1
|
Nguyen N, Forstater JH, McIntosh JA. Decarboxylation in Natural Products Biosynthesis. JACS AU 2024; 4:2715-2745. [PMID: 39211618 PMCID: PMC11350588 DOI: 10.1021/jacsau.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Decarboxylation reactions are frequently found in the biosynthesis of primary and secondary metabolites. Decarboxylase enzymes responsible for these transformations operate via diverse mechanisms and act on a large variety of substrates, making them appealing in terms of biotechnological applications. This Perspective focuses on the occurrence of decarboxylation reactions in natural product biosynthesis and provides a perspective on their applications in biocatalysis for fine chemicals and pharmaceuticals.
Collapse
|
2
|
He L, Xiao F, Dou CX, Zhou B, Chen ZH, Wang JY, Wang CG, Xie F. Integrated Comparative Transcriptome and Weighted Gene Co-Expression Network Analysis Provide Valuable Insights into the Mechanisms of Pinhead Initiation in Chinese Caterpillar Mushroom Ophiocordyceps sinensis (Ascomycota). Int J Med Mushrooms 2024; 26:41-54. [PMID: 39171630 DOI: 10.1615/intjmedmushrooms.2024054674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The initiation and formation of the "pinhead" is the key node in growth process of Ophiocordyceps sinensis (Chinese Cordyceps). The research on the mechanism of changes in this growth stage is the basis for realizing the industrialization of its artificial cultivation. Clarifying the mechanisms of pinhead initiation is essential for its further application. Here, we performed a comprehensive transcriptome analysis of pinhead initiation process in O. sinensis. Comparative transcriptome analysis revealed remarkable variation in gene expression and enriched pathways at different pinhead initiation stages. Gene co-expression network analysis by WGCNA identified 4 modules highly relevant to different pinhead initiation stages, and 23 hub genes. The biological function analysis and hub gene annotation of these identified modules demonstrated that transmembrane transport and nucleotide excision repair were the topmost enriched in pre-pinhead initiation stage, carbohydrate metabolism and protein glycosylation were specially enriched in pinhead initiation stage, nucleotide binding and DNA metabolic process were over-represented after pinhead stage. These key regulators are mainly involved in carbohydrate metabolism, synthesis of proteins and nucleic acids. This work excavated the candidate pathways and hub genes related to the pinhead initiation stage, which will serve as a reference for realizing the industrialization of artificial cultivation in O. sinensis.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fan Xiao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Chen Xi Dou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Bo Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Jing Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Cheng Gang Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| |
Collapse
|
3
|
Khamwachirapithak P, Sae-Tang K, Mhuantong W, Tanapongpipat S, Zhao XQ, Liu CG, Wei DQ, Champreda V, Runguphan W. Optimizing Ethanol Production in Saccharomyces cerevisiae at Ambient and Elevated Temperatures through Machine Learning-Guided Combinatorial Promoter Modifications. ACS Synth Biol 2023; 12:2897-2908. [PMID: 37681736 PMCID: PMC10594650 DOI: 10.1021/acssynbio.3c00199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/09/2023]
Abstract
Bioethanol has gained popularity in recent decades as an ecofriendly alternative to fossil fuels due to increasing concerns about global climate change. However, economically viable ethanol fermentation remains a challenge. High-temperature fermentation can reduce production costs, but Saccharomyces cerevisiae yeast strains normally ferment poorly under high temperatures. In this study, we present a machine learning (ML) approach to optimize bioethanol production in S. cerevisiae by fine-tuning the promoter activities of three endogenous genes. We created 216 combinatorial strains of S. cerevisiae by replacing native promoters with five promoters of varying strengths to regulate ethanol production. Promoter replacement resulted in a 63% improvement in ethanol production at 30 °C. We created an ML-guided workflow by utilizing XGBoost to train high-performance models based on promoter strengths and cellular metabolite concentrations obtained from ethanol production of 216 combinatorial strains at 30 °C. This strategy was then applied to optimize ethanol production at 40 °C, where we selected 31 strains for experimental fermentation. This reduced experimental load led to a 7.4% increase in ethanol production in the second round of the ML-guided workflow. Our study offers a comprehensive library of promoter strength modifications for key ethanol production enzymes, showcasing how machine learning can guide yeast strain optimization and make bioethanol production more cost-effective and efficient. Furthermore, we demonstrate that metabolic engineering processes can be accelerated and optimized through this approach.
Collapse
Affiliation(s)
- Peerapat Khamwachirapithak
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
(NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong
Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kittapong Sae-Tang
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
(NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong
Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wuttichai Mhuantong
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
(NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong
Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sutipa Tanapongpipat
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
(NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong
Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Xin-Qing Zhao
- State
Key Laboratory of Microbial Metabolism, Joint International Research
Laboratory of Metabolic & Developmental Sciences, School of Life
Sciences and Biotechnology, Shanghai Jiao
Tong University, Shanghai 200240, People’s
Republic of China
| | - Chen-Guang Liu
- State
Key Laboratory of Microbial Metabolism, Joint International Research
Laboratory of Metabolic & Developmental Sciences, School of Life
Sciences and Biotechnology, Shanghai Jiao
Tong University, Shanghai 200240, People’s
Republic of China
| | - Dong-Qing Wei
- Department
of Bioinformatics and Biological Statistics, School of Life Sciences
and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Verawat Champreda
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
(NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong
Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Weerawat Runguphan
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
(NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong
Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
4
|
Galvão-Rocha FM, Rocha CHL, Martins MP, Sanches PR, Bitencourt TA, Sachs MS, Martinez-Rossi NM, Rossi A. The Antidepressant Sertraline Affects Cell Signaling and Metabolism in Trichophyton rubrum. J Fungi (Basel) 2023; 9:275. [PMID: 36836389 PMCID: PMC9961077 DOI: 10.3390/jof9020275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
The dermatophyte Trichophyton rubrum is responsible for most human cutaneous infections. Its treatment is complex, mainly because there are only a few structural classes of fungal inhibitors. Therefore, new strategies addressing these problems are essential. The development of new drugs is time-consuming and expensive. The repositioning of drugs already used in medical practice has emerged as an alternative to discovering new drugs. The antidepressant sertraline (SRT) kills several important fungal pathogens. Accordingly, we investigated the inhibitory mechanism of SRT in T. rubrum to broaden the knowledge of its impact on eukaryotic microorganisms and to assess its potential for future use in dermatophytosis treatments. We performed next-generation sequencing (RNA-seq) to identify the genes responding to SRT at the transcript level. We identified that a major effect of SRT was to alter expression for genes involved in maintaining fungal cell wall and plasma membrane stability, including ergosterol biosynthetic genes. SRT also altered the expression of genes encoding enzymes related to fungal energy metabolism, cellular detoxification, and defense against oxidative stress. Our findings provide insights into a specific molecular network interaction that maintains metabolic stability and is perturbed by SRT, showing potential targets for its strategic use in dermatophytosis.
