1
|
Ohsawa S, Oku M, Yurimoto H, Sakai Y. Regulation of Peroxisome Homeostasis by Post-Translational Modification in the Methylotrophic Yeast Komagataella phaffii. Front Cell Dev Biol 2022; 10:887806. [PMID: 35517506 PMCID: PMC9061947 DOI: 10.3389/fcell.2022.887806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The methylotrophic yeast Komagataella phaffii (synoym Pichia pastoris) can grow on methanol with an associated proliferation of peroxisomes, which are subsequently degraded by pexophagy upon depletion of methanol. Two cell wall integrity and stress response component (WSC) family proteins (Wsc1 and Wsc3) sense the extracellular methanol concentration and transmit the methanol signal to Rom2. This stimulates the activation of transcription factors (Mxr1, Trm1, and Mit1 etc.), leading to the induction of methanol-metabolizing enzymes (methanol-induced gene expression) and synthesis of huge peroxisomes. Methanol-induced gene expression is repressed by the addition of ethanol (ethanol repression). This repression is not conducted directly by ethanol but rather by acetyl-CoA synthesized from ethanol by sequential reactions, including alcohol and aldehyde dehydrogenases, and acetyl-CoA synthetase. During ethanol repression, Mxr1 is inactivated by phosphorylation. Peroxisomes are degraded by pexophagy on depletion of methanol and this event is triggered by phosphorylation of Atg30 located at the peroxisome membrane. In the presence of methanol, Wsc1 and Wsc3 repress pexophagy by transmitting the methanol signal via the MAPK cascade to the transcription factor Rlm1, which induces phosphatases involved in dephosphorylation of Atg30. Upon methanol consumption, repression of Atg30 phosphorylation is released, resulting in initiation of pexophagy. Physiological significance of these machineries involved in peroxisome homeostasis and their post-translational modification is also discussed in association with the lifestyle of methylotrophic yeast in the phyllosphere.
Collapse
Affiliation(s)
- Shin Ohsawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masahide Oku
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kyoto, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- *Correspondence: Yasuyoshi Sakai,
| |
Collapse
|
2
|
Yoko-O T, Komatsuzaki A, Yoshihara E, Zhao S, Umemura M, Gao XD, Chiba Y. Regulation of alcohol oxidase gene expression in methylotrophic yeast Ogataea minuta. J Biosci Bioeng 2021; 132:437-444. [PMID: 34462231 DOI: 10.1016/j.jbiosc.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
Ogataea minuta is a methylotrophic yeast that is closely related to Ogataea (Hansenula) polymorpha. Like other methylotrophic yeasts, O. minuta possesses strongly methanol-inducible genes, such as AOX1. We have focused on O. minuta as a host for the production of heterologous glycoproteins. However, it remained unknown how the AOX1 promoter is regulated in O. minuta. To elucidate regulation mechanisms of the AOX1 promoter, we adopted an assay system to quantitate AOX1 promoter activity using the PHO5 gene, which encodes an acid phosphatase, of Saccharomyces cerevisiae. The promoter activity assay revealed that glycerol, as well as glucose, cause strong catabolite repression of AOX1 expression in O. minuta. To investigate what factors are involved in transcription of the AOX1 promoter in O. minuta, we cloned three putative transcription factor genes, TRM1, TRM2, and MPP1, as homologues of other methylotrophic yeast species. Deletion mutants of these genes all showed decreased induction of the AOX1 promoter when methanol was added as the sole carbon source, indicating that these genes are indeed involved in AOX1 promoter regulation in O. minuta. Double deletion and constitutive expression of these transcription factor genes indicated that TRM1 and MPP1 regulate the transcription of AOX1 in the same pathway, while TRM2 regulates it in another pathway. By reverse transcription-qPCR, we also found that these two pathways compensate for each other and have crosstalk mechanisms with each other. A possible model for regulation of the AOX1 promoter in O. minuta was shown.
