1
|
Xue W, Hong J, Wang T. The evolutionary landscape of prokaryotic chromosome/plasmid balance. Commun Biol 2024; 7:1434. [PMID: 39496780 PMCID: PMC11535066 DOI: 10.1038/s42003-024-07167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
The balance between chromosomal and plasmid DNAs determines the genomic plasticity of prokaryotes. Natural selections, acting on the level of organisms or plasmids, shape the abundances of plasmid DNAs in prokaryotic genomes. Despite the importance of plasmids in health and engineering, there have been rare systematic attempts to quantitatively model and predict the determinants underlying the strength of different selection forces. Here, we develop a metabolic flux model that describes the intracellular resource competition between chromosomal and plasmid-encoded reactions. By coarse graining, this model predicts a landscape of natural selections on chromosome/plasmid balance, which is featured by the tradeoff between phenotypic and non-phenotypic selection pressures. This landscape is further validated by the observed pattern of plasmid distributions in the vast collection of prokaryotic genomes retrieved from the NCBI database. Our results establish a universal paradigm to understand the prokaryotic chromosome/plasmid interplay and provide insights into the evolutionary origin of plasmid diversity.
Collapse
Affiliation(s)
- Wenzhi Xue
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Juken Hong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Teng Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Scott TW, West SA, Dewar AE, Wild G. Is cooperation favored by horizontal gene transfer? Evol Lett 2023; 7:113-120. [PMID: 37251586 PMCID: PMC10210433 DOI: 10.1093/evlett/qrad003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 05/31/2023] Open
Abstract
It has been hypothesized that horizontal gene transfer on plasmids can facilitate the evolution of cooperation, by allowing genes to jump between bacteria, and hence increase genetic relatedness at the cooperative loci. However, we show theoretically that horizontal gene transfer only appreciably increases relatedness when plasmids are rare, where there are many plasmid-free cells available to infect (many opportunities for horizontal gene transfer). In contrast, when plasmids are common, there are few opportunities for horizontal gene transfer, meaning relatedness is not appreciably increased, and so cooperation is not favored. Plasmids, therefore, evolve to be rare and cooperative, or common and noncooperative, meaning plasmid frequency and cooperativeness are never simultaneously high. The overall level of plasmid-mediated cooperation, given by the product of plasmid frequency and cooperativeness, is therefore consistently negligible or low.
Collapse
Affiliation(s)
- Thomas W Scott
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Anna E Dewar
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Geoff Wild
- Department of Mathematics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Li F, Wang J, Jiang Y, Guo Y, Liu N, Xiao S, Yao L, Li J, Zhuo C, He N, Liu B, Zhuo C. Adaptive Evolution Compensated for the Plasmid Fitness Costs Brought by Specific Genetic Conflicts. Pathogens 2023; 12:pathogens12010137. [PMID: 36678485 PMCID: PMC9861728 DOI: 10.3390/pathogens12010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM)-carrying IncX3 plasmids is important in the transmission of carbapenem resistance in Escherichia coli. Fitness costs related to plasmid carriage are expected to limit gene exchange; however, the causes of these fitness costs are poorly understood. Compensatory mutations are believed to ameliorate plasmid fitness costs and enable the plasmid's wide spread, suggesting that such costs are caused by specific plasmid-host genetic conflicts. By combining conjugation tests and experimental evolution with comparative genetic analysis, we showed here that the fitness costs related to ndm/IncX3 plasmids in E. coli C600 are caused by co-mutations of multiple host chromosomal genes related to sugar metabolism and cell membrane function. Adaptive evolution revealed that mutations in genes associated with oxidative stress, nucleotide and short-chain fatty acid metabolism, and cell membranes ameliorated the costs associated with plasmid carriage. Specific genetic conflicts associated with the ndm/IncX3 plasmid in E. coli C600 involve metabolism and cell-membrane-related genes, which could be ameliorated by compensatory mutations. Collectively, our findings could explain the wide spread of IncX3 plasmids in bacterial genomes, despite their potential cost.
Collapse
Affiliation(s)
- Feifeng Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Jiong Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Ying Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Yingyi Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Ningjing Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Shunian Xiao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Likang Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Jiahui Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Chuyue Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Nanhao He
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
| | - Baomo Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen Univesity, Guangzhou 510030, China
- Correspondence: (B.L.); (C.Z.)