Collapse
Affiliation(s)
- Flaviane M. Galvão-Rocha
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Carlos H. L. Rocha
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Maíra P. Martins
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Pablo R. Sanches
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Tamires A. Bitencourt
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo, USP, Ribeirao Preto 14049-900, SP, Brazil
| |
Collapse
|
5
|
Joseph RC, Sandoval NR. Single and multiplexed gene repression in solventogenic Clostridium via Cas12a-based CRISPR interference. Synth Syst Biotechnol 2022; 8:148-156. [PMID: 36687471 PMCID: PMC9842803 DOI: 10.1016/j.synbio.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The Gram-positive, spore-forming, obligate anaerobic firmicute species that make up the Clostridium genus have broad feedstock consumption capabilities and produce value-added metabolic products, but genetic manipulation is difficult, limiting their broad appeal. CRISPR-Cas systems have recently been applied to Clostridium species, primarily using Cas9 as a counterselection marker in conjunction with plasmid-based homologous recombination. CRISPR interference is a method that reduces gene expression of specific genes via precision targeting of a nuclease deficient Cas effector protein. Here, we develop a dCas12a-based CRISPR interference system for transcriptional gene repression in multiple mesophilic Clostridium species. We show the Francisella novicida Cas12a-based system has a broader applicability due to the low GC content in Clostridium species compared to CRISPR Cas systems derived from other bacteria. We demonstrate >99% reduction in transcript levels of targeted genes in Clostridium acetobutylicum and >75% reduction in Clostridium pasteurianum. We also demonstrate multiplexed repression via use of a single synthetic CRISPR array, achieving 99% reduction in targeted gene expression and elucidating a unique metabolic profile for their reduced expression. Overall, this work builds a foundation for high throughput genetic screens without genetic editing, a key limitation in current screening methods used in the Clostridium community.
Collapse
Affiliation(s)
| | - Nicholas R. Sandoval
- Corresponding author. Department of Chemical and Biomolecular Engineering, Tulane University, St. Charles Ave, New Orleans, LA, 70118, United States.
| |
Collapse
|
6
|
Sibirny AA. Metabolic engineering of non-conventional yeasts for construction of the advanced producers of biofuels and high-value chemicals. BBA ADVANCES 2022; 3:100071. [PMID: 37082251 PMCID: PMC10074886 DOI: 10.1016/j.bbadva.2022.100071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Non-conventional yeasts, i.e. yeasts different from Saccharomyces cerevisiae, represent heterogenous group of unicellular fungi consisting of near 1500 species. Some of these species have interesting and sometimes unique properties like ability to grow on methanol, n-alkanes, ferment pentose sugars xylose and l-arabinose, grow at high temperatures (50°С and more), overproduce riboflavin (vitamin B2) and others. These unique properties are important for development of basic science; moreover, some of them possess also significant applied interest for elaboration of new biotechnologies. Current paper represents review of the recent own results and of those of other authors in the field of non-conventional yeast study for construction of the advanced producers of biofuels (ethanol, isobutanol) from lignocellulosic sugars glucose and xylose or crude glycerol (Ogataea polymorpha, Magnusiomyces magnusii) and vitamin B2 (riboflavin) from glucose and cheese whey (Candida famata).
Collapse
Affiliation(s)
- Andriy A. Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv 79005 Ukraine
- University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601 Poland
- Corresponding author at: Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv 79005 Ukraine.
| |
Collapse
|
7
|
Semkiv MV, Ruchala J, Tsaruk AY, Zazulya AZ, Vasylyshyn RV, Dmytruk OV, Zuo M, Kang Y, Dmytruk KV, Sibirny AA. The role of hexose transporter-like sensor hxs1 and transcription activator involved in carbohydrate sensing azf1 in xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha. Microb Cell Fact 2022; 21:162. [PMID: 35964033 PMCID: PMC9375311 DOI: 10.1186/s12934-022-01889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background Fuel ethanol from lignocellulose could be important source of renewable energy. However, to make the process feasible, more efficient microbial fermentation of pentose sugars, mainly xylose, should be achieved. The native xylose-fermenting thermotolerant yeast Ogataea polymorpha is a promising organism for further development. Efficacy of xylose alcoholic fermentation by O. polymorpha was significantly improved by metabolic engineering. Still, genes involved in regulation of xylose fermentation are insufficiently studied. Results We isolated an insertional mutant of O.polymorpha with impaired ethanol production from xylose. The insertion occurred in the gene HXS1 that encodes hexose transporter-like sensor, a close homolog of Saccharomyces cerevisiae sensors Snf3 and Rgt2. The role of this gene in xylose utilization and fermentation was not previously elucidated. We additionally analyzed O.polymorpha strains with the deletion and overexpression of the corresponding gene. Strains with deletion of the HXS1 gene had slower rate of glucose and xylose consumption and produced 4 times less ethanol than the wild-type strain, whereas overexpression of HXS1 led to 10% increase of ethanol production from glucose and more than 2 times increase of ethanol production from xylose. We also constructed strains of O.polymorpha with overexpression of the gene AZF1 homologous to S. cerevisiae AZF1 gene which encodes transcription activator involved in carbohydrate sensing. Such transformants produced 10% more ethanol in glucose medium and 2.4 times more ethanol in xylose medium. Besides, we deleted the AZF1 gene in O. polymorpha. Ethanol accumulation in xylose and glucose media in such deletion strains dropped 1.5 and 1.8 times respectively. Overexpression of the HXS1 and AZF1 genes was also obtained in the advanced ethanol producer from xylose. The corresponding strains were characterized by 20–40% elevated ethanol accumulation in xylose medium. To understand underlying mechanisms of the observed phenotypes, specific enzymatic activities were evaluated in the isolated recombinant strains. Conclusions This paper shows the important role of hexose sensor Hxs1 and transcription factor Azf1 in xylose and glucose alcoholic fermentation in the native xylose-fermenting yeast O. polymorpha and suggests potential importance of the corresponding genes for construction of the advanced ethanol producers from the major sugars of lignocellulose.
