1
|
Tannous EA, Burgers PM. Novel insights into the mechanism of cell cycle kinases Mec1(ATR) and Tel1(ATM). Crit Rev Biochem Mol Biol 2021; 56:441-454. [PMID: 34151669 DOI: 10.1080/10409238.2021.1925218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA replication is a highly precise process which usually functions in a perfect rhythm with cell cycle progression. However, cells are constantly faced with various kinds of obstacles such as blocks in DNA replication, lack of availability of precursors and improper chromosome alignment. When these problems are not addressed, they may lead to chromosome instability and the accumulation of mutations, and even cell death. Therefore, the cell has developed response mechanisms to keep most of these situations under control. Of the many factors that participate in this DNA damage response, members of the family of phosphatidylinositol 3-kinase-related protein kinases (PIKKs) orchestrate the response landscape. Our understanding of two members of the PIKK family, human ATR (yeast Mec1) and ATM (yeast Tel1), and their associated partner proteins, has shown substantial progress through recent biochemical and structural studies. Emerging structural information of these unique kinases show common features that reveal the mechanism of kinase activity.
Collapse
Affiliation(s)
- Elias A Tannous
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
2
|
Lee MS, Joo JW, Choi H, Kang HA, Kim K. Mec1 Modulates Interhomolog Crossover and Interplays with Tel1 at Post Double-Strand Break Stages. J Microbiol Biotechnol 2020; 30:469-475. [PMID: 31847509 PMCID: PMC9728206 DOI: 10.4014/jmb.1909.09020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/15/2022]
Abstract
During meiosis I, programmed DNA double-strand breaks (DSBs) occur to promote chromosome pairing and recombination between homologs. In Saccharomyces cerevisiae, Mec1 and Tel1, the orthologs of human ATR and ATM, respectively, regulate events upstream of the cell cycle checkpoint to initiate DNA repair. Tel1ATM and Mec1ATR are required for phosphorylating various meiotic proteins during recombination. This study aimed to investigate the role of Tel1ATM and Mec1ATR in meiotic prophase via physical analysis of recombination. Tel1ATM cooperated with Mec1ATR to mediate DSB-to-single end invasion transition, but negatively regulated DSB formation. Furthermore, Mec1ATR was required for the formation of interhomolog joint molecules from early prophase, thus establishing a recombination partner choice. Moreover, Mec1ATR specifically promoted crossover-fated DSB repair. Together, these results suggest that Tel1ATM and Mec1ATR function redundantly or independently in all post-DSB stages.
Collapse
Affiliation(s)
- Min-Su Lee
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jung Whan Joo
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyungseok Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ah Kang
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Keunpil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
3
|
Krol K, Brozda I, Skoneczny M, Bretne M, Skoneczna A. A genomic screen revealing the importance of vesicular trafficking pathways in genome maintenance and protection against genotoxic stress in diploid Saccharomyces cerevisiae cells. PLoS One 2015; 10:e0120702. [PMID: 25756177 PMCID: PMC4355298 DOI: 10.1371/journal.pone.0120702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/25/2015] [Indexed: 11/30/2022] Open
Abstract
The ability to survive stressful conditions is important for every living cell. Certain stresses not only affect the current well-being of cells but may also have far-reaching consequences. Uncurbed oxidative stress can cause DNA damage and decrease cell survival and/or increase mutation rates, and certain substances that generate oxidative damage in the cell mainly act on DNA. Radiomimetic zeocin causes oxidative damage in DNA, predominantly by inducing single- or double-strand breaks. Such lesions can lead to chromosomal rearrangements, especially in diploid cells, in which the two sets of chromosomes facilitate excessive and deleterious recombination. In a global screen for zeocin-oversensitive mutants, we selected 133 genes whose deletion reduces the survival of zeocin-treated diploid Saccharomyces cerevisiae cells. The screen revealed numerous genes associated with stress responses, DNA repair genes, cell cycle progression genes, and chromatin remodeling genes. Notably, the screen also demonstrated the involvement of the vesicular trafficking system in cellular protection against DNA damage. The analyses indicated the importance of vesicular system integrity in various pathways of cellular protection from zeocin-dependent damage, including detoxification and a direct or transitional role in genome maintenance processes that remains unclear. The data showed that deleting genes involved in vesicular trafficking may lead to Rad52 focus accumulation and changes in total DNA content or even cell ploidy alterations, and such deletions may preclude proper DNA repair after zeocin treatment. We postulate that functional vesicular transport is crucial for sustaining an integral genome. We believe that the identification of numerous new genes implicated in genome restoration after genotoxic oxidative stress combined with the detected link between vesicular trafficking and genome integrity will reveal novel molecular processes involved in genome stability in diploid cells.
