1
|
Bhagwat NR, Owens SN, Ito M, Boinapalli JV, Poa P, Ditzel A, Kopparapu S, Mahalawat M, Davies OR, Collins SR, Johnson JR, Krogan NJ, Hunter N. SUMO is a pervasive regulator of meiosis. eLife 2021; 10:57720. [PMID: 33502312 PMCID: PMC7924959 DOI: 10.7554/elife.57720] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Protein modification by SUMO helps orchestrate the elaborate events of meiosis to faithfully produce haploid gametes. To date, only a handful of meiotic SUMO targets have been identified. Here, we delineate a multidimensional SUMO-modified meiotic proteome in budding yeast, identifying 2747 conjugation sites in 775 targets, and defining their relative levels and dynamics. Modified sites cluster in disordered regions and only a minority match consensus motifs. Target identities and modification dynamics imply that SUMOylation regulates all levels of chromosome organization and each step of meiotic prophase I. Execution-point analysis confirms these inferences, revealing functions for SUMO in S-phase, the initiation of recombination, chromosome synapsis and crossing over. K15-linked SUMO chains become prominent as chromosomes synapse and recombine, consistent with roles in these processes. SUMO also modifies ubiquitin, forming hybrid oligomers with potential to modulate ubiquitin signaling. We conclude that SUMO plays diverse and unanticipated roles in regulating meiotic chromosome metabolism. Most mammalian, yeast and other eukaryote cells have two sets of chromosomes, one from each parent, which contain all the cell’s DNA. Sex cells – like the sperm and egg – however, have half the number of chromosomes and are formed by a specialized type of cell division known as meiosis. At the start of meiosis, each cell replicates its chromosomes so that it has twice the amount of DNA. The cell then undergoes two rounds of division to form sex cells which each contain only one set of chromosomes. Before the cell divides, the two duplicated sets of chromosomes pair up and swap sections of their DNA. This exchange allows each new sex cell to have a unique combination of DNA, resulting in offspring that are genetically distinct from their parents. This complex series of events is tightly regulated, in part, by a protein called the 'small ubiquitin-like modifier' (or SUMO for short), which attaches itself to other proteins and modifies their behavior. This process, known as SUMOylation, can affect a protein’s stability, where it is located in the cell and how it interacts with other proteins. However, despite SUMO being known as a key regulator of meiosis, only a handful of its protein targets have been identified. To gain a better understanding of what SUMO does during meiosis, Bhagwat et al. set out to find which proteins are targeted by SUMO in budding yeast and to map the specific sites of modification. The experiments identified 2,747 different sites on 775 different proteins, suggesting that SUMO regulates all aspects of meiosis. Consistently, inactivating SUMOylation at different times revealed SUMO plays a role at every stage of meiosis, including the replication of DNA and the exchanges between chromosomes. In depth analysis of the targeted proteins also revealed that SUMOylation targets different groups of proteins at different stages of meiosis and interacts with other protein modifications, including the ubiquitin system which tags proteins for destruction. The data gathered by Bhagwat et al. provide a starting point for future research into precisely how SUMO proteins control meiosis in yeast and other organisms. In humans, errors in meiosis are the leading cause of pregnancy loss and congenital diseases. Most of the proteins identified as SUMO targets in budding yeast are also present in humans. So, this research could provide a platform for medical advances in the future. The next step is to study mammalian models, such as mice, to confirm that the regulation of meiosis by SUMO is the same in mammals as in yeast.
Collapse
Affiliation(s)
- Nikhil R Bhagwat
- Howard Hughes Medical Institute, University of California Davis, Davis, United States.,Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Shannon N Owens
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Masaru Ito
- Howard Hughes Medical Institute, University of California Davis, Davis, United States.,Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Jay V Boinapalli
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Philip Poa
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Alexander Ditzel
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Srujan Kopparapu
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Meghan Mahalawat
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Owen Richard Davies
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Sean R Collins
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Jeffrey R Johnson
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, United States
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, United States
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California Davis, Davis, United States.,Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States.,Department of Molecular & Cellular Biology, University of California Davis, Davis, United States
| |
Collapse
|
2
|
Wrestling with Chromosomes: The Roles of SUMO During Meiosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:185-196. [PMID: 28197913 DOI: 10.1007/978-3-319-50044-7_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Meiosis is a specialized form of cell division required for the formation of haploid gametes and therefore is essential for successful sexual reproduction. Various steps are exquisitely coordinated to ensure accurate chromosome segregation during meiosis, thereby promoting the formation of haploid gametes from diploid cells. Recent studies are demonstrating that an important form of regulation during meiosis is exerted by the post-translational protein modification known as sumoylation. Here, we review and discuss the various critical steps of meiosis in which SUMO-mediated regulation has been implicated thus far. These include the maintenance of meiotic centromeric heterochromatin , meiotic DNA double-strand break repair and homologous recombination, centromeric coupling, and the assembly of a proteinaceous scaffold between homologous chromosomes known as the synaptonemal complex.