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China
- Correspondence: (B.L.); (C.Z.)
| |
Collapse
|
4
|
Jamieson-Lane AD, Blasius B. The gossip paradox: Why do bacteria share genes? MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:5482-5508. [PMID: 35603365 DOI: 10.3934/mbe.2022257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacteria, in contrast to eukaryotic cells, contain two types of genes: chromosomal genes that are fixed to the cell, and plasmids, smaller loops of DNA capable of being passed from one cell to another. The sharing of plasmid genes between individual bacteria and between bacterial lineages has contributed vastly to bacterial evolution, allowing specialized traits to 'jump ship' between one lineage or species and the next. The benefits of this generosity from the point of view of both recipient cell and plasmid are generally understood: plasmids receive new hosts and ride out selective sweeps across the population, recipient cells gain new traits (such as antibiotic resistance). Explaining this behavior from the point of view of donor cells is substantially more difficult. Donor cells pay a fitness cost in order to share plasmids, and run the risk of sharing advantageous genes with their competition and rendering their own lineage redundant, while seemingly receiving no benefit in return. Using both compartment based models and agent based simulations we demonstrate that 'secretive' genes which restrict horizontal gene transfer are favored over a wide range of models and parameter values, even when sharing carries no direct cost. 'Generous' chromosomal genes which are more permissive of plasmid transfer are found to have neutral fitness at best, and are generally disfavored by selection. Our findings lead to a peculiar paradox: given the obvious benefits of keeping secrets, why do bacteria share information so freely?
Collapse
Affiliation(s)
- Alastair D Jamieson-Lane
- Department of Mathematics, University of Auckland, Auckland, 1010, New Zealand
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky, Universität Oldenburg, Oldenburg, 26129, Germany. Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky, Universität Oldenburg, Oldenburg, 26129, Germany
| | - Bernd Blasius
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky, Universität Oldenburg, Oldenburg, 26129, Germany. Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky, Universität Oldenburg, Oldenburg, 26129, Germany
| |
Collapse
|
5
|
Plasmids do not consistently stabilize cooperation across bacteria but may promote broad pathogen host-range. Nat Ecol Evol 2021; 5:1624-1636. [PMID: 34750532 PMCID: PMC7612097 DOI: 10.1038/s41559-021-01573-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022]
Abstract
Horizontal gene transfer via plasmids could favour cooperation in bacteria, because transfer of a cooperative gene turns non-cooperative cheats into cooperators. This hypothesis has received support from theoretical, genomic and experimental analyses. In contrast, we show here, with a comparative analysis across 51 diverse species, that genes for extracellular proteins, which are likely to act as cooperative ‘public goods’, were not more likely to be carried on either: (i) plasmids compared to chromosomes; or (ii) plasmids that transfer at higher rates. Our results were supported by theoretical modelling which showed that while horizontal gene transfer can help cooperative genes initially invade a population, it has less influence on the longer-term maintenance of cooperation. Instead, we found that genes for extracellular proteins were more likely to be on plasmids when they coded for pathogenic virulence traits, in pathogenic bacteria with a broad host-range.
Collapse
|
6
|
Hernández-Beltrán JCR, San Millán A, Fuentes-Hernández A, Peña-Miller R. Mathematical Models of Plasmid Population Dynamics. Front Microbiol 2021; 12:606396. [PMID: 34803935 PMCID: PMC8600371 DOI: 10.3389/fmicb.2021.606396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
With plasmid-mediated antibiotic resistance thriving and threatening to become a serious public health problem, it is paramount to increase our understanding of the forces that enable the spread and maintenance of drug resistance genes encoded in mobile genetic elements. The relevance of plasmids as vehicles for the dissemination of antibiotic resistance genes, in addition to the extensive use of plasmid-derived vectors for biotechnological and industrial purposes, has promoted the in-depth study of the molecular mechanisms controlling multiple aspects of a plasmids' life cycle. This body of experimental work has been paralleled by the development of a wealth of mathematical models aimed at understanding the interplay between transmission, replication, and segregation, as well as their consequences in the ecological and evolutionary dynamics of plasmid-bearing bacterial populations. In this review, we discuss theoretical models of plasmid dynamics that span from the molecular mechanisms of plasmid partition and copy-number control occurring at a cellular level, to their consequences in the population dynamics of complex microbial communities. We conclude by discussing future directions for this exciting research topic.
Collapse
Affiliation(s)
| | | | | | - Rafael Peña-Miller
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
7
|
Zwanzig M. The ecology of plasmid-coded antibiotic resistance: a basic framework for experimental research and modeling. Comput Struct Biotechnol J 2020; 19:586-599. [PMID: 33510864 PMCID: PMC7807137 DOI: 10.1016/j.csbj.2020.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/27/2022] Open
Abstract
Many antibiotic resistance genes are associated with plasmids. The ecological success of these mobile genetic elements within microbial communities depends on varying mechanisms to secure their own propagation, not only on environmental selection. Among the most important are the cost of plasmids and their ability to be transferred to new hosts through mechanisms such as conjugation. These are regulated by dynamic control systems of the conjugation machinery and genetic adaptations that plasmid-host pairs can acquire in coevolution. However, in complex communities, these processes and mechanisms are subject to a variety of interactions with other bacterial species and other plasmid types. This article summarizes basic plasmid properties and ecological principles particularly important for understanding the persistence of plasmid-coded antibiotic resistance in aquatic environments. Through selected examples, it further introduces to the features of different types of simulation models such as systems of ordinary differential equations and individual-based models, which are considered to be important tools to understand these complex systems. This ecological perspective aims to improve the way we study and understand the dynamics, diversity and persistence of plasmids and associated antibiotic resistance genes.
