoviridae undergo lytic (virulent) infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage Φ6 as a model system in evolutionary biology, Pph resistance to phage Φ6 remains poorly characterized. To investigate differences between phage Φ6 resistant Pph strains, we examined genomic and gene expression variation among three bacterial genotypes that differ in the number of type IV pili expressed per cell: ordinary (wild-type), non-piliated, and super-piliated. Genome sequencing of non-piliated and super-piliated Pph identified few mutations that separate these genotypes from wild type Pph--and none present in genes known to be directly involved in type IV pilus expression. Expression analysis revealed that 81.1% of gene ontology (GO) terms up-regulated in the non-piliated strain were down-regulated in the super-piliated strain. This differential expression is particularly prevalent in genes associated with respiration--specifically genes in the tricarboxylic acid cycle (TCA) cycle, aerobic respiration, and acetyl-CoA metabolism. The expression patterns of the TCA pathway appear to be generally up and down-regulated, in non-piliated and super-piliated Pph respectively. As pilus retraction is mediated by an ATP motor, loss of retraction ability might lead to a lower energy draw on the bacterial cell, leading to a different energy balance than wild type. The lower metabolic rate of the super-piliated strain is potentially a result of its loss of ability to retract.
Collapse
Affiliation(s)
- Mark Sistrom
- School of Natural Sciences, University of California Merced, Merced, 95343, CA, United States of America
- * E-mail:
| | - Derek Park
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, United States of America
| | - Heath E. O’Brien
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Zheng Wang
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, United States of America
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, M5S 3B2, Canada
| | - Jeffrey P. Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, United States of America
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, United States of America
- Program in Microbiology, Yale University, New Haven, CT 06520, United States of America
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, United States of America
- Program in Microbiology, Yale University, New Haven, CT 06520, United States of America
| |
Collapse
|
5
|
Savory FR, Varma V, Ramakrishnan U. Identifying geographic hot spots of reassortment in a multipartite plant virus. Evol Appl 2014; 7:569-79. [PMID: 24944570 PMCID: PMC4055178 DOI: 10.1111/eva.12156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/05/2014] [Indexed: 11/26/2022] Open
Abstract
Reassortment between different species or strains plays a key role in the evolution of multipartite plant viruses and can have important epidemiological implications. Identifying geographic locations where reassortant lineages are most likely to emerge could be a valuable strategy for informing disease management and surveillance efforts. We developed a predictive framework to identify potential geographic hot spots of reassortment based upon spatially explicit analyses of genome constellation diversity. To demonstrate the utility of this approach, we examined spatial variation in the potential for reassortment among Cardamom bushy dwarf virus (CBDV; Nanoviridae, Babuvirus) isolates in Northeast India. Using sequence data corresponding to six discrete genome components for 163 CBDV isolates, a quantitative measure of genome constellation diversity was obtained for locations across the sampling region. Two key areas were identified where viruses with highly distinct genome constellations cocirculate, and these locations were designated as possible geographic hot spots of reassortment, where novel reassortant lineages could emerge. Our study demonstrates that the potential for reassortment can be spatially dependent in multipartite plant viruses and highlights the use of evolutionary analyses to identify locations which could be actively managed to facilitate the prevention of outbreaks involving novel reassortant strains.
Collapse
Affiliation(s)
- Fiona R Savory
- National Centre for Biological Sciences, TATA Institute of Fundamental Research Bangalore, India
| | - Varun Varma
- National Centre for Biological Sciences, TATA Institute of Fundamental Research Bangalore, India
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, TATA Institute of Fundamental Research Bangalore, India
| |
Collapse
|
6
|
Díaz-Muñoz SL, Tenaillon O, Goldhill D, Brao K, Turner PE, Chao L. Electrophoretic mobility confirms reassortment bias among geographic isolates of segmented RNA phages. BMC Evol Biol 2013; 13:206. [PMID: 24059872 PMCID: PMC3848951 DOI: 10.1186/1471-2148-13-206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/13/2013] [Indexed: 11/21/2022] Open
Abstract
Background Sex presents evolutionary costs and benefits, leading to the expectation that the amount of genetic exchange should vary in conditions with contrasting cost-benefit equations. Like eukaryotes, viruses also engage in sex, but the rate of genetic exchange is often assumed to be a relatively invariant property of a particular virus. However, the rates of genetic exchange can vary within one type of virus according to geography, as highlighted by phylogeographic studies of cystoviruses. Here we merge environmental microbiology with experimental evolution to examine sex in a diverse set of cystoviruses, consisting of the bacteriophage ϕ6 and its relatives. To quantify reassortment we manipulated – by experimental evolution – electrophoretic mobility of intact virus particles for use as a phenotypic marker to estimate genetic exchange. Results We generated descendants of ϕ6 that exhibited fast and slow mobility during gel electrophoresis. We identified mutations associated with slow and fast phenotypes using whole genome sequencing and used crosses to establish the production of hybrids of intermediate mobility. We documented natural variation in electrophoretic mobility among environmental isolates of cystoviruses and used crosses against a common fast mobility ϕ6 strain to monitor the production of hybrids with intermediate mobility, thus estimating the amount of genetic exchange. Cystoviruses from different geographic locations have very different reassortment rates when measured against ϕ6, with viruses isolated from California showing higher reassortment rates than those from the Northeastern US. Conclusions The results confirm that cystoviruses from different geographic locations have remarkably different reassortment rates –despite similar genome structure and replication mechanisms– and that these differences are in large part due to sexual reproduction. This suggests that particular viruses may indeed exhibit diverse sexual behavior, but wide geographic sampling, across varying environmental conditions may be necessary to characterize the full repertoire. Variation in reassortment rates can assist in the delineation of viral populations and is likely to provide insight into important viral evolutionary dynamics including the rate of coinfection, virulence, and host range shifts. Electrophoretic mobility may be an indicator of important determinants of fitness and the techniques herein can be applied to the study of other viruses.