Collapse
|
3
|
Meiotic Centromere Coupling and Pairing Function by Two Separate Mechanisms in Saccharomyces cerevisiae. Genetics 2016; 205:657-671. [PMID: 27913618 DOI: 10.1534/genetics.116.190264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/25/2016] [Indexed: 12/17/2022] Open
Abstract
In meiosis I, chromosomes become paired with their homologous partners and then are pulled toward opposite poles of the spindle. In the budding yeast, Saccharomyces cerevisiae, in early meiotic prophase, centromeres are observed to associate in pairs in a homology-independent manner; a process called centromere coupling. Later, as homologous chromosomes align, their centromeres associate in a process called centromere pairing. The synaptonemal complex protein Zip1 is necessary for both types of centromere association. We aimed to test the role of centromere coupling in modulating recombination at centromeres, and to test whether the two types of centromere associations depend upon the same sets of genes. The zip1-S75E mutation, which blocks centromere coupling but no other known functions of Zip1, was used to show that in the absence of centromere coupling, centromere-proximal recombination was unchanged. Further, this mutation did not diminish centromere pairing, demonstrating that these two processes have different genetic requirements. In addition, we tested other synaptonemal complex components, Ecm11 and Zip4, for their contributions to centromere pairing. ECM11 was dispensable for centromere pairing and segregation of achiasmate partner chromosomes; while ZIP4 was not required for centromere pairing during pachytene, but was required for proper segregation of achiasmate chromosomes. These findings help differentiate the two mechanisms that allow centromeres to interact in meiotic prophase, and illustrate that centromere pairing, which was previously shown to be necessary to ensure disjunction of achiasmate chromosomes, is not sufficient for ensuring their disjunction.
Collapse
|
4
|
Abstract
Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division. Thus, the placement, timing, and frequency of crossover formation must be exquisitely controlled. In this review, we discuss the proteins involved in crossover formation, the process of their formation and designation, and the rules governing crossovers, all within the context of the important landmarks of prophase I. We draw together crossover designation data across organisms, analyze their evolutionary divergence, and propose a universal model for crossover regulation.
Collapse
Affiliation(s)
- Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
5
|
Leung WK, Humphryes N, Afshar N, Argunhan B, Terentyev Y, Tsubouchi T, Tsubouchi H. The synaptonemal complex is assembled by a polySUMOylation-driven feedback mechanism in yeast. J Cell Biol 2016; 211:785-93. [PMID: 26598615 PMCID: PMC4657171 DOI: 10.1083/jcb.201506103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Synaptonemal complex (SC) assembly requires polySUMOylation of Ecm11, which promotes polymerization of Zip1, the transverse filament, whereas the N terminus of Zip1 activates Ecm11 polySUMOylation, suggesting that this positive feedback loop underpins SC assembly. During meiotic prophase I, proteinaceous structures called synaptonemal complexes (SCs) connect homologous chromosomes along their lengths via polymeric arrays of transverse filaments (TFs). Thus, control of TF polymerization is central to SC formation. Using budding yeast, we show that efficiency of TF polymerization closely correlates with the extent of SUMO conjugation to Ecm11, a component of SCs. HyperSUMOylation of Ecm11 leads to highly aggregative TFs, causing frequent assembly of extrachromosomal structures. In contrast, hypoSUMOylation leads to discontinuous, fragmented SCs, indicative of defective TF polymerization. We further show that the N terminus of the yeast TF, Zip1, serves as an activator for Ecm11 SUMOylation. Coexpression of the Zip1 N terminus and Gmc2, a binding partner of Ecm11, is sufficient to induce robust polySUMOylation of Ecm11 in nonmeiotic cells. Because TF assembly is mediated through N-terminal head-to-head associations, our results suggest that mutual activation between TF assembly and Ecm11 polySUMOylation acts as a positive feedback loop that underpins SC assembly.
Collapse
Affiliation(s)
- Wing-Kit Leung
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton BN19RQ, England, UK
| | - Neil Humphryes
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton BN19RQ, England, UK
| | - Negar Afshar
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton BN19RQ, England, UK
| | - Bilge Argunhan
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton BN19RQ, England, UK
| | - Yaroslav Terentyev
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton BN19RQ, England, UK
| | - Tomomi Tsubouchi
- National Institute for Basic Biology, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hideo Tsubouchi
- Genome Damage and Stability Centre, Life Sciences, University of Sussex, Brighton BN19RQ, England, UK
| |
Collapse
|
6
|
Zickler D, Kleckner N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a016626. [PMID: 25986558 DOI: 10.1101/cshperspect.a016626] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.
