1
|
Porretta D, Canestrelli D. The ecological importance of hybridization. Trends Ecol Evol 2023; 38:1097-1108. [PMID: 37620217 DOI: 10.1016/j.tree.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Hybridization as an evolutionary process has been studied in depth over the past few decades. Research has focused on its role in shaping reproductive barriers, its adaptive value, and its genomic consequences. In contrast, our knowledge of ecological dimensions of hybridization is still in its infancy, despite hybridization being an inherently ecological interaction. Using examples from various organisms, we show that hybridization can affect and be affected by non-reproductive interactions, including predation, competition, parasitism, mutualism, commensalism, and organism-environment interactions, with significant implications for community structure and ecosystem functioning. However, since these dimensions of hybridization have mostly been revealed from studies designed to decipher other evolutionary processes, we argue that much of the eco-evolutionary importance of hybridization is yet to be discovered.
Collapse
Affiliation(s)
- Daniele Porretta
- Department of Environmental Biology, Sapienza University of Rome, Italy.
| | | |
Collapse
|
2
|
Arce-Valdés LR, Sánchez-Guillén RA. The evolutionary outcomes of climate-change-induced hybridization in insect populations. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100966. [PMID: 36089267 DOI: 10.1016/j.cois.2022.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Rapid range shifts are one of the most frequent responses to climate change in insect populations. Climate-induced range shifts can lead to the breakdown of isolation barriers, and thus, to an increase in hybridization and introgression. Long-term evolutionary consequences such as the formation of hybrid zones, introgression, speciation, and extinction have been predicted as a result of climate-induced hybridization. Our review shows that there has been an increase in the number of published cases of climate-induced hybridization in insects, and that the formation of hybrid zones and introgression seems to be, at the moment, the most frequent outcomes. Although introgression is considered positive, since it increases species' genetic diversity, in the long term, it could lead to negative outcomes such as species fusion or genetic swamping.
Collapse
Affiliation(s)
- Luis R Arce-Valdés
- Red de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz C. P. 91073, Mexico
| | - Rosa A Sánchez-Guillén
- Red de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz C. P. 91073, Mexico.
| |
Collapse
|
3
|
Dzurinka M, Šemeláková M, Panigaj Ľ. Taxonomy of hybridizing Colias croceus (Geoffroy, 1785) and Colias erate (Esper, 1805) (Lepidoptera, Pieridae) in light of mitochondrial and nuclear DNA, with occurrence and effects of Wolbachia infection. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
The intraspecific variability of Colias croceus (Geoffroy, 1785) and C. erate (Esper, 1805) (Lepidoptera, Pieridae) from the perspective of comparative morphology. ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
D'Ercole J, Dincă V, Opler PA, Kondla N, Schmidt C, Phillips JD, Robbins R, Burns JM, Miller SE, Grishin N, Zakharov EV, DeWaard JR, Ratnasingham S, Hebert PDN. A DNA barcode library for the butterflies of North America. PeerJ 2021; 9:e11157. [PMID: 33976967 PMCID: PMC8061581 DOI: 10.7717/peerj.11157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Although the butterflies of North America have received considerable taxonomic attention, overlooked species and instances of hybridization continue to be revealed. The present study assembles a DNA barcode reference library for this fauna to identify groups whose patterns of sequence variation suggest the need for further taxonomic study. Based on 14,626 records from 814 species, DNA barcodes were obtained for 96% of the fauna. The maximum intraspecific distance averaged 1/4 the minimum distance to the nearest neighbor, producing a barcode gap in 76% of the species. Most species (80%) were monophyletic, the others were para- or polyphyletic. Although 15% of currently recognized species shared barcodes, the incidence of such taxa was far higher in regions exposed to Pleistocene glaciations than in those that were ice-free. Nearly 10% of species displayed high intraspecific variation (>2.5%), suggesting the need for further investigation to assess potential cryptic diversity. Aside from aiding the identification of all life stages of North American butterflies, the reference library has provided new perspectives on the incidence of both cryptic and potentially over-split species, setting the stage for future studies that can further explore the evolutionary dynamics of this group.