Collapse
Affiliation(s)
- Samuel L Díaz-Muñoz
- Section of Ecology, Behavior and Evolution, University of California San Diego, 9500 Gilman Drive, Muir Building 3155, La Jolla, CA 92093-0116, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Turner PE, McBride RC, Duffy S, Montville R, Wang LS, Yang YW, Lee SJ, Kim J. Evolutionary genomics of host-use in bifurcating demes of RNA virus phi-6. BMC Evol Biol 2012; 12:153. [PMID: 22913547 PMCID: PMC3495861 DOI: 10.1186/1471-2148-12-153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/16/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Viruses are exceedingly diverse in their evolved strategies to manipulate hosts for viral replication. However, despite these differences, most virus populations will occasionally experience two commonly-encountered challenges: growth in variable host environments, and growth under fluctuating population sizes. We used the segmented RNA bacteriophage ϕ6 as a model for studying the evolutionary genomics of virus adaptation in the face of host switches and parametrically varying population sizes. To do so, we created a bifurcating deme structure that reflected lineage splitting in natural populations, allowing us to test whether phylogenetic algorithms could accurately resolve this 'known phylogeny'. The resulting tree yielded 32 clones at the tips and internal nodes; these strains were fully sequenced and measured for phenotypic changes in selected traits (fitness on original and novel hosts). RESULTS We observed that RNA segment size was negatively correlated with the extent of molecular change in the imposed treatments; molecular substitutions tended to cluster on the Small and Medium RNA chromosomes of the virus, and not on the Large segment. Our study yielded a very large molecular and phenotypic dataset, fostering possible inferences on genotype-phenotype associations. Using further experimental evolution, we confirmed an inference on the unanticipated role of an allelic switch in a viral assembly protein, which governed viral performance across host environments. CONCLUSIONS Our study demonstrated that varying complexities can be simultaneously incorporated into experimental evolution, to examine the combined effects of population size, and adaptation in novel environments. The imposed bifurcating structure revealed that some methods for phylogenetic reconstruction failed to resolve the true phylogeny, owing to a paucity of molecular substitutions separating the RNA viruses that evolved in our study.
Collapse
Affiliation(s)
- Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Robert C McBride
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Current address: Sapphire Energy, Inc., 3115 Merryfield Row, San Diego, CA 92121, USA
| | - Siobain Duffy
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Current address: Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Rebecca Montville
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Li-San Wang
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yul W Yang
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Current address: Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Sun Jin Lee
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011; 75:610-35. [PMID: 22126996 PMCID: PMC3232739 DOI: 10.1128/mmbr.00011-11] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes, bacteria and archaea, are the most abundant cellular organisms among those sharing the planet Earth with human beings (among others). However, numerous ecological studies have revealed that it is actually prokaryotic viruses that predominate on our planet and outnumber their hosts by at least an order of magnitude. An understanding of how this viral domain is organized and what are the mechanisms governing its evolution is therefore of great interest and importance. The vast majority of characterized prokaryotic viruses belong to the order Caudovirales, double-stranded DNA (dsDNA) bacteriophages with tails. Consequently, these viruses have been studied (and reviewed) extensively from both genomic and functional perspectives. However, albeit numerous, tailed phages represent only a minor fraction of the prokaryotic virus diversity. Therefore, the knowledge which has been generated for this viral system does not offer a comprehensive view of the prokaryotic virosphere. In this review, we discuss all families of bacterial and archaeal viruses that contain more than one characterized member and for which evolutionary conclusions can be attempted by use of comparative genomic analysis. We focus on the molecular mechanisms of their genome evolution as well as on the relationships between different viral groups and plasmids. It becomes clear that evolutionary mechanisms shaping the genomes of prokaryotic viruses vary between different families and depend on the type of the nucleic acid, characteristics of the virion structure, as well as the mode of the life cycle. We also point out that horizontal gene transfer is not equally prevalent in different virus families and is not uniformly unrestricted for diverse viral functions.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, 25 rue du Dr. Roux, 75015 Paris, France.
| | | | | | | |
Collapse
|