Collapse
Affiliation(s)
- Takehiko Yoko-O
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba 305-8565, Japan.
| | - Akiko Komatsuzaki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba 305-8565, Japan
| | - Erina Yoshihara
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba 305-8565, Japan; The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Song Zhao
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba 305-8565, Japan; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mariko Umemura
- The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yasunori Chiba
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba 305-8565, Japan
| |
Collapse
|
3
|
Kurylenko O, Ruchala J, Kruk B, Vasylyshyn R, Szczepaniak J, Dmytruk K, Sibirny A. The role of Mig1, Mig2, Tup1 and Hap4 transcription factors in regulation of xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha. FEMS Yeast Res 2021; 21:6275188. [PMID: 33983391 DOI: 10.1093/femsyr/foab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/07/2021] [Indexed: 01/20/2023] Open
Abstract
Glucose is a preferred carbon source for most living organisms. The metabolism and regulation of glucose utilization are well studied mostly for Saccharomyces cerevisiae. Xylose is the main pentose sugar released from the lignocellulosic biomass, which has a high potential as a renewable feedstock for bioethanol production. The thermotolerant yeast Ogataea (Hansenula) polymorpha, in contrast to S. cerevisiae, is able to metabolize and ferment not only glucose but also xylose. However, in non-conventional yeasts, the regulation of glucose and xylose metabolism remains poorly understood. In this study, we characterize the role of transcriptional factors Mig1, Mig2, Tup1 and Hap4 in the natural xylose-fermenting yeast O. polymorpha. The deletion of MIG1 had no significant influence on ethanol production either from xylose or glucose, however the deletion of both MIG1 and MIG2 reduced the amount of ethanol produced from these sugars. The deletion of HAP4-A and TUP1 genes resulted in increased ethanol production from xylose. Inversely, the overexpression of HAP4-A and TUP1 genes reduced ethanol production during xylose alcoholic fermentation. Thus, HAP4-A and TUP1 are involved in repression of xylose metabolism and fermentation in yeast O. polymorpha and their deletion could be a viable strategy to improve ethanol production from this pentose.
Collapse
Affiliation(s)
- Olena Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Justyna Ruchala
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine.,Department of Microbiology and Molecular Genetics, University of Rzeszow, Cwiklinskiej 2D, Building D10, Rzeszow 35-601, Poland
| | - Barbara Kruk
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Cwiklinskiej 2D, Building D10, Rzeszow 35-601, Poland
| | - Roksolana Vasylyshyn
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Justyna Szczepaniak
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Cwiklinskiej 2D, Building D10, Rzeszow 35-601, Poland
| | - Kostyantyn Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine.,Department of Microbiology and Molecular Genetics, University of Rzeszow, Cwiklinskiej 2D, Building D10, Rzeszow 35-601, Poland
| |
Collapse
|
4
|
Ohsawa S, Nishida S, Oku M, Sakai Y, Yurimoto H. Ethanol represses the expression of methanol-inducible genes via acetyl-CoA synthesis in the yeast Komagataella phaffii. Sci Rep 2018; 8:18051. [PMID: 30575795 PMCID: PMC6303403 DOI: 10.1038/s41598-018-36732-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022] Open
Abstract
In methylotrophic yeasts, the expression of methanol-inducible genes is repressed by ethanol even in the presence of methanol, a phenomenon called ethanol repression. The mechanism of ethanol repression in Komagataella phaffii (Pichia pastoris) was studied, and acetyl-CoA synthesis from ethanol by sequential reactions of alcohol dehydrogenase, aldehyde dehydrogenase and acetyl-CoA synthetase (ACS) was involved in ethanol repression. Molecular analysis of the ACS-encoding gene product KpAcs1 revealed that its N-terminal motif, which is conserved in methylotrophic yeasts, was required for ethanol repression. ACS activity was downregulated during methanol-induced gene expression, which partially depended on autophagy. In addition, acetyl-CoA synthesis and phosphorylation of a transcription factor KpMxr1 were found to contribute to ethanol repression in a synergistic manner.