Collapse
Affiliation(s)
- Jacopo D'Ercole
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.,Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Paul A Opler
- Colorado State University, Fort Collins, CO, United States of America
| | | | - Christian Schmidt
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food, Guelph, Ontario, Canada
| | - Jarrett D Phillips
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada.,School of Computer Science, University of Guelph, Guelph, Ontario, Canada
| | - Robert Robbins
- Department of Entomology, Smithsonian Institution, Washington DC, United States of America
| | - John M Burns
- Department of Entomology, Smithsonian Institution, Washington DC, United States of America
| | - Scott E Miller
- Department of Entomology, Smithsonian Institution, Washington DC, United States of America
| | - Nick Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Evgeny V Zakharov
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy R DeWaard
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | | | - Paul D N Hebert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.,Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Nielsen ME, Kingsolver JG. Compensating for climate change–induced cue‐environment mismatches: evidence for contemporary evolution of a photoperiodic reaction norm in
Colias
butterflies. Ecol Lett 2020; 23:1129-1136. [DOI: 10.1111/ele.13515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew E. Nielsen
- Department of Biology University of North Carolina Chapel Hill NC27599USA
- Department of Zoology Stockholm University SE‐106 91Stockholm Sweden
| | - Joel G. Kingsolver
- Department of Biology University of North Carolina Chapel Hill NC27599USA
| |
Collapse
|
7
|
Kleindorfer S, Dudaniec RY. Hybridization fluctuates with rainfall in Darwin’s tree finches. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Hybridization in natural populations may be an adaptive response to shifting climatic regimes, but understanding this can be limited by the timing of sampling effort and confident identification of hybrids. On the Galapagos Islands, Darwin’s finches regularly hybridize; the islands also show extreme annual variation in rainfall, but the effect of annual rainfall on the frequency of finch hybridization is little known. Across a 20-year period on Floreana Island, we compare patterns of hybridization in sympatric Darwin’s tree finches (N = 425; Camaryhnchus spp.) and test for an effect of annual rainfall on (1) the frequency of hybrids (C. pauper × C. parvulus) and (2) the percentage of male hybrid birds produced per year (hybrid recruitment). Annual rainfall correlated with recruitment positively for hybrids, negatively for C. parvulus and not at all for C. pauper. Furthermore, the percentage of hybrids (range: 12–56%) and C. parvulus did not change with sampling year, but the critically endangered C. pauper declined. Our findings indicate that hybrid recruitment is recurring and variable according to annual rainfall in Camarhynchus Darwin’s finches.
Collapse
Affiliation(s)
- Sonia Kleindorfer
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide, Australia
- Konrad Lorenz Research Center for Behaviour and Cognition and Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Rachael Y Dudaniec
- Macquarie University, Department of Biological Sciences, North Ryde, Sydney, Australia
| |
Collapse
|
8
|
Antoniou A, Frantzis A, Alexiadou P, Paschou N, Poulakakis N. Evidence of introgressive hybridization between Stenella coeruleoalba and Delphinus delphis in the Greek Seas. Mol Phylogenet Evol 2018; 129:325-337. [PMID: 30218775 DOI: 10.1016/j.ympev.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/29/2018] [Accepted: 09/08/2018] [Indexed: 10/28/2022]
Abstract
Natural interspecific hybridization might be more important for the evolutionary history and speciation of animals than previously thought, considering several demographic and life history traits as well as habitat disturbance as factors that promote it. In this aspect, cetaceans comprise an interesting case in which the occurrence of sympatric species in mixed associations provides excellent opportunities for interspecific sexual interaction and the potential for hybridization. Here, we present evidence of natural hybridization for two cetacean species commonly occurring in the Greek Seas (Stenella coeruleoalba and Delphinus delphis), which naturally overlap in the Gulf of Corinth by analyzing highly resolving microsatellite DNA markers and mitochondrial DNA sequences in skin samples from 45 individuals of S. coeruleoalba, 12 D. delphis and three intermediate morphs. Employing several phylogenetic and population genetic approaches, we found 15 individuals that are potential hybrids including the three intermediate morphs, verifying the occurrence of natural hybridization between species of different genera. Their hybrids are fertile and able to reproduce not only with the other hybrids but also with each of the two-parental species. However, current evidence does not allow firm conclusions whether hybridization might constitute a step towards the generation of a new species and/or the swan song of an already existing species (i.e., D. delphis). Given that the focal species form mixed pods in several areas of Mediterranean, this study is an excellent opportunity to understand the mechanisms leading to hybridization in the context of gene flow and urges for the evaluation of the genetic status of common dolphins in the Mediterranean.
