1
|
Molinet J, Navarrete JP, Villarroel CA, Villarreal P, Sandoval FI, Nespolo RF, Stelkens R, Cubillos FA. Wild Patagonian yeast improve the evolutionary potential of novel interspecific hybrid strains for lager brewing. PLoS Genet 2024; 20:e1011154. [PMID: 38900713 PMCID: PMC11189258 DOI: 10.1371/journal.pgen.1011154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Lager yeasts are limited to a few strains worldwide, imposing restrictions on flavour and aroma diversity and hindering our understanding of the complex evolutionary mechanisms during yeast domestication. The recent finding of diverse S. eubayanus lineages from Patagonia offers potential for generating new lager yeasts with different flavour profiles. Here, we leverage the natural genetic diversity of S. eubayanus and expand the lager yeast repertoire by including three distinct Patagonian S. eubayanus lineages. We used experimental evolution and selection on desirable traits to enhance the fermentation profiles of novel S. cerevisiae x S. eubayanus hybrids. Our analyses reveal an intricate interplay of pre-existing diversity, selection on species-specific mitochondria, de-novo mutations, and gene copy variations in sugar metabolism genes, resulting in high ethanol production and unique aroma profiles. Hybrids with S. eubayanus mitochondria exhibited greater evolutionary potential and superior fitness post-evolution, analogous to commercial lager hybrids. Using genome-wide screens of the parental subgenomes, we identified genetic changes in IRA2, IMA1, and MALX genes that influence maltose metabolism, and increase glycolytic flux and sugar consumption in the evolved hybrids. Functional validation and transcriptome analyses confirmed increased maltose-related gene expression, influencing greater maltotriose consumption in evolved hybrids. This study demonstrates the potential for generating industrially viable lager yeast hybrids from wild Patagonian strains. Our hybridization, evolution, and mitochondrial selection approach produced hybrids with high fermentation capacity and expands lager beer brewing options.
Collapse
Affiliation(s)
- Jennifer Molinet
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Juan P. Navarrete
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Carlos A. Villarroel
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Pablo Villarreal
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe I. Sandoval
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Roberto F. Nespolo
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- ANID-Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Rike Stelkens
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Francisco A. Cubillos
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- ANID-Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| |
Collapse
|
2
|
Mardones W, Villarroel CA, Abarca V, Urbina K, Peña TA, Molinet J, Nespolo RF, Cubillos FA. Rapid selection response to ethanol in Saccharomyces eubayanus emulates the domestication process under brewing conditions. Microb Biotechnol 2021; 15:967-984. [PMID: 33755311 PMCID: PMC8913853 DOI: 10.1111/1751-7915.13803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 01/02/2023] Open
Abstract
Although the typical genomic and phenotypic changes that characterize the evolution of organisms under the human domestication syndrome represent textbook examples of rapid evolution, the molecular processes that underpin such changes are still poorly understood. Domesticated yeasts for brewing, where short generation times and large phenotypic and genomic plasticity were attained in a few generations under selection, are prime examples. To experimentally emulate the lager yeast domestication process, we created a genetically complex (panmictic) artificial population of multiple Saccharomyces eubayanus genotypes, one of the parents of lager yeast. Then, we imposed a constant selection regime under a high ethanol concentration in 10 replicated populations during 260 generations (6 months) and compared them with propagated controls exposed solely to glucose. Propagated populations exhibited a selection differential of 60% in growth rate in ethanol, mostly explained by the proliferation of a single lineage (CL248.1) that competitively displaced all other clones. Interestingly, the outcome does not require the entire time‐course of adaptation, as four lineages monopolized the culture at generation 120. Sequencing demonstrated that de novo genetic variants were produced in all propagated lines, including SNPs, aneuploidies, INDELs and translocations. In addition, the different propagated populations showed correlated responses resembling the domestication syndrome: genomic rearrangements, faster fermentation rates, lower production of phenolic off‐flavours and lower volatile compound complexity. Expression profiling in beer wort revealed altered expression levels of genes related to methionine metabolism, flocculation, stress tolerance and diauxic shift, likely contributing to higher ethanol and fermentation stress tolerance in the evolved populations. Our study shows that experimental evolution can rebuild the brewing domestication process in ‘fast motion’ in wild yeast, and also provides a powerful tool for studying the genetics of the adaptation process in complex populations.