Collapse
Affiliation(s)
- Marta V Semkiv
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine
| | - Justyna Ruchala
- University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Aksynia Y Tsaruk
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine
| | - Anastasiya Z Zazulya
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine
| | | | - Olena V Dmytruk
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine.,University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - MingXing Zuo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, 550014, Guiyang, China
| | - Yingqian Kang
- Department of Microbiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, 550014, Guiyang, China
| | - Kostyantyn V Dmytruk
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine.,University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Andriy A Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov St, 14/16, 79005, Lviv, Ukraine. .,University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
8
|
Hoffman SM, Alvarez M, Alfassi G, Rein DM, Garcia-Echauri S, Cohen Y, Avalos JL. Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:157. [PMID: 34274018 PMCID: PMC8285809 DOI: 10.1186/s13068-021-02008-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/05/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Future expansion of corn-derived ethanol raises concerns of sustainability and competition with the food industry. Therefore, cellulosic biofuels derived from agricultural waste and dedicated energy crops are necessary. To date, slow and incomplete saccharification as well as high enzyme costs have hindered the economic viability of cellulosic biofuels, and while approaches like simultaneous saccharification and fermentation (SSF) and the use of thermotolerant microorganisms can enhance production, further improvements are needed. Cellulosic emulsions have been shown to enhance saccharification by increasing enzyme contact with cellulose fibers. In this study, we use these emulsions to develop an emulsified SSF (eSSF) process for rapid and efficient cellulosic biofuel production and make a direct three-way comparison of ethanol production between S. cerevisiae, O. polymorpha, and K. marxianus in glucose and cellulosic media at different temperatures. RESULTS In this work, we show that cellulosic emulsions hydrolyze rapidly at temperatures tolerable to yeast, reaching up to 40-fold higher conversion in the first hour compared to microcrystalline cellulose (MCC). To evaluate suitable conditions for the eSSF process, we explored the upper temperature limits for the thermotolerant yeasts Kluyveromyces marxianus and Ogataea polymorpha, as well as Saccharomyces cerevisiae, and observed robust fermentation at up to 46, 50, and 42 °C for each yeast, respectively. We show that the eSSF process reaches high ethanol titers in short processing times, and produces close to theoretical yields at temperatures as low as 30 °C. Finally, we demonstrate the transferability of the eSSF technology to other products by producing the advanced biofuel isobutanol in a light-controlled eSSF using optogenetic regulators, resulting in up to fourfold higher titers relative to MCC SSF. CONCLUSIONS The eSSF process addresses the main challenges of cellulosic biofuel production by increasing saccharification rate at temperatures tolerable to yeast. The rapid hydrolysis of these emulsions at low temperatures permits fermentation using non-thermotolerant yeasts, short processing times, low enzyme loads, and makes it possible to extend the process to chemicals other than ethanol, such as isobutanol. This transferability establishes the eSSF process as a platform for the sustainable production of biofuels and chemicals as a whole.
Collapse
Affiliation(s)
- Shannon M Hoffman
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Maria Alvarez
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
- Department of Chemical Engineering, University of Vigo, 36310, Vigo, Spain
| | - Gilad Alfassi
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Dmitry M Rein
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sergio Garcia-Echauri
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA
| | - Yachin Cohen
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - José L Avalos
- Department of Chemical and Biological Engineering, Hoyt Laboratory, Princeton University, 101 Hoyt Laboratory, William Street, Princeton, NJ, 08544, USA.
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Environmental Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
9
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
10
|
Mazzoli R, Olson D. Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:111-161. [PMID: 32948265 DOI: 10.1016/bs.aambs.2020.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Second generation biorefining, namely fermentation processes based on lignocellulosic feedstocks, has attracted tremendous interest (owing to the large availability and low cost of this biomass) as a strategy to produce biofuels and commodity chemicals that is an alternative to oil refining. However, the innate recalcitrance of lignocellulose has slowed progress toward economically viable processes. Consolidated bioprocessing (CBP), i.e., single-step fermentation of lignocellulose may dramatically reduce the current costs of 2nd generation biorefining. Metabolic engineering has been used as a tool to develop improved microbial strains supporting CBP. Clostridium thermocellum is among the most efficient cellulose degraders isolated so far and one of the most promising host organisms for application of CBP. The development of efficient and reliable genetic tools has allowed significant progress in metabolic engineering of this strain aimed at expanding the panel of growth substrates and improving the production of a number of commodity chemicals of industrial interest such as ethanol, butanol, isobutanol, isobutyl acetate and lactic acid. The present review aims to summarize recent developments in metabolic engineering of this organism which currently represents a reference model for the development of biocatalysts for 2nd generation biorefining.
Collapse
|
11
|
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol 2019; 47:109-132. [PMID: 31637550 PMCID: PMC6970964 DOI: 10.1007/s10295-019-02242-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
12
|
Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, Rahbarnia L, Aria M. Yeast Expression Systems: Overview and Recent Advances. Mol Biotechnol 2019; 61:365-384. [PMID: 30805909 DOI: 10.1007/s12033-019-00164-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yeasts are outstanding hosts for the production of functional recombinant proteins with industrial or medical applications. Great attention has been emerged on yeast due to the inherent advantages and new developments in this host cell. For the production of each specific product, the most appropriate expression system should be identified and optimized both on the genetic and fermentation levels, considering the features of the host, vector and expression strategies. Currently, several new systems are commercially available; some of them are private and need licensing. The potential for secretory expression of heterologous proteins in yeast proposed this system as a candidate for the production of complex eukaryotic proteins. The common yeast expression hosts used for recombinant proteins' expression include Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, Arxula adeninivorans, Kluyveromyces lactis, and Schizosaccharomyces pombe. This review is dedicated to discuss on significant characteristics of the most common methylotrophic and non-methylotrophic yeast expression systems with an emphasis on their advantages and new developments.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak, Arabi Ave, Tehran, Iran. .,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - AmirAli Mafi
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Hoseinpoor
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Aria
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| |
Collapse
|
13
|
Alcover N, Carceller A, Álvaro G, Guillén M. Zymobacter palmae pyruvate decarboxylase production process development: Cloning in Escherichia coli, fed-batch culture and purification. Eng Life Sci 2019; 19:502-512. [PMID: 32625027 DOI: 10.1002/elsc.201900010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/25/2019] [Accepted: 04/24/2019] [Indexed: 11/11/2022] Open
Abstract
Pyruvate decarboxylase (PDC) is responsible for the decarboxylation of pyruvate, producing acetaldehyde and carbon dioxide and is of high interest for industrial applications. PDC is a very powerful tool in the enzymatic synthesis of chiral amines by combining it with transaminases when alanine is used as amine donor. However, one of the main drawback that hampers its use in biocatalysis is its production and the downstream processing on scale. In this paper, a production process of PDC from Zymobacter palmae has been developed. The enzyme has been cloned and overexpressed in Escherichia coli. It is presented, for the first time, the evaluation of the production of recombinant PDC in a bench-scale bioreactor, applying a substrate-limiting fed-batch strategy which led to a volumetric productivity and a final PDC specific activity of 6942 U L-1h-1 and 3677 U gDCW-1 (dry cell weight). Finally, PDC was purified in fast protein liquid chromatography equipment by ion exchange chromatography. The developed purification process resulted in 100% purification yield and a purification factor of 3.8.
