1
|
Matsuzaki M, Koga A, Yamagata S, Kawaguchi T, Tani M. TRS85 and LEM3 suppressor mutations rescue stress hypersensitivities caused by lack of structural diversity of complex sphingolipids in budding yeast. FEBS J 2025. [PMID: 40266832 DOI: 10.1111/febs.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/11/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
The budding yeast Saccharomyces cerevisiae can synthesise 15 subtypes of complex sphingolipids, and this structural diversity is thought to be the molecular basis that enables the range of biological functions of complex sphingolipids. Through analyses of yeast mutants with various deletion combinations of complex-sphingolipid-metabolising enzyme genes (CSG1, CSH1, IPT1, SUR2 and SCS7), it was previously shown that less structural diversity of complex sphingolipids leads to increased sensitivity to multiple environmental stresses, with impaired plasma-membrane and cell-wall integrity. In this study, we screened for suppressor mutations that can alleviate the stress hypersensitivities of csg1Δ csh1Δ sur2Δ scs7Δ (ccssΔ) cells. Mutations of trafficking protein particle complex III-specific subunit 85 (TRS85; encodes a component of the TRAPPIII complex, involved in membrane trafficking) and phospholipid-transporting ATPase Dnf2 (DNF2; encodes the plasma-membrane glycerophospholipid flippase) were identified as suppressor mutations. Loss of Trs85 or phospholipid-transporting ATPase accessory subunit Lem3 (LEM3; encodes a regulatory subunit of Dnf2) differed in the type of stress being conferred resistance to ccss∆ cells. Furthermore, it was also found that impaired plasma-membrane and cell-wall integrities in ccssΔ cells were suppressed by trs85∆ but not lem3∆. Moreover, ccss∆ cells exhibited abnormal localisation of yeGFP-Snc1 in endosomes, which is suppressed by trs85∆ but not lem3∆. Overexpression of GTP-binding protein Ypt1, which is regulated by TRAPPIII and involved in vesicular trafficking, exacerbated plasma-membrane integrity abnormalities and stress sensitivities in ccss∆ cells. Thus, it was suggested that TRS85 and LEM3 deletion confer stress tolerances to ccssΔ cells through distinct mechanisms. These findings will provide insights into the physiological significance of the structural diversity of complex sphingolipids.
Collapse
Grants
- 21H02118 Ministry of Education, Culture, Sports, Science, and Technology, Japan
- 23K18009 Ministry of Education, Culture, Sports, Science, and Technology, Japan
- 24K01682 Ministry of Education, Culture, Sports, Science, and Technology, Japan
- Ohsumi Frontier Science Foundation, Japan
- Mizutani Foundation for Glycoscience, Japan
Collapse
Affiliation(s)
- Momoko Matsuzaki
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Ayano Koga
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Satomi Yamagata
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Kawaguchi
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
- Faculty of Applied Biological Sciences, Gifu University, Japan
| |
Collapse
|
2
|
Ito Y, Miyazaki T, Tanaka Y, Suematsu T, Nakayama H, Morita A, Hirayama T, Tashiro M, Takazono T, Saijo T, Shimamura S, Yamamoto K, Imamura Y, Izumikawa K, Yanagihara K, Kohno S, Mukae H. Roles of Elm1 in antifungal susceptibility and virulence in Candida glabrata. Sci Rep 2020; 10:9789. [PMID: 32555245 PMCID: PMC7299981 DOI: 10.1038/s41598-020-66620-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/21/2020] [Indexed: 11/09/2022] Open
Abstract
Elm1 is a serine/threonine kinase involved in multiple cellular functions, including cytokinesis, morphogenesis, and drug resistance in Saccharomyces cerevisiae; however, its roles in pathogenic fungi have not been reported. In this study, we created ELM1-deletion, ELM1-reconstituted, ELM1-overexpression, and ELM1-kinase-dead strains in the clinically important fungal pathogen Candida glabrata and investigated the roles of Elm1 in cell morphology, stress response, and virulence. The elm1Δ strain showed elongated morphology and a thicker cell wall, with analyses of cell-wall components revealing that this strain exhibited significantly increased chitin content relative to that in the wild-type and ELM1-overexpression strains. Although the elm1Δ strain exhibited slower growth than the other two strains, as well as increased sensitivity to high temperature and cell-wall-damaging agents, it showed increased virulence in a Galleria mellonella-infection model. Moreover, loss of Elm1 resulted in increased adhesion to agar plates and epithelial cells, which represent important virulence factors in C. glabrata. Furthermore, RNA sequencing revealed that expression levels of 30 adhesion-like genes were elevated in the elm1Δ strain. Importantly, all these functions were mediated by the kinase activity of Elm1. To our knowledge, this is the first report describing the functional characterization of Elm1 in pathogenic fungi.