Collapse
Affiliation(s)
- Denise Zickler
- Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud, 91405 Orsay, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
7
|
Voelkel-Meiman K, Taylor LF, Mukherjee P, Humphryes N, Tsubouchi H, MacQueen AJ. SUMO localizes to the central element of synaptonemal complex and is required for the full synapsis of meiotic chromosomes in budding yeast. PLoS Genet 2013; 9:e1003837. [PMID: 24098146 PMCID: PMC3789832 DOI: 10.1371/journal.pgen.1003837] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022] Open
Abstract
The synaptonemal complex (SC) is a widely conserved structure that mediates the intimate alignment of homologous chromosomes during meiotic prophase and is required for proper homolog segregation at meiosis I. However, fundamental details of SC architecture and assembly remain poorly understood. The coiled-coil protein, Zip1, is the only component whose arrangement within the mature SC of budding yeast has been extensively characterized. It has been proposed that the Small Ubiquitin-like MOdifier, SUMO, plays a role in SC assembly by linking chromosome axes with Zip1's C termini. The role of SUMO in SC structure has not been directly tested, however, because cells lacking SUMO are inviable. Here, we provide direct evidence for SUMO's function in SC assembly. A meiotic smt3 reduction-of-function strain displays reduced sporulation, abnormal levels of crossover recombination, and diminished SC assembly. SC structures are nearly absent when induced at later meiotic time points in the smt3 reduction-of-function background. Using Structured Illumination Microscopy we furthermore determine the position of SUMO within budding yeast SC structure. In contrast to previous models that positioned SUMO near Zip1's C termini, we demonstrate that SUMO lies at the midline of SC central region proximal to Zip1's N termini, within a subdomain called the “central element”. The recently identified SUMOylated SC component, Ecm11, also localizes to the SC central element. Finally, we show that SUMO, Ecm11, and even unSUMOylatable Ecm11 exhibit Zip1-like ongoing incorporation into previously established SCs during meiotic prophase and that the relative abundance of SUMO and Ecm11 correlates with Zip1's abundance within SCs of varying Zip1 content. We discuss a model in which central element proteins are core building blocks that stabilize the architecture of SC near Zip1's N termini, and where SUMOylation may occur subsequent to the incorporation of components like Ecm11 into an SC precursor structure. The meiotic cell cycle enables sexually reproducing organisms to generate reproductive cells with half their chromosome complement. Chromosome ploidy is reduced during meiosis by virtue of prior associations established between homologous chromosomes (homologs). Such associations, which are ultimately secured by crossover recombination events, allow homologs to achieve an opposing orientation and segregate from one another at meiosis I. A multimeric protein structure, the synaptonemal complex (SC), mediates the intimate, lengthwise alignment of homologs during meiotic prophase and forms the context in which crossovers mature. The SC's tripartite structure is widely conserved but its composition and architecture remain incompletely understood in any organism. The Small Ubiquitin-like MOdifier (SUMO) localizes to SC in budding yeast. We show that SUMO is required for assembling mature SC and we furthermore demonstrate that SUMO and the recently identified SUMOylated protein, Ecm11, are components of the central element substructure of the budding yeast SC. Our findings suggest that SUMO and Ecm11 are core building blocks of SC, yet our data also suggest that SUMOylation may occur subsequent to Ecm11's incorporation into the SC structure. Finally, our study highlights Structured Illumination as a powerful tool for mapping the fine structure of budding yeast SC.
Collapse
Affiliation(s)
- Karen Voelkel-Meiman
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Louis F. Taylor
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Pritam Mukherjee
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Neil Humphryes
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Hideo Tsubouchi
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Amy J. MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
8
|
Humphryes N, Leung WK, Argunhan B, Terentyev Y, Dvorackova M, Tsubouchi H. The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast. PLoS Genet 2013; 9:e1003194. [PMID: 23326245 PMCID: PMC3542071 DOI: 10.1371/journal.pgen.1003194] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/10/2012] [Indexed: 11/19/2022] Open
Abstract
During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation. Meiosis is central to the life cycle of sexually reproducing organisms. The first round of division (meiosis I) is unique to meiosis in that homologous chromosomes are segregated to opposite poles. The tight association between homologous chromosomes is essential for their faithful segregation. To establish such association, meiosis employs a unique, homologous recombination-dependent mechanism that facilitates the recognition, association, and reciprocal exchange of DNA strands of homologous chromosomes, thus providing physical connections between homologous chromosomes. All these events take place in the context of an intricate structure called the synaptonemal complex (SC). Within this complex, the axis of one chromosome is aligned at close proximity with the axis of its homologue. This alignment stretches along the entire length of the chromosome pair, with zipper-like structures, called transverse filaments, holding axes together. In this work, we identified the Ecm11-Gmc2 complex as a novel component of the SC, promoting the assembly of transverse filaments. Importantly, we demonstrate that post-translational modification of Ecm11 with SUMO (small ubiquitin-like modifier) is critical for ensuring the chromosomal loading of transverse filaments. Thus, our work provides a molecular basis for how homologous chromosomes become tightly associated during meiotic prophase.