Collapse
Affiliation(s)
- Natàlia Alcover
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering Universitat Autònoma de Barcelona Bellaterra Spain
| | - Albert Carceller
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering Universitat Autònoma de Barcelona Bellaterra Spain
| | - Gregorio Álvaro
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering Universitat Autònoma de Barcelona Bellaterra Spain
| | - Marina Guillén
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering Universitat Autònoma de Barcelona Bellaterra Spain
| |
Collapse
|
14
|
Kurylenko OO, Ruchala J, Vasylyshyn RV, Stasyk OV, Dmytruk OV, Dmytruk KV, Sibirny AA. Peroxisomes and peroxisomal transketolase and transaldolase enzymes are essential for xylose alcoholic fermentation by the methylotrophic thermotolerant yeast, Ogataea (Hansenula) polymorpha. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:197. [PMID: 30034524 PMCID: PMC6052537 DOI: 10.1186/s13068-018-1203-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ogataea (Hansenula) polymorpha is one of the most thermotolerant xylose-fermenting yeast species reported to date. Several metabolic engineering approaches have been successfully demonstrated to improve high-temperature alcoholic fermentation by O. polymorpha. Further improvement of ethanol production from xylose in O. polymorpha depends on the identification of bottlenecks in the xylose conversion pathway to ethanol. RESULTS Involvement of peroxisomal enzymes in xylose metabolism has not been described to date. Here, we found that peroxisomal transketolase (known also as dihydroxyacetone synthase) and peroxisomal transaldolase (enzyme with unknown function) in the thermotolerant methylotrophic yeast, Ogataea (Hansenula) polymorpha, are required for xylose alcoholic fermentation, but not for growth on this pentose sugar. Mutants with knockout of DAS1 and TAL2 coding for peroxisomal transketolase and peroxisomal transaldolase, respectively, normally grow on xylose. However, these mutants were found to be unable to support ethanol production. The O. polymorpha mutant with the TAL1 knockout (coding for cytosolic transaldolase) normally grew on glucose and did not grow on xylose; this defect was rescued by overexpression of TAL2. The conditional mutant, pYNR1-TKL1, that expresses the cytosolic transketolase gene under control of the ammonium repressible nitrate reductase promoter did not grow on xylose and grew poorly on glucose media supplemented with ammonium. Overexpression of DAS1 only partially restored the defects displayed by the pYNR1-TKL1 mutant. The mutants defective in peroxisome biogenesis, pex3Δ and pex6Δ, showed normal growth on xylose, but were unable to ferment this sugar. Moreover, the pex3Δ mutant of the non-methylotrophic yeast, Scheffersomyces (Pichia) stipitis, normally grows on and ferments xylose. Separate overexpression or co-overexpression of DAS1 and TAL2 in the wild-type strain increased ethanol synthesis from xylose 2 to 4 times with no effect on the alcoholic fermentation of glucose. Overexpression of TKL1 and TAL1 also elevated ethanol production from xylose. Finally, co-overexpression of DAS1 and TAL2 in the best previously isolated O. polymorpha xylose to ethanol producer led to increase in ethanol accumulation up to 16.5 g/L at 45 °C; or 30-40 times more ethanol than is produced by the wild-type strain. CONCLUSIONS Our results indicate the importance of the peroxisomal enzymes, transketolase (dihydroxyacetone synthase, Das1), and transaldolase (Tal2), in the xylose alcoholic fermentation of O. polymorpha.
Collapse
Affiliation(s)
- Olena O. Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Justyna Ruchala
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Roksolana V. Vasylyshyn
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Oleh V. Stasyk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Olena V. Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Kostyantyn V. Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
| | - Andriy A. Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005 Ukraine
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| |
Collapse
|
15
|
Molecular and functional characterization of two pyruvate decarboxylase genes, PDC1 and PDC5, in the thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 2018; 102:3723-3737. [DOI: 10.1007/s00253-018-8862-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/01/2018] [Accepted: 02/08/2018] [Indexed: 10/17/2022]
|
16
|
Dmytruk KV, Ruchala J, Grabek-Lejko D, Puchalski C, Bulbotka NV, Sibirny AA. Autophagy-related gene ATG13 is involved in control of xylose alcoholic fermentation in the thermotolerant methylotrophic yeast Ogataea polymorpha. FEMS Yeast Res 2018; 18:4847886. [DOI: 10.1093/femsyr/foy010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/08/2018] [Indexed: 01/16/2023] Open
Affiliation(s)
- Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv 79005 Ukraine
| | - Justyna Ruchala
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, Rzeszow 35–601 Poland
| | - Dorota Grabek-Lejko
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, Rzeszow 35–601 Poland
| | - Czeslaw Puchalski
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, Rzeszow 35–601 Poland
| | - Nina V Bulbotka
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv 79005 Ukraine
| | - Andriy A Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv 79005 Ukraine
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, Rzeszow 35–601 Poland
| |
Collapse
|
17
|
Kata I, Semkiv MV, Ruchala J, Dmytruk KV, Sibirny AA. Overexpression of the genes PDC1 and ADH1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha. Yeast 2017; 33:471-8. [PMID: 27256876 DOI: 10.1002/yea.3175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 12/12/2022] Open
Abstract