Collapse
Affiliation(s)
- Kamil Krol
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Brozda
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Maria Bretne
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
4
|
Teixeira MT. Saccharomyces cerevisiae as a Model to Study Replicative Senescence Triggered by Telomere Shortening. Front Oncol 2013; 3:101. [PMID: 23638436 PMCID: PMC3636481 DOI: 10.3389/fonc.2013.00101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/11/2013] [Indexed: 01/22/2023] Open
Abstract
In many somatic human tissues, telomeres shorten progressively because of the DNA-end replication problem. Consequently, cells cease to proliferate and are maintained in a metabolically viable state called replicative senescence. These cells are characterized by an activation of DNA damage checkpoints stemming from eroded telomeres, which are bypassed in many cancer cells. Hence, replicative senescence has been considered one of the most potent tumor suppressor pathways. However, the mechanism through which short telomeres trigger this cellular response is far from being understood. When telomerase is removed experimentally in Saccharomyces cerevisiae, telomere shortening also results in a gradual arrest of population growth, suggesting that replicative senescence also occurs in this unicellular eukaryote. In this review, we present the key steps that have contributed to the understanding of the mechanisms underlying the establishment of replicative senescence in budding yeast. As in mammals, signals stemming from short telomeres activate the DNA damage checkpoints, suggesting that the early cellular response to the shortest telomere(s) is conserved in evolution. Yet closer analysis reveals a complex picture in which the apparent single checkpoint response may result from a variety of telomeric alterations expressed in the absence of telomerase. Accordingly, the DNA replication of eroding telomeres appears as a critical challenge for senescing budding yeast cells and the easy manipulation of S. cerevisiae is providing insights into the way short telomeres are integrated into their chromatin and nuclear environments. Finally, the loss of telomerase in budding yeast triggers a more general metabolic alteration that remains largely unexplored. Thus, telomerase-deficient S. cerevisiae cells may have more common points than anticipated with somatic cells, in which telomerase depletion is naturally programed, thus potentially inspiring investigations in mammalian cells.
Collapse
Affiliation(s)
- M Teresa Teixeira
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique Paris, France
| |
Collapse
|
5
|
A multistep genomic screen identifies new genes required for repair of DNA double-strand breaks in Saccharomyces cerevisiae. BMC Genomics 2013; 14:251. [PMID: 23586741 PMCID: PMC3637596 DOI: 10.1186/1471-2164-14-251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efficient mechanisms for rejoining of DNA double-strand breaks (DSBs) are vital because misrepair of such lesions leads to mutation, aneuploidy and loss of cell viability. DSB repair is mediated by proteins acting in two major pathways, called homologous recombination and nonhomologous end-joining. Repair efficiency is also modulated by other processes such as sister chromatid cohesion, nucleosome remodeling and DNA damage checkpoints. The total number of genes influencing DSB repair efficiency is unknown. RESULTS To identify new yeast genes affecting DSB repair, genes linked to gamma radiation resistance in previous genome-wide surveys were tested for their impact on repair of site-specific DSBs generated by in vivo expression of EcoRI endonuclease. Eight members of the RAD52 group of DNA repair genes (RAD50, RAD51, RAD52, RAD54, RAD55, RAD57, MRE11 and XRS2) and 73 additional genes were found to be required for efficient repair of EcoRI-induced DSBs in screens utilizing both MATa and MATα deletion strain libraries. Most mutants were also sensitive to the clastogenic chemicals MMS and bleomycin. Several of the non-RAD52 group genes have previously been linked to DNA repair and over half of the genes affect nuclear processes. Many proteins encoded by the protective genes have previously been shown to associate physically with each other and with known DNA repair proteins in high-throughput proteomics studies. A majority of the proteins (64%) share sequence similarity with human proteins, suggesting that they serve similar functions. CONCLUSIONS We have used a genetic screening approach to detect new genes required for efficient repair of DSBs in Saccharomyces cerevisiae. The findings have spotlighted new genes that are critical for maintenance of genome integrity and are therefore of greatest concern for their potential impact when the corresponding gene orthologs and homologs are inactivated or polymorphic in human cells.