Collapse
Affiliation(s)
- Neil Humphryes
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Wing-Kit Leung
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Bilge Argunhan
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Yaroslav Terentyev
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Martina Dvorackova
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Hideo Tsubouchi
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Altmannová V, Kolesár P, Krejčí L. SUMO Wrestles with Recombination. Biomolecules 2012; 2:350-75. [PMID: 24970142 PMCID: PMC4030836 DOI: 10.3390/biom2030350] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 06/27/2012] [Accepted: 07/13/2012] [Indexed: 01/21/2023] Open
Abstract
DNA double-strand breaks (DSBs) comprise one of the most toxic DNA lesions, as the failure to repair a single DSB has detrimental consequences on the cell. Homologous recombination (HR) constitutes an error-free repair pathway for the repair of DSBs. On the other hand, when uncontrolled, HR can lead to genome rearrangements and needs to be tightly regulated. In recent years, several proteins involved in different steps of HR have been shown to undergo modification by small ubiquitin-like modifier (SUMO) peptide and it has been suggested that deficient sumoylation impairs the progression of HR. This review addresses specific effects of sumoylation on the properties of various HR proteins and describes its importance for the homeostasis of DNA repetitive sequences. The article further illustrates the role of sumoylation in meiotic recombination and the interplay between SUMO and other post-translational modifications.
Collapse
Affiliation(s)
| | - Peter Kolesár
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| | - Lumír Krejčí
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| |
Collapse
|
10
|
Watts FZ, Hoffmann E. SUMO meets meiosis: an encounter at the synaptonemal complex: SUMO chains and sumoylated proteins suggest that heterogeneous and complex interactions lie at the centre of the synaptonemal complex. Bioessays 2011; 33:529-37. [PMID: 21590786 DOI: 10.1002/bies.201100002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent discoveries have identified the small ubiquitin-like modifier (SUMO) as the potential 'missing link' that could explain how the synaptonemal complex (SC) is formed during meiosis. The SC is important for a variety of chromosome interactions during meiosis and appears ladder-like. It is formed when 'axes' of the two homologous chromosomes become connected by the deposition of transverse filaments, forming the steps of the ladder. Although several components of axial and transverse elements have been identified, how the two are connected to form the SC has remained an enigma. Recent discoveries suggest that SUMO modification underlies protein-protein interactions within the SC of budding yeast. The versatility of SUMO in regulating protein-protein interactions adds an exciting new dimension to our understanding of the SC and suggests that SCs are not homogenous structures throughout the nucleus. We propose that this heterogeneity may allow differential regulation of chromosome structure and function.
Collapse
Affiliation(s)
- Felicity Z Watts
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, UK.
| | | |
Collapse
|
11
|
Jeram SM, Srikumar T, Pedrioli PGA, Raught B. Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites. Proteomics 2009; 9:922-34. [PMID: 19180541 DOI: 10.1002/pmic.200800666] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ubiquitin (Ub) and the ubiquitin-like proteins (Ubls) are polypeptides that are covalently conjugated to proteins and other biomolecules to modulate their turnover rate, localization, and/or function. The full range of Ubl functions is only beginning to be understood, and the wide variety of Ubl conjugates is only beginning to be identified. Moreover, how Ubl conjugation is regulated, and how Ubl conjugate populations change, e.g., throughout the cell cycle, in response to hormones, nutrients, or stress, or in various disease states, remains largely enigmatic. MS represents a powerful tool for the characterization of PTMs. However, standard sample preparation and data search methods are not amenable to the identification of many types of Ubl conjugates. Here, we describe the challenges of identifying Ub/Ubl conjugates, and propose an improved workflow for identification of Ub/Ubl conjugation sites. Considering the importance of Ubls in normal cellular physiology, and their roles in disease etiology and progression, it will be critical to develop improved high-throughput MS methods capable of efficiently identifying proteins and other biomolecules modified by these very interesting and important PTMs.
Collapse
Affiliation(s)
- Stanley M Jeram
- Ontario Cancer Institute, McLaughlin Centre for Molecular Medicine, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
12
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|