Conversion of byproduct from biodiesel production glycerol to high-value compounds is of great importance. Ethanol is considered a promising product of glycerol bioconversion. The methylotrophic thermotolerant yeast Ogataea (Hansenula) polymorpha is of great interest for this purpose as the glycerol byproduct contains methanol and heavy metals as contaminants, and this yeast utilizes methanol and is relatively resistant to heavy metals. Besides, O. polymorpha shows robust growth on glycerol and produces ethanol from various carbon sources. The thermotolerance of this yeast is an additional advantage, allowing increased fermentation temperature to 45-48 °C, leading to increased rate of the fermentation process and a fall in the cost of distillation. The wild-type strain of O. polymorpha produces insignificant amounts of ethanol from glycerol (0.8 g/l). Overexpression of PDC1 coding for pyruvate decarboxylase enhanced ethanol production up to 3.1 g/l, whereas simultaneous overexpression of PDC1 and ADH1 (coding for alcohol dehydrogenase) led to further increase in ethanol production from glycerol. Moreover, the increased temperature of fermentation up to 45 °C stimulated the production of ethanol from glycerol used as the only carbon source up to 5.0 g/l, which exceeds the data obtained by methylotrophic yeast strains reported so far. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Iwona Kata
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, Rzeszow, 35-601, Poland
| | - Marta V Semkiv
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Lviv, 79005, Ukraine
| | - Justyna Ruchala
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, Rzeszow, 35-601, Poland
| | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, Rzeszow, 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Lviv, 79005, Ukraine
| |
Collapse
|
18
|
Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase. Microb Cell Fact 2017; 16:171. [PMID: 28978312 PMCID: PMC5628457 DOI: 10.1186/s12934-017-0783-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Background Pyruvate decarboxylase (PDC) is a well-known pathway for ethanol production, but has not been demonstrated for high titer ethanol production at temperatures above 50 °C. Result Here we examined the thermostability of eight PDCs. The purified bacterial enzymes retained 20% of activity after incubation for 30 min at 55 °C. Expression of these PDC genes, except the one from Zymomonas mobilis, improved ethanol production by Clostridium thermocellum. Ethanol production was further improved by expression of the heterologous alcohol dehydrogenase gene adhA from Thermoanaerobacterium saccharolyticum. Conclusion The best PDC enzyme was from Acetobactor pasteurianus. A strain of C. thermocellum expressing the pdc gene from A. pasteurianus and the adhA gene from T. saccharolyticum was able to produce 21.3 g/L ethanol from 60 g/L cellulose, which is 70% of the theoretical maximum yield. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0783-9) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Ruchala J, Kurylenko OO, Soontorngun N, Dmytruk KV, Sibirny AA. Transcriptional activator Cat8 is involved in regulation of xylose alcoholic fermentation in the thermotolerant yeast Ogataea (Hansenula) polymorpha. Microb Cell Fact 2017; 16:36. [PMID: 28245828 PMCID: PMC5331723 DOI: 10.1186/s12934-017-0652-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 11/16/2022] Open
Abstract
Background Efficient xylose alcoholic fermentation is one of the key to a successful lignocellulosic ethanol production. However, regulation of this process in the native xylose-fermenting yeasts is poorly understood. In this work, we paid attention to the transcriptional factor Cat8 and its possible role in xylose alcoholic fermentation in Ogataea (Hansenula) polymorpha. In Saccharomyces cerevisiae, organism, which does not metabolize xylose, gene CAT8 encodes a Zn-cluster transcriptional activator necessary for expression of genes involved in gluconeogenesis, respiration, glyoxylic cycle and ethanol utilization. Xylose is a carbon source that could be fermented to ethanol and simultaneously could be used in gluconeogenesis for hexose synthesis. This potentially suggests involvement of CAT8 in xylose metabolism. Results Here, the role of CAT8 homolog in the natural xylose-fermenting thermotolerant yeast O. polymorpha was characterized. The CAT8 ortholog was identified in O. polymorpha genome and deleted both in the wild-type strain and in advanced ethanol producer from xylose. Constructed cat8Δ strain isolated from wild strain showed diminished growth on glycerol, ethanol and xylose as well as diminished respiration on the last substrate. At the same time, cat8Δ mutant isolated from the best available O. polymorpha ethanol producer showed only visible defect in growth on ethanol. CAT8 deletant was characterized by activated transcription of genes XYL3, DAS1 and RPE1 and slight increase in the activity of several enzymes involved in xylose metabolism and alcoholic fermentation. Ethanol production from xylose in cat8Δ mutants in the background of wild-type strain and the best available ethanol producer from xylose increased for 50 and 30%, respectively. The maximal titer of ethanol during xylose fermentation was 12.5 g ethanol/L at 45 °C. Deletion of CAT8 did not change ethanol production from glucose. Gene CAT8 was also overexpressed under control of the strong constitutive promoter GAP of glyceraldehyde-3-phosphate dehydrogenase. Corresponding strains showed drop in ethanol production in xylose medium whereas glucose alcoholic fermentation remained unchanged. Available data suggest on specific role of Cat8 in xylose alcoholic fermentation. Conclusions The CAT8 gene is one of the first identified genes specifically involved in regulation of xylose alcoholic fermentation in the natural xylose-fermenting yeast O. polymorpha. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0652-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005, Ukraine
| | | | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland. .,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005, Ukraine.
| |
Collapse
|
20
|
Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624. J Biosci Bioeng 2016; 122:17-21. [DOI: 10.1016/j.jbiosc.2015.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022]
|
21
|
Schifferdecker AJ, Siurkus J, Andersen MR, Joerck-Ramberg D, Ling Z, Zhou N, Blevins JE, Sibirny AA, Piškur J, Ishchuk OP. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast. Appl Microbiol Biotechnol 2016; 100:3219-31. [PMID: 26743658 PMCID: PMC4786601 DOI: 10.1007/s00253-015-7266-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/13/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the “Custer effect”. Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.