Collapse
|
6
|
Dynamics of Rad9 chromatin binding and checkpoint function are mediated by its dimerization and are cell cycle-regulated by CDK1 activity. PLoS Genet 2010; 6. [PMID: 20700441 PMCID: PMC2916856 DOI: 10.1371/journal.pgen.1001047] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 07/02/2010] [Indexed: 12/21/2022] Open
Abstract
Saccharomyces cerevisiae Rad9 is required for an effective DNA damage response throughout the cell cycle. Assembly of Rad9 on chromatin after DNA damage is promoted by histone modifications that create docking sites for Rad9 recruitment, allowing checkpoint activation. Rad53 phosphorylation is also dependent upon BRCT-directed Rad9 oligomerization; however, the crosstalk between these molecular determinants and their functional significance are poorly understood. Here we report that, in the G1 and M phases of the cell cycle, both constitutive and DNA damage-dependent Rad9 chromatin association require its BRCT domains. In G1 cells, GST or FKBP dimerization motifs can substitute to the BRCT domains for Rad9 chromatin binding and checkpoint function. Conversely, forced Rad9 dimerization in M phase fails to promote its recruitment onto DNA, although it supports Rad9 checkpoint function. In fact, a parallel pathway, independent on histone modifications and governed by CDK1 activity, allows checkpoint activation in the absence of Rad9 chromatin binding. CDK1-dependent phosphorylation of Rad9 on Ser11 leads to specific interaction with Dpb11, allowing Rad53 activation and bypassing the requirement for the histone branch. In response to DNA damage all eukaryotic cells activate a surveillance mechanism, known as the DNA damage checkpoint, which delays cell cycle progression and modulates DNA repair. Yeast RAD9 was the first DNA damage checkpoint gene identified. The genetic tools available in this model system allow to address relevant questions to understand the molecular mechanisms underlying the Rad9 biological function. By chromatin-binding and domain-swapping experiments, we found that Rad9 is recruited into DNA both in unperturbed and in DNA–damaging conditions, and we identified the molecular determinants required for such interaction. Moreover, the extent of chromatin-bound Rad9 is regulated during the cell cycle and influences its role in checkpoint activation. In fact, the checkpoint function of Rad9 in G1 cells is solely mediated by its interaction with modified histones, while in M phase it occurs through an additional scaffold protein, named Dpb11. Productive Rad9-Dpb11 interaction in M phase requires Rad9 phosphorylation by CDK1, and we identified the Ser11 residue as the major CDK1 target. The model of Rad9 action that we are presenting can be extended to other eukaryotic organisms, since Rad9 and Dpb11 have been conserved through evolution from yeast to mammalian cells.