Collapse
Affiliation(s)
- Shin Ohsawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Susumu Nishida
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masahide Oku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan.,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
5
|
Vogl T, Sturmberger L, Fauland PC, Hyden P, Fischer JE, Schmid C, Thallinger GG, Geier M, Glieder A. Methanol independent induction in
Pichia pastoris
by simple derepressed overexpression of single transcription factors. Biotechnol Bioeng 2018; 115:1037-1050. [DOI: 10.1002/bit.26529] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Thomas Vogl
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | | | - Pia C. Fauland
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Patrick Hyden
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Jasmin E. Fischer
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Christian Schmid
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| | - Gerhard G. Thallinger
- Institute of Computational BiotechnologyGraz University of TechnologyGrazAustria
- OMICS Center GrazBioTechMed GrazGrazAustria
| | - Martina Geier
- Austrian Centre of Industrial Biotechnology (ACIB GmbH)GrazAustria
| | - Anton Glieder
- Institute of Molecular BiotechnologyNAWI GrazGraz University of TechnologyGrazAustria
| |
Collapse
|
6
|
Transcriptome analysis of Δmig1Δmig2 mutant reveals their roles in methanol catabolism, peroxisome biogenesis and autophagy in methylotrophic yeast Pichia pastoris. Genes Genomics 2017; 40:399-412. [PMID: 29892842 DOI: 10.1007/s13258-017-0641-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/08/2017] [Indexed: 01/11/2023]
Abstract
Two catabolite repressor genes (MIG1 and MIG2) were previously identified in Pichia pastoris, and the derepression of alcohol oxidase (AOX) expression was realized in Δmig1 or Δmig1Δmig2 mutants grown in glycerol, but not in glucose. In this study, genome-wide RNA-seq analysis of Δmig1Δmig2 and the wild-type strain grown in glycerol revealed that the expression of numerous genes was greatly altered. Nearly 7% (357 genes) of approximately 5276 genes annotated in P. pastoris were significantly upregulated, with at least a two-fold differential expression in Δmig1Δmig2; the genes were mainly related to cell metabolism. Approximately 23% (1197 genes) were significantly downregulated; these were mainly correlated with the physiological characteristics of the cell. The methanol catabolism and peroxisome biogenesis pathways were remarkably enhanced, and the genes AOX1 and AOX2 were upregulated higher than 30-fold, which was consistent with the experimental results of AOX expression. The Mig proteins had a slight effect on autophagy when cells were grown in glycerol. The expression analysis of transcription factors showed that deletion of MIG1 and MIG2 significantly upregulated the binding of an essential transcription activator, Mit1p, with the AOX1 promoter, which suggested that Mig proteins might regulate the AOX1 promoter through the regulation of Mit1p. This work provides a reference for the further exploration of the methanol induction and catabolite repression mechanisms of AOX expression in methylotrophic yeasts.
Collapse
|
7
|
Methanol-Independent Protein Expression by AOX1 Promoter with trans-Acting Elements Engineering and Glucose-Glycerol-Shift Induction in Pichia pastoris. Sci Rep 2017; 7:41850. [PMID: 28150747 PMCID: PMC5288789 DOI: 10.1038/srep41850] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/29/2016] [Indexed: 01/02/2023] Open
Abstract
The alcohol oxidase 1 promoter (PAOX1) of Pichia pastoris is commonly used for high level expression of recombinant proteins. While the safety risk of methanol and tough process control for methanol induction usually cause problems especially in large-scale fermentation. By testing the functions of trans-acting elements of PAOX1 and combinatorially engineering of them, we successfully constructed a methanol-free PAOX1 start-up strain, in which, three transcription repressors were identified and deleted and, one transcription activator were overexpressed. The strain expressed 77% GFP levels in glycerol compared to the wide-type in methanol. Then, insulin precursor (IP) was expressed, taking which as a model, we developed a novel glucose-glycerol-shift induced PAOX1 start-up for this methanol-free strain. A batch phase with glucose of 40 g/L followed by controlling residual glucose not lower than 20 g/L was compatible for supporting cell growth and suppressing PAOX1. Then, glycerol induction was started after glucose used up. Accordingly, an optimal bioprocess was further determined, generating a high IP production of 2.46 g/L in a 5-L bioreactor with dramatical decrease of oxygen consumption and heat evolution comparing with the wild-type in methanol. This mutant and bioprocess represent a safe and efficient alternative to the traditional glycerol-repressed/methanol-induced PAOX1 system.