Collapse
Affiliation(s)
- Yuya Ito
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Taiga Miyazaki
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan.
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Yutaka Tanaka
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takashi Suematsu
- Central Electron Microscope Laboratory, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hironobu Nakayama
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Akihiro Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Tatsuro Hirayama
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomomi Saijo
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Shintaro Shimamura
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kazuko Yamamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshifumi Imamura
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Shigeru Kohno
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
3
|
Yasutis KM, Kozminski KG. Cell cycle checkpoint regulators reach a zillion. Cell Cycle 2013; 12:1501-9. [PMID: 23598718 DOI: 10.4161/cc.24637] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Entry into mitosis is regulated by a checkpoint at the boundary between the G2 and M phases of the cell cycle (G2/M). In many organisms, this checkpoint surveys DNA damage and cell size and is controlled by both the activation of mitotic cyclin-dependent kinases (Cdks) and the inhibition of an opposing phosphatase, protein phosphatase 2A (PP2A). Misregulation of mitotic entry can often lead to oncogenesis or cell death. Recent research has focused on discovering the signaling pathways that feed into the core checkpoint control mechanisms dependent on Cdk and PP2A. Herein, we review the conserved mechanisms of the G2/M transition, including recently discovered upstream signaling pathways that link cell growth and DNA replication to cell cycle progression. Critical consideration of the human, frog and yeast models of mitotic entry frame unresolved and emerging questions in this field, providing a prediction of signaling molecules and pathways yet to be discovered.
Collapse
|
4
|
Blanco N, Reidy M, Arroyo J, Cabib E. Crosslinks in the cell wall of budding yeast control morphogenesis at the mother-bud neck. J Cell Sci 2012; 125:5781-9. [PMID: 23077181 DOI: 10.1242/jcs.110460] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work has shown that, in cla4Δ cells of budding yeast, where septin ring organization is compromised, the chitin ring at the mother-daughter neck becomes essential for prevention of neck widening and for cytokinesis. Here, we show that it is not the chitin ring per se, but its linkage to β(1-3)glucan that is required for control of neck growth. When in a cla4Δ background, crh1Δ crh2Δ mutants, in which the chitin ring is not connected to β(1-3)glucan, grew very slowly and showed wide and growing necks, elongated buds and swollen cells with large vacuoles. A similar behavior was elicited by inhibition of the Crh proteins. This aberrant morphology matched that of cla4Δ chs3Δ cells, which have no chitin at the neck. Thus, this is a clear case in which a specific chemical bond between two substances, chitin and glucan, is essential for the control of morphogenesis. This defines a new paradigm, in which chemistry regulates growth.
Collapse
Affiliation(s)
- Noelia Blanco
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
5
|
Boric Acid Disturbs Cell Wall Synthesis in Saccharomyces cerevisiae. Int J Microbiol 2010; 2010:930465. [PMID: 21234349 PMCID: PMC3017954 DOI: 10.1155/2010/930465] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/20/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022] Open
Abstract
Boric acid (BA) has broad antimicrobial activity that makes it a popular treatment for yeast vaginitis in complementary and alternative medicine. In the model yeast S. cerevisiae, BA disturbs the cytoskeleton at the bud neck and impairs the assembly of the septation apparatus. BA treatment causes cells to form irregular septa and leads to the synthesis of irregular cell wall protuberances that extend far into the cytoplasm. The thick, chitin-rich septa that are formed during BA exposure prevent separation of cells after abscission and cause the formation of cell chains and clumps. As a response to the BA insult, cells signal cell wall stress through the Slt2p pathway and increase chitin synthesis, presumably to repair cell wall damage.