Collapse
Affiliation(s)
| | - Juozas Siurkus
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Dorte Joerck-Ramberg
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Zhihao Ling
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Nerve Zhou
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - James E Blevins
- Consulting statistician, Pinnmöllevägen 48, SE-24755, Dalby, Sweden
| | - Andriy A Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv, 79005, Ukraine.,Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowizca 4, Rzeszow, 35-601, Poland
| | - Jure Piškur
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Olena P Ishchuk
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden.
| |
Collapse
|
22
|
Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 2015; 15:fov053. [PMID: 26126524 DOI: 10.1093/femsyr/fov053] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2015] [Indexed: 01/18/2023] Open
Abstract
Saccharomyces cerevisiae has been used for millennia in the production of food and beverages and is by far the most studied yeast species. Currently, it is also the most used microorganism in the production of first-generation bioethanol from sugar or starch crops. Second-generation bioethanol, on the other hand, is produced from lignocellulosic feedstocks that are pretreated and hydrolyzed to obtain monomeric sugars, mainly D-glucose, D-xylose and L-arabinose. Recently, S. cerevisiae recombinant strains capable of fermenting pentose sugars have been generated. However, the pretreatment of the biomass results in hydrolysates with high osmolarity and high concentrations of inhibitors. These compounds negatively influence the fermentation process. Therefore, robust strains with high stress tolerance are required. Up to now, more than 2000 yeast species have been described and some of these could provide a solution to these limitations because of their high tolerance to the most predominant stress conditions present in a second-generation bioethanol reactor. In this review, we will summarize what is known about the non-conventional yeast species showing unusual tolerance to these stresses, namely Zygosaccharomyces rouxii (osmotolerance), Kluyveromyces marxianus and Ogataea (Hansenula) polymorpha (thermotolerance), Dekkera bruxellensis (ethanol tolerance), Pichia kudriavzevii (furan derivatives tolerance) and Z. bailii (acetic acid tolerance).
Collapse
Affiliation(s)
- Dorota Radecka
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Vaskar Mukherjee
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Flanders, Belgium
| | - Raquel Quintilla Mateo
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marija Stojiljkovic
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
23
|
Olson DG, Sparling R, Lynd LR. Ethanol production by engineered thermophiles. Curr Opin Biotechnol 2015; 33:130-41. [PMID: 25745810 DOI: 10.1016/j.copbio.2015.02.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/17/2022]
Abstract
We compare a number of different strategies that have been pursued to engineer thermophilic microorganisms for increased ethanol production. Ethanol production from pyruvate can proceed via one of four pathways, which are named by the key pyruvate dissimilating enzyme: pyruvate decarboxylase (PDC), pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), and pyruvate ferredoxin oxidoreductase (PFOR). For each of these pathways except PFL, we see examples where ethanol production has been engineered with a yield of >90% of the theoretical maximum. In each of these cases, this engineering was achieved mainly by modulating expression of native genes. We have not found an example where a thermophilic ethanol production pathway has been transferred to a non-ethanol-producing organism to produce ethanol at high yield. A key reason for the lack of transferability of ethanol production pathways is the current lack of understanding of the enzymes involved.
Collapse
Affiliation(s)
- Daniel G Olson
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, United States; BioEnergy Science Center, Oak Ridge, TN 37830, United States
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada R3T 5V6
| | - Lee R Lynd
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, United States; BioEnergy Science Center, Oak Ridge, TN 37830, United States.
| |
Collapse
|
24
|
Kurylenko OO, Ruchala J, Hryniv OB, Abbas CA, Dmytruk KV, Sibirny AA. Metabolic engineering and classical selection of the methylotrophic thermotolerant yeast Hansenula polymorpha for improvement of high-temperature xylose alcoholic fermentation. Microb Cell Fact 2014; 13:122. [PMID: 25145644 PMCID: PMC4145226 DOI: 10.1186/s12934-014-0122-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 08/12/2014] [Indexed: 12/02/2022] Open
Abstract
Background The methylotrophic yeast, Hansenula
polymorpha is an industrially important microorganism, and
belongs to the best studied yeast species with well-developed tools for
molecular research. The complete genome sequence of the strain NCYC495 of
H. polymorpha is publicly available. Some
of the well-studied strains of H. polymorpha
are known to ferment glucose, cellobiose and xylose to ethanol at elevated
temperature (45 – 50°C) with ethanol yield from xylose significantly lower than
that from glucose and cellobiose. Increased yield of ethanol from xylose was
demonstrated following directed metabolic changes but, still the final ethanol
concentration achieved is well below what is considered feasible for economic
recovery by distillation. Results In this work, we describe the construction of strains of H. polymorpha with increased ethanol production
from xylose using an ethanol-non-utilizing strain
(2EthOH−) as the host. The transformants derived
from 2EthOH− overexpressing modified xylose reductase
(XYL1m) and native xylitol dehydrogenase
(XYL2) were isolated. These transformants
produced 1.5-fold more ethanol from xylose than the original host strain. The
additional overexpression of XYL3 gene coding
for xylulokinase, resulted in further 2.3-fold improvement in ethanol production
with no measurable xylitol formed during xylose fermentation. The best ethanol
producing strain obtained by metabolic engineering approaches was subjected to
selection for resistance to the known inhibitor of glycolysis, the anticancer
drug 3-bromopyruvate. The best mutant selected had an ethanol yield of 0.3 g/g
xylose and produced up to 9.8 g of ethanol/l during xylose alcoholic
fermentation at 45°C without correction for ethanol evaporation. Conclusions Our results indicate that xylose conversion to ethanol at elevated temperature
can be significantly improved in H.
polymorpha by combining methods of metabolic engineering and
classical selection.
Collapse
Affiliation(s)
| | | | | | | | | | - Andriy A Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine.
| |
Collapse
|
25
|
Dmytruk KV, Sibirny AA. Metabolic engineering of the yeast Hansenula polymorpha for the construction of efficient ethanol producers. CYTOL GENET+ 2013. [DOI: 10.3103/s0095452713060029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Ravin NV, Eldarov MA, Kadnikov VV, Beletsky AV, Schneider J, Mardanova ES, Smekalova EM, Zvereva MI, Dontsova OA, Mardanov AV, Skryabin KG. Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics 2013; 14:837. [PMID: 24279325 PMCID: PMC3866509 DOI: 10.1186/1471-2164-14-837] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 11/15/2013] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hansenula polymorpha DL1 is a methylotrophic yeast, widely used in fundamental studies of methanol metabolism, peroxisome biogenesis and function, and also as a microbial cell factory for production of recombinant proteins and metabolic engineering towards the goal of high temperature ethanol production. RESULTS We have sequenced the 9 Mbp H. polymorpha DL1 genome and performed whole-genome analysis for the H. polymorpha transcriptome obtained from both methanol- and glucose-grown cells. RNA-seq analysis revealed the complex and dynamic character of the H. polymorpha transcriptome under the two studied conditions, identified abundant and highly unregulated expression of 40% of the genome in methanol grown cells, and revealed alternative splicing events. We have identified subtelomerically biased protein families in H. polymorpha, clusters of LTR elements at G + C-poor chromosomal loci in the middle of each of the seven H. polymorpha chromosomes, and established the evolutionary position of H. polymorpha DL1 within a separate yeast clade together with the methylotrophic yeast Pichia pastoris and the non-methylotrophic yeast Dekkera bruxellensis. Intergenome comparisons uncovered extensive gene order reshuffling between the three yeast genomes. Phylogenetic analyses enabled us to reveal patterns of evolution of methylotrophy in yeasts and filamentous fungi. CONCLUSIONS Our results open new opportunities for in-depth understanding of many aspects of H. polymorpha life cycle, physiology and metabolism as well as genome evolution in methylotrophic yeasts and may lead to novel improvements toward the application of H. polymorpha DL-1 as a microbial cell factory.