Collapse
|
8
|
Shen W, Xue Y, Liu Y, Kong C, Wang X, Huang M, Cai M, Zhou X, Zhang Y, Zhou M. A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb Cell Fact 2016; 15:178. [PMID: 27769297 PMCID: PMC5073731 DOI: 10.1186/s12934-016-0578-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/13/2016] [Indexed: 11/15/2022] Open
Abstract
Background As one of the most popular expression systems, recombinant protein expression in Pichia pastoris relies on the AOX1 promoter (PAOX1) which is strongly induced by methanol. However, the toxic and inflammatory nature of methanol restricts its application, especially in edible and medical products. Therefore, constructing a novel methanol-free system becomes necessary. The kinases involved in PAOX1 activation or repression by different carbon sources may be promising targets. Results We identified two kinase mutants: Δgut1 and Δdak, both of which showed strong alcohol oxidase activity under non-methanol carbon sources. Based on these two kinases, we constructed two methanol-free expression systems: Δgut1-HpGCY1-glycerol (PAOX1 induced by glycerol) and Δdak-DHA (PAOX1 induced by DHA). By comparing their GFP expression efficiencies, the latter one showed better potential. To further test the Δdak-DHA system, three more recombinant proteins were expressed as examples. We found that the expression ability of our novel methanol-free Δdak-DHA system was generally better than the constitutive GAP promoter, and reached 50–60 % of the traditional methanol induced system. Conclusions We successfully constructed a novel methanol-free expression system Δdak-DHA. This modified expression platform preserved the favorable regulatable nature of PAOX1, providing a potential alternative to the traditional system. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0578-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ying Xue
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yiqi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chuixing Kong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiaolong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mengmeng Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
9
|
Sibirny AA. Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Res 2016; 16:fow038. [DOI: 10.1093/femsyr/fow038] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/02/2023] Open
|
10
|
Wang X, Cai M, Shi L, Wang Q, Zhu J, Wang J, Zhou M, Zhou X, Zhang Y. PpNrg1 is a transcriptional repressor for glucose and glycerol repression of AOX1 promoter in methylotrophic yeast Pichia pastoris. Biotechnol Lett 2015; 38:291-8. [PMID: 26463371 DOI: 10.1007/s10529-015-1972-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/28/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The regulator in glycerol repression of Pichia pastoris AOX1 promoter (P AOX1 ) is still unclear. RESULTS A Cys2His2 zinc finger transcriptional repressor PpNrg1 localized to nucleus and participated in the repression of P AOX1 in P. pastoris in glucose and glycerol. Quantitative real-time PCR revealed that PpNrg1 repressed expression of numerous genes involved in methanol utilization and peroxisome biogenesis in 0.02 % glucose and 1 % (v/v) glycerol. Electrophoretic mobility shift assay and DNase I footprinting assay revealed that PpNrg1 bound to five sites of P AOX1 , including two binding sites of PpMxr1, which is an indispensable activator of P AOX1 in P. pastoris. CONCLUSION Transcriptional repressor PpNrg1 suppresses P AOX1 in glucose and glycerol by directly binding to five sites of P AOX1 , including two binding sites of transcriptional activator PpMxr1.
Collapse
Affiliation(s)
- Xiaolong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Lei Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qi Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jinxiang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jinjia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, China.
| |
Collapse
|
11
|
Prielhofer R, Cartwright SP, Graf AB, Valli M, Bill RM, Mattanovich D, Gasser B. Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level. BMC Genomics 2015; 16:167. [PMID: 25887254 PMCID: PMC4408588 DOI: 10.1186/s12864-015-1393-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/24/2015] [Indexed: 11/20/2022] Open
Abstract
Background The methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the presence of glucose, but also by glycerol. This unusual regulatory behavior prompted us to study the regulation of carbon substrate utilization in different bioprocess conditions on a genome wide scale. Results We performed microarray analysis on the total mRNA population as well as mRNA that had been fractionated according to ribosome occupancy. Translationally quiescent mRNAs were defined as being associated with single ribosomes (monosomes) and highly-translated mRNAs with multiple ribosomes (polysomes). We found that despite their lower growth rates, global translation was most active in methanol-grown P. pastoris cells, followed by excess glycerol- or glucose-grown cells. Transcript-specific translational responses were found to be minimal, while extensive transcriptional regulation was observed for cells grown on different carbon sources. Due to their respiratory metabolism, cells grown in excess glucose or glycerol had very similar expression profiles. Genes subject to glucose repression were mainly involved in the metabolism of alternative carbon sources including the control of glycerol uptake and metabolism. Peroxisomal and methanol utilization genes were confirmed to be subject to carbon substrate repression in excess glucose or glycerol, but were found to be strongly de-repressed in limiting glucose-conditions (as are often applied in fed batch cultivations) in addition to induction by methanol. Conclusions P. pastoris cells grown in excess glycerol or glucose have similar transcript profiles in contrast to S. cerevisiae cells, in which the transcriptional response to these carbon sources is very different. The main response to different growth conditions in P. pastoris is transcriptional; translational regulation was not transcript-specific. The high proportion of mRNAs associated with polysomes in methanol-grown cells is a major finding of this study; it reveals that high productivity during methanol induction is directly linked to the growth condition and not only to promoter strength. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1393-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roland Prielhofer
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| | - Stephanie P Cartwright
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Alexandra B Graf
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria. .,School of Bioengineering, University of Applied Sciences FH Campus Wien, Vienna, Austria.