Collapse
|
7
|
Suetomi K, Mochizuki M, Suzuki S, Yamamoto H, Yamamoto K. Effects of Saccharomyces cerevisiae mec1, tel1, and mre11 mutations on spontaneous and methylmethane sulfonate-induced genome instability. Genes Genet Syst 2010; 85:1-8. [PMID: 20410660 DOI: 10.1266/ggs.85.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In eukaryotes, together with the Mre11/Rad50/Xrs2 (or Nbs1) complex, a family of related protein kinases (the ATM family) is involved in checkpoint activation in response to DNA double-strand breaks. In Saccharomyces cerevisiae, two members of this family, MEC1 and TEL1, have functionally redundant roles in DNA damage repair. Strains with mutations in their mec1 as well as mre11 genes are very sensitive to DNA damaging agents, show defective induction of damage-induced cell-cycle checkpoints, and defective damage-induced homologous recombination. However, the fact that both the mec1Delta and mre11Delta strains exhibit the spontaneous hyper-recombination phenotype is paradoxical in light of the homologous recombination defects in these strains. In this study, we constructed yeast mec1, tel1, and mre11 null mutations and characterized their genome stability properties. Spontaneous and methylmethane sulfonate (MMS)-induced point mutations, base-substitutions, and frameshifts occurred to an almost equal extent in the wild-type, mec1Delta, tel1Delta, and mre11Delta strains. Thus, Mec1, Tel1, and Mre11 do not play roles in the point mutation response. We then found that the mec1Delta, mre11Delta, and mec1Delta tel1Delta strains demonstrated increased rates of spontaneous loss of heterozygosity (LOH), which includes crossover, gene conversion, and chromosome loss, compared with the wild-type strain. In the tel1Delta strain, the rate of spontaneous LOH was as low as that in the wild-type strain. Finally, no induction of LOH by MMS was observed in the mec1Delta, mre11Delta, or mec1Delta tel1Delta strain; however, it was detected in the wild-type and tel1Delta strains upon exposure to MMS. The elevated level of spontaneous LOH but not MMS-induced LOH in the mec1Delta, mre11Delta, and mec1Delta tel1Delta strains suggests the presence of high levels of spontaneous recombinogenic DNA damage, which differs from the damage induced by MMS treatment, in these strains.
Collapse
Affiliation(s)
- Kazuhiro Suetomi
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | |
Collapse
|
8
|
Blunt-ended DNA double-strand breaks induced by endonucleases PvuII and EcoRV are poor substrates for repair in Saccharomyces cerevisiae. DNA Repair (Amst) 2010; 9:617-26. [PMID: 20356803 DOI: 10.1016/j.dnarep.2010.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/11/2010] [Accepted: 02/12/2010] [Indexed: 12/26/2022]
Abstract
Most mechanistic studies of repair of DNA double-strand breaks (DSBs) produced by in vivo expression of endonucleases have utilized enzymes that produce cohesive-ended DSBs such as HO, I-SceI and EcoRI. We have developed systems for expression of PvuII and EcoRV, nucleases that produce DSBs containing blunt ends, using a modified GAL1 promoter that has reduced basal activity. Expression of PvuII and EcoRV caused growth inhibition and strong cell killing in both haploid and diploid yeast cells. Surprisingly, there was little difference in sensitivities of wildtype cells and mutants defective in homologous recombination, nonhomologous end-joining (NHEJ), or both pathways. Physical analysis using standard and pulsed field gel electrophoresis demonstrated time-dependent breakage of chromosomal DNA within cells. Although ionizing radiation-induced DSBs were largely repaired within 4h, no repair of PvuII-induced breaks could be detected in diploid cells, even after arrest in G2/M. Rare survivors of PvuII expression had an increased frequency of chromosome XII deletions, an indication that a fraction of the induced DSBs could be repaired by an error-prone process. These results indicate that, unlike DSBs with complementary single-stranded DNA overhangs, blunt-ended DSBs in yeast chromosomes are poor substrates for repair by either NHEJ or recombination.
Collapse
|
9
|
Pawar V, Jingjing L, Patel N, Kaur N, Doetsch PW, Shadel GS, Zhang H, Siede W. Checkpoint kinase phosphorylation in response to endogenous oxidative DNA damage in repair-deficient stationary-phase Saccharomyces cerevisiae. Mech Ageing Dev 2009; 130:501-8. [PMID: 19540258 DOI: 10.1016/j.mad.2009.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 06/03/2009] [Accepted: 06/07/2009] [Indexed: 10/20/2022]
Abstract
Stationary-phase Saccharomyces cerevisiae can serve as a model for post-mitotic cells of higher eukaryotes. Phosphorylation and activation of the checkpoint kinase Rad53 was observed after more than 2 days of culture if two major pathways of oxidative DNA damage repair, base excision repair (BER) and nucleotide excision repair (NER), are inactive. The wild type showed a low degree of Rad53 phosphorylation when the incubation period was drastically increased. In the ber ner strain, Rad53 phosphorylation can be abolished by inclusion of antioxidants or exclusion of oxygen. Furthermore, this modification and enhanced mutagenesis in extended stationary phase were absent in rho degrees strains, lacking detectable mitochondrial DNA. This checkpoint response is therefore thought to be dependent on reactive oxygen species originating from mitochondrial respiration. There was no evidence for progressive overall telomere shortening during stationary-phase incubation. Since Rad50 (of the MRN complex) and Mec1 (the homolog of ATR) were absolutely required for the observed checkpoint response, we assume that resected random double-strand breaks are the critical lesion. Single-strand resection may be accelerated by unrepaired oxidative base damage in the vicinity of a double-strand break.