Collapse
Affiliation(s)
- Aglaia Antoniou
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research, Gournes Pediados, P.O. Box 2214, 71003 Irakleio, Crete, Greece.
| | - Alexandros Frantzis
- Pelagos Cetacean Research Institute, Terpsichoris 21, 16671 Vouliagmeni, Greece
| | - Paraskevi Alexiadou
- Pelagos Cetacean Research Institute, Terpsichoris 21, 16671 Vouliagmeni, Greece
| | - Nefeli Paschou
- Department of Biology, School of Sciences and Engineering, University of Crete, Vasilika Vouton, Gr-71300 Heraklion, Crete, Greece; Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knossos Av., GR-71409 Heraklion, Crete, Greece
| | - Nikos Poulakakis
- Department of Biology, School of Sciences and Engineering, University of Crete, Vasilika Vouton, Gr-71300 Heraklion, Crete, Greece; Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, Knossos Av., GR-71409 Heraklion, Crete, Greece
| |
Collapse
|
9
|
Crossman CA, Taylor EB, Barrett-Lennard LG. Hybridization in the Cetacea: widespread occurrence and associated morphological, behavioral, and ecological factors. Ecol Evol 2016; 6:1293-303. [PMID: 27087919 PMCID: PMC4775523 DOI: 10.1002/ece3.1913] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 11/21/2022] Open
Abstract
Hybridization has been documented in a many different pairs of cetacean species both in captivity and in the wild. The widespread occurrence of hybridization indicates that postmating barriers to interbreeding are incomplete within the order Cetacea, and therefore raises questions about how species integrity is maintained in the face of interspecific (and often intergeneric) gene flow. We examined hybridization across the order Cetacea (oceanic species included: N = 78; species with 44 chromosomes included: N = 52) to test for associations between the occurrence of hybridization and similarity across 13 ecological, morphological and behavioral traits in hybridizing vs. non‐hybridizing species pairs. We found that species pairs that share a greater number of traits had a higher propensity to hybridize than pairs of species that did not. This trend was driven by behavioral and morphological traits such as vocalization frequency and body size. Together our findings suggest the importance of divergent selection on morphological and behavioral traits within sympatric species in constraining opportunities for hybridization and preventing the collapse of parental species.
Collapse
Affiliation(s)
- Carla A Crossman
- Marine Mammal Research Program Coastal Ocean Research Institute Vancouver Aquarium Marine Science Centre Vancouver British Columbia Canada; Department of Zoology University of British Columbia Vancouver British Columbia Canada
| | - Eric B Taylor
- Department of Zoology University of British Columbia Vancouver British Columbia Canada; Biodiversity Research Centre, and Beaty Biodiversity Museum University of British Columbia Vancouver British Columbia Canada
| | - Lance G Barrett-Lennard
- Marine Mammal Research Program Coastal Ocean Research Institute Vancouver Aquarium Marine Science Centre Vancouver British Columbia Canada; Department of Zoology University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
10
|
Dwyer HE, Jasieniuk M, Okada M, Shapiro AM. Molecular evidence for hybridization in Colias (Lepidoptera: Pieridae): are Colias hybrids really hybrids? Ecol Evol 2015; 5:2865-77. [PMID: 26306172 PMCID: PMC4541991 DOI: 10.1002/ece3.1574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/24/2022] Open
Abstract
Gene flow and hybridization among species dramatically affect our understanding of the species as a biological unit, species relationships, and species adaptations. In North American Colias eurytheme and Colias eriphyle, there has been historical debate over the extent of hybridization occurring and the identity of phenotypically intermediate individuals as genetic hybrids. This study assesses the population structure of these two species to measure the extent of hybridization and the genetic identity of phenotypic intermediates as hybrids. Amplified fragment length polymorphism (AFLP) marker analysis was performed on 378 specimens collected from northern California and Nevada. Population structure was inferred using a Bayesian/Markov chain Monte Carlo method, which probabilistically assigns individuals to genetic clusters. Three genetic clusters provided the best fit for the data. C. eurytheme individuals were primarily assigned to two closely related clusters, and C. eriphyle individuals were mostly assigned to a third, more distantly related cluster. There appeared to be significant hybridization between the two species. Individuals of intermediate phenotype (putative hybrids) were found to be genetically indistinguishable from C. eriphyle, indicating that previous work based on the assumption that these intermediate forms are hybrids may warrant reconsideration.