| | - Minoska Valli
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Diethard Mattanovich
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| | - Brigitte Gasser
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
12
|
Sibirny AA. Sensing and signaling for peroxisome autophagic degradation (pexophagy) in yeasts. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.06.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Polupanov AS, Sibirny AA. Cytoplasmic extension peptide of
Pichia pastoris
glucose sensor Gss1 is not compulsory for glucose signalling. Cell Biol Int 2013; 38:172-8. [DOI: 10.1002/cbin.10189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/30/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Andriy S. Polupanov
- Department of Molecular Genetics and BiotechnologyInstitute of Cell BiologyNational Academy of Sciences of Ukraine79005LvivUkraine
- Key State Laboratory of Molecular and Cellular BiologyLvivUkraine
| | - Andriy A. Sibirny
- Department of Molecular Genetics and BiotechnologyInstitute of Cell BiologyNational Academy of Sciences of Ukraine79005LvivUkraine
- Key State Laboratory of Molecular and Cellular BiologyLvivUkraine
- Department of Biotechnology and MicrobiologyRzeszow UniversityZelwerowicza 4Rzeszow35‐601Poland
| |
Collapse
|
14
|
Wang ZP, Xu HM, Wang GY, Chi Z, Chi ZM. Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:675-82. [PMID: 23274237 DOI: 10.1016/j.bbalip.2012.12.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 11/29/2022]
Abstract
In this study, the MIG1 gene in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109 (the parent yeast) was disrupted and the disruptant M25 obtained could grow in yeast nitrogen base-N5000 medium without uracil or the medium with 2-deoxy-D-glucose. It was found that the cells of the disruptant M25 had more lipid bodies than those of its parent yeast. The disruptant M25 contained 48.7% (w/w) of oil based on its cell weight while the parent yeast only contained 36.0% (w/w) of oil. Transcript levels of many genes relevant to lipid biosynthesis in the disruptant M25 were enhanced compared to those of the same genes in the parent yeast. However, transcript level of the MFE1 gene, one of the genes relevant to fatty acid degradation was reduced in the disruptant M25 compared to that of the same gene in the parent yeast. Such changes in gene expression profile may cause the increased lipid biosynthesis in the disruptant M25. Biosynthesis of C18:1 fatty acid in the disruptant M25 was greatly enhanced compared to that in the parent yeast.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No. 5, Qingdao 266003, China
| | | | | | | | | |
Collapse
|
15
|
Suppi S, Michelson T, Viigand K, Alamäe T. Repression vs. activation of MOX, FMD, MPP1 and MAL1 promoters by sugars in Hansenula polymorpha: the outcome depends on cell's ability to phosphorylate sugar. FEMS Yeast Res 2012; 13:219-32. [PMID: 23164245 DOI: 10.1111/1567-1364.12023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/08/2012] [Indexed: 12/01/2022] Open
Abstract
A high-throughput approach was used to assess the effect of mono- and disaccharides on MOX, FMD, MPP1 and MAL1 promoters in Hansenula polymorpha. Site-specifically designed strains deficient for (1) hexokinase, (2) hexokinase and glucokinase, (3) maltose permease or (4) maltase were used as hosts for reporter plasmids in which β-glucuronidase (Gus) expression was controlled by these promoters. The reporter strains were grown on agar plates containing varied carbon sources and Gus activity was measured in permeabilized cells on microtitre plates. We report that monosaccharides (glucose, fructose) repress studied promoters only if phosphorylated in the cell. Glucose-6-phosphate was proposed as a sugar repression signalling metabolite for H. polymorpha. Intriguingly, glucose and fructose strongly activated expression from these promoters in strains lacking both hexokinase and glucokinase, indicating that unphosphorylated monosaccharides have promoter-derepressing effect. We also show that maltose and sucrose must be internalized and split into monosaccharides to exert repression on MOX promoter. We demonstrate that at yeast growth on glucose-containing agar medium, glucose-limitation is rapidly created that promotes derepression of methanol-specific promoters and that derepression is specifically enhanced in hexokinase-negative strain. We recommend double kinase-negative and hexokinase-negative mutants as hosts for heterologous protein production from MOX and FMD promoters.