Collapse
Affiliation(s)
- Martin Zwanzig
- Faculty of Environmental Sciences, Technische Universität Dresden, Pienner Str. 8, D-01737 Tharandt, Germany
| |
Collapse
|
8
|
Durão P, Balbontín R, Gordo I. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends Microbiol 2018; 26:677-691. [DOI: 10.1016/j.tim.2018.01.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/05/2018] [Accepted: 01/24/2018] [Indexed: 01/10/2023]
|
9
|
Pettersen VK, Steinsland H, Wiker HG. Comparative Proteomics of Enterotoxigenic Escherichia coli Reveals Differences in Surface Protein Production and Similarities in Metabolism. J Proteome Res 2017; 17:325-336. [DOI: 10.1021/acs.jproteome.7b00593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Veronika Kuchařová Pettersen
- The Gade Research Group for Infection and Immunity, Department of
Clinical Science, ‡Centre for International Health, Department of Global Public Health
and Primary Care, and §Department of Biomedicine, University of Bergen, 5021 Bergen, Norway
| | - Hans Steinsland
- The Gade Research Group for Infection and Immunity, Department of
Clinical Science, ‡Centre for International Health, Department of Global Public Health
and Primary Care, and §Department of Biomedicine, University of Bergen, 5021 Bergen, Norway
| | - Harald G. Wiker
- The Gade Research Group for Infection and Immunity, Department of
Clinical Science, ‡Centre for International Health, Department of Global Public Health
and Primary Care, and §Department of Biomedicine, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
10
|
Abstract
Uropathogenic Escherichia coli (UPEC) are opportunistic human pathogens that primarily circulate as part of commensal intestinal microbiota. Though they have the ability to survive and proliferate in various urinary tract compartments, the urinary tract is a transient, occasional habitat for UPEC. Because of this, most of the UPEC traits have originally evolved to serve in intestinal colonization and transmission. Some of these bacterial traits serve as virulence factors - they are critical to or assist in survival of UPEC as pathogens, and the structure and/or function may be specialized for the infection. Other traits could serve as anti-virulence factors - they represent liability in the urinary tract and are under selection to be lost or inactivated during the infection. Inactivation, variation, or other changes of the bacterial genes that increase the pathogen's fitness during the infection are called pathoadaptive mutations. This chapter describes examples of pathoadaptive mutations in UPEC and provides rationale for their further in-depth study.
Collapse
|
11
|
Patel S. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance. INFECTION GENETICS AND EVOLUTION 2016; 45:151-164. [DOI: 10.1016/j.meegid.2016.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
|
12
|
Vogwill T, MacLean RC. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol Appl 2014; 8:284-95. [PMID: 25861386 PMCID: PMC4380922 DOI: 10.1111/eva.12202] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022] Open
Abstract
The evolution of antibiotic resistance carries a fitness cost, expressed in terms of reduced competitive ability in the absence of antibiotics. This cost plays a key role in the dynamics of resistance by generating selection against resistance when bacteria encounter an antibiotic-free environment. Previous work has shown that the cost of resistance is highly variable, but the underlying causes remain poorly understood. Here, we use a meta-analysis of the published resistance literature to determine how the genetic basis of resistance influences its cost. We find that on average chromosomal resistance mutations carry a larger cost than acquiring resistance via a plasmid. This may explain why resistance often evolves by plasmid acquisition. Second, we find that the cost of plasmid acquisition increases with the breadth of its resistance range. This suggests a potentially important limit on the evolution of extensive multidrug resistance via plasmids. We also find that epistasis can significantly alter the cost of mutational resistance. Overall, our study shows that the cost of antimicrobial resistance can be partially explained by its genetic basis. It also highlights both the danger associated with plasmidborne resistance and the need to understand why resistance plasmids carry a relatively low cost.
Collapse
Affiliation(s)
- Tom Vogwill
- Department of Zoology, University of Oxford Oxford, UK
| | | |
Collapse
|
13
|
Dorman CJ. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria. Plasmid 2014; 75:1-11. [DOI: 10.1016/j.plasmid.2014.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
|
14
|
Harrison E, Brockhurst MA. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol 2012; 20:262-7. [PMID: 22564249 DOI: 10.1016/j.tim.2012.04.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 11/30/2022]
Abstract
Conjugative plasmids are key agents of horizontal gene transfer (HGT) that accelerate bacterial adaptation by vectoring ecologically important traits between strains and species. However, although many conjugative plasmids carry beneficial traits, all plasmids exert physiological costs-of-carriage on bacteria. The existence of conjugative plasmids, therefore, presents a paradox because non-beneficial plasmids should be lost to purifying selection, whereas beneficial genes carried on plasmids should be integrated into the bacterial chromosome. Several ecological solutions to the paradox have been proposed, but none account for co-adaptation of bacteria and conjugative plasmids. Drawing upon evidence from experimental evolution, we argue that HGT via conjugation can only be fully understood in a coevolutionary framework.
Collapse
Affiliation(s)
- Ellie Harrison
- Institute of Integrative Biology, University of Liverpool, Bioscience Building, Liverpool, UK
| | | |
Collapse
|