Collapse
Affiliation(s)
- Heather E Dwyer
- Eberly Center for Teaching Excellence and Educational Innovation, Carnegie Mellon University Pittsburgh, Pennsylvania, 15213
| | - Marie Jasieniuk
- Department of Plant Sciences, University of California Davis, California, 95616
| | - Miki Okada
- Department of Plant Sciences, University of California Davis, California, 95616
| | - Arthur M Shapiro
- Department of Evolution and Ecology, University of California Davis, California, 95616
| |
Collapse
|
11
|
Patel S, Schell T, Eifert C, Feldmeyer B, Pfenninger M. Characterizing a hybrid zone between a cryptic species pair of freshwater snails. Mol Ecol 2015; 24:643-55. [PMID: 25533031 DOI: 10.1111/mec.13049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 12/25/2022]
Abstract
Characterizing hybrid zones and their dynamics is a central goal in evolutionary biology, but this is particularly challenging for morphologically cryptic species. The lack of conspicuous divergence between parental types means intermediate hybrid forms often go undetected. We aimed to detect and characterize a suspected hybrid zone between a pair of morphologically cryptic lineages of the freshwater snail, Radix. We sampled Radix from across a contact zone between two mitochondrial lineages (Radix balthica and an undescribed lineage termed 'MOTU3') and detected admixture between two nuclear genotype clusters, which were significantly but not categorically associated with the mitochondrial lineages. Using a model selection approach, we show that the admixture cline is best explained by an interaction between precipitation and temperature gradients over the area, rather than geographic distance. We thus hypothesize that the correlation with climatic gradients suggests environmental selection has played a role in maintaining the hybrid zone. In a 2050 climate change scenario, we furthermore predict an expansion of one of the nuclear clusters and a widening of the hybrid zone as the climate warms and dries.
Collapse
Affiliation(s)
- Simit Patel
- Biodiversity und Climate Research Centre by Senckenberg Naturforschende Gesellschaft and Goethe-Universität, 60325, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
12
|
Adaptations to "Thermal Time" Constraints in Papilio: Latitudinal and Local Size Clines Differ in Response to Regional Climate Change. INSECTS 2014; 5:199-226. [PMID: 26462585 PMCID: PMC4592633 DOI: 10.3390/insects5010199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 11/17/2022]
Abstract
Adaptations to "thermal time" (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval growth and shorter molting durations at lower temperatures. Here we report on forewing sizes through 30 years for both the northern univoltine P. canadensis (with obligate diapause) from the Great Lakes historical hybrid zone northward to central Alaska (65° N latitude), and the multivoltine, P. glaucus from this hybrid zone southward to central Florida (27° N latitude). Despite recent climate warming, no increases in mean forewing lengths of P. glaucus were observed at any major collection location (FL to MI) from the 1980s to 2013 across this long latitudinal transect (which reflects the "converse of Bergmann's size Rule", with smaller females at higher latitudes). Unlike lower latitudes, the Alaska, Ontonogon, and Chippewa/Mackinac locations (for P. canadensis) showed no significant increases in D-day accumulations, which could explain lack of size change in these northernmost locations. As a result of 3-4 decades of empirical data from major collection sites across these latitudinal clines of North America, a general "voltinism/size/D-day" model is presented, which more closely predicts female size based on D-day accumulations, than does latitude. However, local "climatic cold pockets" in northern Michigan and Wisconsin historically appeared to exert especially strong size constraints on female forewing lengths, but forewing lengths quickly increased with local summer warming during the recent decade, especially near the warming edges of the cold pockets. Results of fine-scale analyses of these "cold pockets" are in contrast to non-significant changes for other Papilio populations seen across the latitudinal transect for P. glaucus and P. canadensis in general, highlighting the importance of scale in adaptations to climate change. Furthermore, we also show that rapid size increases in cold pocket P. canadensis females with recent summer warming are more likely to result from phenotypic plasticity than genotypic introgression from P. glaucus, which does increase size in late-flight hybrids and P. appalachiensis.