Collapse
Affiliation(s)
- Nikolai V Ravin
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Michael A Eldarov
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Vitaly V Kadnikov
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Alexey V Beletsky
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Jessica Schneider
- Institute for Bioinformatics, Center for Biotechnology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Eugenia S Mardanova
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Elena M Smekalova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia and Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Maria I Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia and Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Olga A Dontsova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia and Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Andrey V Mardanov
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Konstantin G Skryabin
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| |
Collapse
|
27
|
Naumova ES, Dmitruk KV, Kshanovskaya BV, Sibirny AA, Naumov GI. Molecular identification of the industrially important strain Ogataea parapolymorpha. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713030090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Agarwal PK, Uppada V, Noronha SB. Comparison of pyruvate decarboxylases from Saccharomyces cerevisiae and Komagataella pastoris (Pichia pastoris). Appl Microbiol Biotechnol 2013; 97:9439-49. [DOI: 10.1007/s00253-013-4758-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/03/2013] [Accepted: 02/05/2013] [Indexed: 11/30/2022]
|
29
|
Kim OC, Suwannarangsee S, Oh DB, Kim S, Seo JW, Kim CH, Kang HA, Kim JY, Kwon O. Transcriptome analysis of xylose metabolism in the thermotolerant methylotrophic yeast Hansenula polymorpha. Bioprocess Biosyst Eng 2013; 36:1509-18. [PMID: 23380941 DOI: 10.1007/s00449-013-0909-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/21/2013] [Indexed: 11/29/2022]
Abstract
The thermotolerant methylotrophic yeast Hansenula polymorpha is able to grow at elevated temperature up to 48 °C as one of a few yeast strains which are naturally capable of alcoholic fermentation of xylose, a pentose sugar abundant in lignocellulosic biomass. However, the current level of ethanol production from xylose by H. polymorpha is still very low compared to those of other xylose-fermenting strains. Therefore, it is necessary to analyze and remodel the xylose metabolism in H. polymorpha at the whole genome level to identify and overcome these limits. In the present study, the transcriptomes of H. polymorpha grown on xylose were compared with those of glucose-grown cells under both aerobic and microaerobic conditions. Approximately, two percent of H. polymorpha genes were either up- or down-regulated by more than two-fold during the growth on xylose. The majority of the up-regulated genes were involved in metabolism. Some genes involved in xylose metabolism, such as XYL1, XYL2, and TAL1 were also up-regulated, despite the fact that the differences in their induction level were only about three-fold. On the other hand, the majority of the down-regulated genes were involved in metabolism and cellular transport. Interestingly, some genes involved in glycolysis and ethanol fermentation were also repressed during growth on xylose, suggesting that these genes are good targets for engineering H. polymorpha to improve xylose fermentation.
Collapse
Affiliation(s)
- Oh Cheol Kim
- Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhao G, Yao Y, Wang X, Hou L, Wang C, Cao X. Functional properties of soy sauce and metabolism genes of strains for fermentation. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.03219.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guozhong Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science & Technology; Tianjin; 300457; China
| | - Yunping Yao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science & Technology; Tianjin; 300457; China
| | - Xiaohua Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science & Technology; Tianjin; 300457; China
| | - Lihua Hou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science & Technology; Tianjin; 300457; China
| | - Chunling Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science & Technology; Tianjin; 300457; China
| | - Xiaohong Cao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science & Technology; Tianjin; 300457; China
| |
Collapse
|
31
|
Tanimura A, Nakamura T, Watanabe I, Ogawa J, Shima J. Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. SPRINGERPLUS 2012; 1:27. [PMID: 23961357 PMCID: PMC3725896 DOI: 10.1186/2193-1801-1-27] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/02/2012] [Indexed: 11/10/2022]
Abstract
Considering the cost-effectiveness of bioethanol production, there is a need for a yeast strain which can convert glucose and xylose into ethanol at elevated temperatures. We succeeded in isolating a yeast strain, designated strain ATY839, which was capable of ethanolic fermentation at temperatures above those previously reported for yeasts able to ferment both glucose and xylose. Strain ATY839 was capable of producing a substantial amount of ethanol at up to 37°C from 2% glucose or 2% xylose. The results of a phylogenetic analysis suggest that strain ATY839 belongs to Candida shehatae. In additional, ethanol production from rice straw by strain ATY839 was examined. Compared with the control strains (Saccharomyces cerevisiae NBRC 0224, Scheffersomyces stipitis NBRC 10063, and C. shehatae ATCC 22984), strain ATY839 produced more ethanol in SSF even at 37°C. The theoretical maximum yield of strain ATY839 was 71.6% at 24 h. Thus, strain ATY839 is considered to be the most tolerant to high temperature of the C. shehatae strains.
Collapse
Affiliation(s)
- Ayumi Tanimura
- Research Division of Microbial Sciences, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | | | | | |
Collapse
|
32
|
Walker GM. 125th Anniversary Review: Fuel Alcohol: Current Production and Future Challenges. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2011.tb00438.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Characterization of alcohol dehydrogenase 3 of the thermotolerant methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 2012; 96:697-709. [DOI: 10.1007/s00253-011-3866-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
|
34
|
Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae. Appl Biochem Biotechnol 2011; 166:856-65. [PMID: 22161213 DOI: 10.1007/s12010-011-9475-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.