Collapse
|
6
|
Panozzo C, Bourens M, Nowacka A, Herbert CJ. Mutations in the C-terminus of the conserved NDR kinase, Cbk1p of Saccharomyces cerevisiae, make the protein independent of upstream activators. Mol Genet Genomics 2009; 283:111-22. [PMID: 19967545 DOI: 10.1007/s00438-009-0501-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
Abstract
In Saccharomyces cerevisiae, the RAM network is involved in cell separation after cytokinesis, cell integrity and cell polarity. The key function of this network is the regulation of the activity of the protein kinase Cbk1p, which is a member of the conserved NDR kinase family. Cbk1p function is controlled by its sub-cellular localization and at least two phosphorylation events: an auto phosphorylation in the kinase domain (S570) and the phosphorylation of a C-terminal hydrophobic motif by an upstream kinase (T743). After a UV mutagenesis, we have isolated 115 independent extragenic suppressors of four ram mutations: tao3, hym1, kic1 and sog2. Over 50% of the suppressors affect a single residue in Cbk1p (S745F), which is close to the phosphorylation site in the hydrophobic motif. Our results show that the CBK1-S745F allele leads to a constitutively active form of Cbk1p that is independent of the upstream RAM network. We hypothesize that the mutant Cbk1-S745Fp mimics the effect of the phosphorylation of T743.
Collapse
Affiliation(s)
- Cristina Panozzo
- Centre de Génétique Moléculaire du CNRS, FRE3144, FRC3115, Ave de la Terrasse, 91198, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
7
|
A phosphorylation-independent role for the yeast cyclin-dependent kinase activating kinase Cak1. Gene 2009; 447:97-105. [PMID: 19647054 DOI: 10.1016/j.gene.2009.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 07/22/2009] [Accepted: 07/22/2009] [Indexed: 11/20/2022]
Abstract
Cdc28 is the main cyclin-dependent kinase (CDK) directing the cell cycle in the budding yeast Saccharomyces cerevisiae. Besides cyclin binding, Cdc28 requires phosphorylation by the Cak1 kinase to achieve full activity. We have previously isolated carboxy-terminal cdc28(CST) mutants that are temperature sensitive and exhibit high chromosome instability. Both phenotypes are suppressed by high copy Cak1 in a manner that is independent of its catalytic activity and conversely, combination of cdc28(CST) and cak1 mutations results in synthetic lethality. Altogether, these results suggest that for the Cdc28 complexes to remain stable and active, an interaction with Cak1 is needed via the carboxyl terminus of Cdc28. We report two-hybrid assay data that support this model, and results that indicate that actively growing yeast cells require an optimum Cdc28:Cak1 ratio. While Cak1 is constitutively active and expressed, dividing cells tightly regulate Cak1 protein levels to ensure presence of adequate levels of Cdc28 CDK activity.
Collapse
|
8
|
The Ccr4-Pop2-NOT mRNA deadenylase contributes to septin organization in Saccharomyces cerevisiae. Genetics 2009; 182:955-66. [PMID: 19487562 DOI: 10.1534/genetics.109.104414] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In yeast, assembly of the septins at the cell cortex is required for a series of key cell cycle events: bud-site selection, the morphogenesis and mitotic exit checkpoints, and cytokinesis. Here we establish that the Ccr4-Pop2-NOT mRNA deadenylase contributes to septin organization. mRNAs encoding regulators of septin assembly (Ccd42, Cdc24, Rga1, Rga2, Bem3, Gin4, Cla4, and Elm1) presented with short poly(A) tails at steady state in wild-type (wt) cells, suggesting their translation could be restricted by deadenylation. Deadenylation of septin regulators was dependent on the major cellular mRNA deadenylase Ccr4-Pop2-NOT, whereas the alternative deadenylase Pan2 played a minor role. Consistent with deadenylation of septin regulators being important for function, deletion of deadenylase subunits CCR4 or POP2, but not PAN2, resulted in septin morphology defects (e.g., ectopic bud-localized septin rings), particularly upon activation of the Cdc28-inhibitory kinase Swe1. Aberrant septin staining was also observed in the deadenylase-dead ccr4-1 mutant, demonstrating the deadenylase activity of Ccr4-Pop2 is required. Moreover, ccr4Delta, pop2Delta, and ccr4-1 mutants showed aberrant cell morphology previously observed in septin assembly mutants and exhibited genetic interactions with mutations that compromise septin assembly (shs1Delta, cla4Delta, elm1Delta, and gin4Delta). Mutations in the Not subunits of Ccr4-Pop2-NOT, which are thought to predominantly function in transcriptional control, also resulted in septin organization defects. Therefore, both mRNA deadenylase and transcriptional functions of Ccr4-Pop2-NOT contribute to septin organization in yeast.
Collapse
|
9
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|