Collapse
Affiliation(s)
- Vaibhav Pawar
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Humpal SE, Robinson DA, Krebs JE. Marks to stop the clock: histone modifications and checkpoint regulation in the DNA damage response. Biochem Cell Biol 2009; 87:243-53. [PMID: 19234538 DOI: 10.1139/o08-109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA damage from endogenous and exogenous sources occurs throughout the cell cycle. In response to this damage, cells have developed a series of biochemical responses that allow them to recover from DNA damage and prevent mutations from being passed on to daughter cells. An important part of the DNA damage response is the ability to halt the progression of the cell cycle, allowing damaged DNA to be repaired. The cell cycle can be halted at semi-discrete times, called checkpoints, which occur at critical stages during the cell cycle. Recent work in our laboratory and by others has shown the importance of post-translational histone modifications in the DNA damage response. While many histone modifications have been identified that appear to facilitate repair per se, there have been surprisingly few links between these modifications and DNA damage checkpoints. Here, we review how modifications to histone H2A serine 129 (HSA129) and histone H3 lysine 79 (H3K79) contribute to the stimulation of the G1/S checkpoint. We also discuss recent findings that conflict with the current model of the way methylated H3K79 interacts with the checkpoint adaptor protein Rad9.
Collapse
Affiliation(s)
- Stephen E Humpal
- Department of Biological Sciences, University of Alaska-Anchorage, 3211 Providence Drive, Anchorage, AK99508, USA
| | | | | |
Collapse
|
11
|
Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell 2009; 137:247-58. [PMID: 19361851 DOI: 10.1016/j.cell.2009.02.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 12/17/2008] [Accepted: 02/05/2009] [Indexed: 12/25/2022]
Abstract
In response to replication stress, the Mec1/ATR and SUMO pathways control stalled- and damaged-fork stability. We investigated the S phase response at forks encountering a broken template (termed the terminal fork). We show that double-strand break (DSB) formation can locally trigger dormant origin firing. Irreversible fork resolution at the break does not impede progression of the other fork in the same replicon (termed the sister fork). The Mre11-Tel1/ATM response acts at terminal forks, preventing accumulation of cruciform DNA intermediates that tether sister chromatids and can undergo nucleolytic processing. We conclude that sister forks can be uncoupled during replication and that, after DSB-induced fork termination, replication is rescued by dormant origin firing or adjacent replicons. We have uncovered a Tel1/ATM- and Mre11-dependent response controlling terminal fork integrity. Our findings have implications for those genome instability syndromes that accumulate DNA breaks during S phase and for forks encountering eroding telomeres.
Collapse
|
12
|
Koltovaya NA. Activation of repair and checkpoints by double-strand DNA breaks: Activational cascade of protein phosphorylation. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Inhibition of DNA double-strand break repair by the Ku heterodimer in mrx mutants of Saccharomyces cerevisiae. DNA Repair (Amst) 2008; 8:162-9. [PMID: 18992851 DOI: 10.1016/j.dnarep.2008.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/26/2008] [Accepted: 09/29/2008] [Indexed: 11/20/2022]
Abstract
Yeast rad50 and mre11 nuclease mutants are hypersensitive to physical and chemical agents that induce DNA double-strand breaks (DSBs). This sensitivity was suppressed by elevating intracellular levels of TLC1, the RNA subunit of telomerase. Suppression required proteins linked to homologous recombination, including Rad51, Rad52, Rad59 and Exo1, but not genes of the nonhomologous end-joining (NHEJ) repair pathway. Deletion mutagenesis experiments demonstrated that the 5'-end of TLC1 RNA was essential and a segment containing a binding site for the Yku70/Yku80 complex was sufficient for suppression. A mutant TLC1 RNA unable to associate with Yku80 protein did not increase resistance. These and other genetic studies indicated that association of the Ku heterodimer with broken DNA ends inhibits recombination in mrx mutants, but not in repair-proficient cells or in other DNA repair single mutants. In support of this model, DNA damage resistance of mrx cells was enhanced when YKU70 was co-inactivated. Defective recombinational repair of DSBs in mrx cells thus arises from at least two separate processes: loss of Mrx nuclease-associated DNA end-processing and inhibition of the Exo1-mediated secondary recombination pathway by Ku.