Collapse
|
13
|
Wilson JS, Jahner JP, Williams KA, Forister ML. Ecological and evolutionary processes drive the origin and maintenance of imperfect mimicry. PLoS One 2013; 8:e61610. [PMID: 23593490 PMCID: PMC3625143 DOI: 10.1371/journal.pone.0061610] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
Although the forces behind the evolution of imperfect mimicry remain poorly studied, recent hypotheses suggest that relaxed selection on small-bodied individuals leads to imperfect mimicry. While evolutionary history undoubtedly affects the development of imperfect mimicry, ecological community context has largely been ignored and may be an important driver of imperfect mimicry. Here we investigate how evolutionary and ecological contexts might influence mimetic fidelity in Müllerian and Batesian mimicry systems. In Batesian hoverfly systems we find that body size is not a strong predictor of mimetic fidelity. However, in Müllerian velvet ants we find a weak positive relationship between body size and mimetic fidelity when evolutionary context is controlled for and a much stronger relationship between community diversity and mimetic fidelity. These results suggest that reduced selection on small-bodied individuals may not be a major driver of the evolution of imperfect mimicry and that other factors, such as ecological community context, should be considered when studying the evolution of imperfect mimicry.
Collapse
Affiliation(s)
- Joseph S Wilson
- Department of Biology, Utah State University Tooele, Tooele, Utah, USA.
| | | | | | | |
Collapse
|
14
|
Pauls SU, Nowak C, Bálint M, Pfenninger M. The impact of global climate change on genetic diversity within populations and species. Mol Ecol 2012; 22:925-46. [DOI: 10.1111/mec.12152] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 12/16/2022]
Affiliation(s)
- Steffen U. Pauls
- Biodiversity and Climate Research Centre (BiK‐F) by Senckenberg Gesellschaft für Naturforschung and Goethe University Senckenberganlage 25 D‐60325 Frankfurt/Main Germany
| | - Carsten Nowak
- Biodiversity and Climate Research Centre (BiK‐F) by Senckenberg Gesellschaft für Naturforschung and Goethe University Senckenberganlage 25 D‐60325 Frankfurt/Main Germany
- Conservation Genetics Group Senckenberg Research Institute and Natural History Museum Frankfurt Clamecystraße 12 D‐63571 Gelnhausen Germany
| | - Miklós Bálint
- Biodiversity and Climate Research Centre (BiK‐F) by Senckenberg Gesellschaft für Naturforschung and Goethe University Senckenberganlage 25 D‐60325 Frankfurt/Main Germany
- Molecular Biology Center, Babes‐Bolyai University Str. Treboniu Laurian 42 400271 Cluj Romania
| | - Markus Pfenninger
- Biodiversity and Climate Research Centre (BiK‐F) by Senckenberg Gesellschaft für Naturforschung and Goethe University Senckenberganlage 25 D‐60325 Frankfurt/Main Germany
| |
Collapse
|
15
|
Keränen I, Kahilainen A, Knott KE, Kotiaho JS, Kuitunen K. High maternal species density mediates unidirectional heterospecific matings inCalopteryxdamselflies. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.02043.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Inka Keränen
- Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| | - Aapo Kahilainen
- Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| | - K. Emily Knott
- Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| | - Janne S. Kotiaho
- Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
- Natural History Museum; University of Jyväskylä; Jyväskylä Finland
| | - Katja Kuitunen
- Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| |
Collapse
|