Collapse
Affiliation(s)
- Wladimir Mardones
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Carlos A Villarroel
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Valentina Abarca
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Kamila Urbina
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Tomás A Peña
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Jennifer Molinet
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| | - Roberto F Nespolo
- Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile.,Institute of Environmental and Evolutionary Science, Universidad Austral de Chile, Valdivia, 5110566, Chile.,Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco A Cubillos
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.,Millennium Institute for Integrative Biology (iBio), ANID - Millennium Science Initiative Program, Santiago, 7500574, Chile
| |
Collapse
|
3
|
Sugar and Glycerol Transport in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:125-168. [PMID: 26721273 DOI: 10.1007/978-3-319-25304-6_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.
Collapse
|
5
|
Dietzel KL, Ramakrishnan V, Murphy EE, Bisson LF. MTH1 and RGT1 demonstrate combined haploinsufficiency in regulation of the hexose transporter genes in Saccharomyces cerevisiae. BMC Genet 2012; 13:107. [PMID: 23234240 PMCID: PMC3564936 DOI: 10.1186/1471-2156-13-107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/04/2012] [Indexed: 02/04/2023] Open
Abstract
Background The SNF3 gene in the yeast Saccharomyces cerevisiae encodes a low glucose sensor that regulates expression of an important subset of the hexose transporter (HXT) superfamily. Null mutations of snf3 result in a defect in growth on low glucose concentrations due to the inability to relieve repression of a subset of the HXT genes. The snf3 null mutation phenotype is suppressed by the loss of either one of the downstream co-repressor proteins Rgt1p or Mth1p. The relief of repression allows expression of HXT transporter proteins, the resumption of glucose uptake and therefore of growth in the absence of a functional Snf3 sensor. Results Strains heterozygous for both the RGT1 and MTH1 genes (RGT1/rgt1Δ MTH1/mth1Δ snf3Δ/snf3Δ) but homozygous for the snf3∆ were found to grow on low glucose. Since null alleles in the heterozygous state lead to suppression, MTH1 and RGT1 display the phenomenon of combined haploinsufficiency. This observed haploinsufficiency is consistent with the finding of repressor titration as a mechanism of suppression of snf3. Mutants of the STD1 homolog of MTH1 did not display haploinsufficiency singly or in combination with mutations in RGT1. HXT gene reporter fusion assays indicated that the presence of heterozygosity at the MTH1 and RGT1 alleles leads to increased expression of the HXT2 gene. Deletion of the HXT2 gene in a heterozygous diploid, RGT1/rgt1Δ MTH1/mth1Δ snf3Δ/snf3Δ hxt2Δ/hxt2Δ, prevented the suppression of snf3Δ. Conclusions These findings support the model of relief of repression as the mechanism of restoration of growth on low glucose concentrations in the absence of functional Snf3p. Further, the observation that HXT2 is the gene responsible for restoration of growth under these conditions suggests that the numbers of repressor binding domains found in the regulatory regions of members of the HXT family may have biological relevance and enable differential regulation.
Collapse
Affiliation(s)
- Kevin L Dietzel
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA
| | | | | | | |
Collapse
|
6
|
Gray M, Piccirillo S, Purnapatre K, Schneider BL, Honigberg SM. Glucose induction pathway regulates meiosis in Saccharomyces cerevisiae in part by controlling turnover of Ime2p meiotic kinase. FEMS Yeast Res 2008; 8:676-84. [PMID: 18616605 PMCID: PMC2810309 DOI: 10.1111/j.1567-1364.2008.00406.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Several components of the glucose induction pathway, namely the Snf3p glucose sensor and the Rgt1p and Mth1p transcription factors, were shown to be involved in inhibition of sporulation by glucose. The glucose sensors had only a minor role in regulating transcript levels of the two key regulators of meiotic initiation, the Ime1p transcription factor and the Ime2p kinase, but a major role in regulating Ime2p stability. Interestingly, Rgt1p was involved in glucose inhibition of spore formation but not inhibition of Ime2p stability. Thus, the glucose induction pathway may regulate meiosis through both RGT1-dependent and RGT1-independent pathways.
Collapse
Affiliation(s)
- Misa Gray
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah Piccirillo
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Kedar Purnapatre
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Brandt L. Schneider
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Saul M. Honigberg
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|