Collapse
Affiliation(s)
- Sandra Suppi
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
16
|
Polupanov AS, Nazarko VY, Sibirny AA. Gss1 protein of the methylotrophic yeast Pichia pastoris is involved in glucose sensing, pexophagy and catabolite repression. Int J Biochem Cell Biol 2012; 44:1906-18. [DOI: 10.1016/j.biocel.2012.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/29/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
17
|
Zhai Z, Yurimoto H, Sakai Y. Molecular characterization of Candida boidinii MIG1 and its role in the regulation of methanol-inducible gene expression. Yeast 2012; 29:293-301. [PMID: 22711140 DOI: 10.1002/yea.2909] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 11/10/2022] Open
Abstract
Methanol-inducible gene promoters in methanol-utilizing yeasts are used in high-level heterologous gene expression systems. Generally, expression of methanol-inducible genes is completely repressed by the presence of glucose. In this study we identified the MIG1 gene in Candida boidinii, which encodes a homologue of the glucose repressor Mig1p of Saccharomyces cerevisiae. Disruption of the CbMIG1 gene had no growth effect on various carbon sources. Activation of the methanol-inducible AOD1 gene, which encodes alcohol oxidase, was increased in the early stage of methanol induction when cells of the CbMIG1-disrupted strain were transferred from glucose medium to methanol medium. Furthermore, CbMig1p tagged with yellow fluorescent protein was primarily localized in the nucleus of glucose-grown cells, but was diffuse in the cytosol of methanol-grown cells. This cytosolic diffusion in methanol-grown cells occurred in a CbMsn5p-dependent manner. These results suggest that CbMig1p is involved in negative regulation of methanol-inducible gene expression in C. boidinii.
Collapse
Affiliation(s)
- Zhenyu Zhai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | | | | |
Collapse
|
18
|
Abstract
In the presence of glucose, yeast undergoes an important remodelling of its metabolism. There are changes in the concentration of intracellular metabolites and in the stability of proteins and mRNAs; modifications occur in the activity of enzymes as well as in the rate of transcription of a large number of genes, some of the genes being induced while others are repressed. Diverse combinations of input signals are required for glucose regulation of gene expression and of other cellular processes. This review focuses on the early elements in glucose signalling and discusses their relevance for the regulation of specific processes. Glucose sensing involves the plasma membrane proteins Snf3, Rgt2 and Gpr1 and the glucose-phosphorylating enzyme Hxk2, as well as other regulatory elements whose functions are still incompletely understood. The similarities and differences in the way in which yeasts and mammalian cells respond to glucose are also examined. It is shown that in Saccharomyces cerevisiae, sensing systems for other nutrients share some of the characteristics of the glucose-sensing pathways.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
19
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Identification of hexose transporter-like sensor HXS1 and functional hexose transporter HXT1 in the methylotrophic yeast Hansenula polymorpha. EUKARYOTIC CELL 2008; 7:735-46. [PMID: 18310355 DOI: 10.1128/ec.00028-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We identified in the methylotrophic yeast Hansenula polymorpha (syn. Pichia angusta) a novel hexose transporter homologue gene, HXS1 (hexose sensor), involved in transcriptional regulation in response to hexoses, and a regular hexose carrier gene, HXT1 (hexose transporter). The Hxs1 protein exhibits the highest degree of primary sequence similarity to the Saccharomyces cerevisiae transporter-like glucose sensors, Snf3 and Rgt2. When heterologously overexpressed in an S. cerevisiae hexose transporter-less mutant, Hxt1, but not Hxs1, restores growth on glucose or fructose, suggesting that Hxs1 is nonfunctional as a carrier. In its native host, HXS1 is expressed at moderately low level and is required for glucose induction of the H. polymorpha functional low-affinity glucose transporter Hxt1. Similarly to other yeast sensors, one conserved amino acid substitution in the Hxs1 sequence (R203K) converts the protein into a constitutively signaling form and the C-terminal region of Hxs1 is essential for its function in hexose sensing. Hxs1 is not required for glucose repression or catabolite inactivation that involves autophagic degradation of peroxisomes. However, HXS1 deficiency leads to significantly impaired transient transcriptional repression in response to fructose, probably due to the stronger defect in transport of this hexose in the hxs1Delta deletion strain. Our combined results suggest that in the Crabtree-negative yeast H. polymorpha, the single transporter-like sensor Hxs1 mediates signaling in the hexose induction pathway, whereas the rate of hexose uptake affects the strength of catabolite repression.
Collapse
|