Collapse
|
14
|
Xrs2 facilitates crossovers during DNA double-strand gap repair in yeast. DNA Repair (Amst) 2008; 7:1563-77. [PMID: 18599383 DOI: 10.1016/j.dnarep.2008.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 11/23/2022]
Abstract
Xrs2 is a member of the MRX complex (Mre11/Rad50/Xrs2) in Saccharomyces cerevisiae. In this study we demonstrate the important role of the MRX complex and in more detail of Xrs2 for the repair of radiation-induced chromosomal double-strand breaks by pulsed field gel electrophoresis. By using a newly designed in vivo plasmid-chromosome recombination system, we could show that gap repair efficiency and the association with crossovers were reduced in the MRX null mutants, but repair accuracy was unaffected. For these processes, an intact Mre11-binding domain of Xrs2 is crucial, whereas the FHA- and BRCT-domains as well as the Tel1-binding domain of Xrs2 are dispensable. Obviously, the Mre11-binding domain of the Xrs2 protein is crucial for the analysed functions and our results suggest a new role of the MRX complex for the formation of crossovers. Analysis of double mutants showed that the phenotype of the Deltaxrs2 null mutant concerning the crossover frequency is dominant over the phenotypes of Deltasrs2 and Deltasgs1 null mutants. Thus, the complex seems to be involved in early steps of double-strand break and gap repair, and we propose that it has a regulatory role for the selection of homologous recombination pathways.
Collapse
|
15
|
Waterworth WM, Altun C, Armstrong SJ, Roberts N, Dean PJ, Young K, Weil CF, Bray CM, West CE. NBS1 is involved in DNA repair and plays a synergistic role with ATM in mediating meiotic homologous recombination in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:41-52. [PMID: 17672843 DOI: 10.1111/j.1365-313x.2007.03220.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The ability of plants to repair DNA double-strand breaks (DSBs) is essential for growth and fertility. The Arabidopsis DSB repair proteins AtRAD50 and AtMRE11 form part of an evolutionarily conserved complex that, in Saccharomyces cerevisiae and mammals, includes a third component termed XRS2 and NBS1, respectively. The MRN complex (MRX in yeast) has a direct role in DSB repair and is also required for DNA damage signaling and checkpoint activation in a pathway mediated by the protein kinase ATM. This study characterizes Arabidopsis and maize NBS1 orthologues that share conserved protein motifs with human NBS1. Both plant NBS1 proteins interact with the corresponding MRE11 orthologues, and deletion analysis of AtNBS1 defines a region towards the C-terminus (amino acids 465-500) that is required for interaction with AtMRE11. Arabidopsis lines homozygous for a T-DNA insertional mutation in AtNBS1 display hypersensitivity to the DNA cross-linking reagent mitomycin C, and this phenotype can be rescued by complementation with the wild-type gene, consistent with a function for AtNBS1 in plant DSB repair. Analysis of atnbs1-1 atatm double mutants revealed a role for AtNBS1 in meiotic recombination. While atatm mutants produce reduced seed numbers, plants deficient in both AtATM and AtNBS1 are completely infertile. Cytological analysis of these double mutants revealed incomplete chromosome pairing and synapsis in meiotic prophase, and extensive chromosome fragmentation in metaphase I and subsequent stages. These results suggest a novel role for AtNBS1 that is independent of AtATM-mediated signaling and functions in the very early stages of meiosis.
Collapse
Affiliation(s)
- Wanda M Waterworth
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|