Collapse
|
35
|
Reduction of PDC1 expression in S. cerevisiae with xylose isomerase on xylose medium. Bioprocess Biosyst Eng 2011; 35:183-9. [PMID: 21989637 DOI: 10.1007/s00449-011-0638-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
Ethanol production using hemicelluloses has recently become a focus of many researchers. In order to promote D: -xylose fermentation, we cloned the bacterial xylA gene encoding for xylose isomerase with 434 amino acid residues from Agrobacterium tumefaciens, and successfully expressed it in Saccharomyces cerevisiae, a non-xylose assimilating yeast. The recombinant strain S. cerevisiae W303-1A/pAGROXI successfully colonized a minimal medium containing D: -xylose as a sole carbon source and was capable of growth in minimal medium containing 2% xylose via aerobic shake cultivation. Although the recombinant strain assimilates D: -xylose, its ethanol productivity is quite low during fermentation with D: -xylose alone. In order to ascertain the key enzyme in ethanol production from D: -xylose, we checked the expression levels of the gene clusters involved in the xylose assimilating pathway. Among the genes classified into four groups by their expression patterns, the mRNA level of pyruvate decarboxylase (PDC1) was reduced dramatically in xylose media. This reduced expression of PDC1, an enzyme which converts pyruvate to acetaldehyde, may cause low ethanol productivity in xylose medium. Thus, the enhancement of PDC1 gene expression may provide us with a useful tool for the fermentation of ethanol from hemicellulose.
Collapse
|
36
|
Ubiyvovk VM, Ananin VM, Malyshev AY, Kang HA, Sibirny AA. Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1. BMC Biotechnol 2011; 11:8. [PMID: 21255454 PMCID: PMC3032675 DOI: 10.1186/1472-6750-11-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 01/22/2011] [Indexed: 11/25/2022] Open
Abstract
Background Tripeptide glutathione (gamma-glutamyl-L-cysteinyl-glycine) is the most abundant non-protein thiol that protects cells from metabolic and oxidative stresses and is widely used as medicine, food additives and in cosmetic industry. The methylotrophic yeast Hansenula polymorpha is regarded as a rich source of glutathione due to the role of this thiol in detoxifications of key intermediates of methanol metabolism. Cellular and extracellular glutathione production of H. polymorpha DL-1 in the wild type and recombinant strains which overexpress genes of glutathione biosynthesis (GSH2) and its precursor cysteine (MET4) was studied. Results Glutathione producing capacity of H. polymorpha DL-1 depending on parameters of cultivation (dissolved oxygen tension, pH, stirrer speed), carbon substrate (glucose, methanol) and type of overexpressed genes of glutathione and its precursor biosynthesis during batch and fed-batch fermentations were studied. Under optimized conditions of glucose fed-batch cultivation, the glutathione productivity of the engineered strains was increased from ~900 up to ~ 2300 mg of Total Intracellular Glutathione (TIG) or GSH+GSSGin, per liter of culture medium. Meantime, methanol fed-batch cultivation of one of the recombinant strains allowed achieving the extracellular glutathione productivity up to 250 mg of Total Extracellular Glutathione (TEG) or GSH+GSSGex, per liter of the culture medium. Conclusions H. polymorpha is an competitive glutathione producer as compared to other known yeast and bacteria strains (Saccharomyces cerevisiae, Candida utilis, Escherichia coli, Lactococcus lactis etc.) with good perspectives for further improvement especially for production of extracellular form of glutathione.
Collapse
Affiliation(s)
- Vira M Ubiyvovk
- Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005 Ukraine
| | | | | | | | | |
Collapse
|
37
|
Cloning and characterization of thermotolerant xylitol dehydrogenases from yeast Pichia angusta. Appl Microbiol Biotechnol 2010; 88:1311-20. [DOI: 10.1007/s00253-010-2818-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 07/27/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
|
38
|
Suwannarangsee S, Oh DB, Seo JW, Kim CH, Rhee SK, Kang HA, Chulalaksananukul W, Kwon O. Characterization of alcohol dehydrogenase 1 of the thermotolerant methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 2010; 88:497-507. [DOI: 10.1007/s00253-010-2752-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/20/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
|
39
|
Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010; 87:1303-15. [DOI: 10.1007/s00253-010-2707-z] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 12/30/2022]
|
40
|
Suh SO, Zhou JJ. Methylotrophic yeasts near Ogataea (Hansenula) polymorpha: a proposal of Ogataea angusta comb. nov. and Candida parapolymorpha sp. nov. FEMS Yeast Res 2010; 10:631-8. [PMID: 20491937 DOI: 10.1111/j.1567-1364.2010.00634.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ogataea (Hansenula) polymorpha and related yeasts were studied to clarify their taxonomy and phylogenetic relationships. The molecular analyses based on ribosomal DNA sequences revealed that (1) ATCC 14755, type strain of Pichia angusta, is phylogenetically distinguished from the majority of O. polymorpha strains including ATCC 34438(T) (=NRRL Y-5445(T)=CBS 4732(T)), type of the species; (2) Ogataea thermophila is conspecific to O. polymorpha; and (3) two of the strains, ATCC 26012 and ATCC 58401, are a novel Candida species closely related to O. polymorpha. The conclusions were also supported by physiological characteristics and other taxonomic features of these strains. Therefore, we propose here two novel species, Ogataea angusta comb. nov. (ATCC 14755(T)=CBS 7073(T)=NRRL Y-2214(T)) and Candida parapolymorpha sp. nov. (ATCC 26012(T)=NRRL Y-7560(T)), and conclude that O. thermophila is a synonym of O. polymorpha.
Collapse
Affiliation(s)
- Sung-Oui Suh
- Mycology and Botany Program, American Type Culture Collection (ATCC), Manassas, VA 20110, USA.
| | | |
Collapse
|
41
|
Hong WK, Kim CH, Heo SY, Luo LH, Oh BR, Seo JW. Enhanced production of ethanol from glycerol by engineered Hansenula polymorpha expressing pyruvate decarboxylase and aldehyde dehydrogenase genes from Zymomonas mobilis. Biotechnol Lett 2010; 32:1077-82. [PMID: 20354759 DOI: 10.1007/s10529-010-0259-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/23/2010] [Indexed: 11/25/2022]
Abstract
To improve production of ethanol from glycerol, the methylotrophic yeast Hansenula polymorpha was engineered to express the pdc and adhB genes encoding pyruvate decarboxylase and aldehyde dehydrogenase II from Zymomonas mobilis, respectively, under the control of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter. The ethanol yield was 3.3-fold higher (2.74 g l(-1)) in the engineered yeast compared with the parent strain (0.83 g l(-1)). Further engineering to stimulate glycerol utilization in the recombinant strain via expression of dhaD and dhaKLM genes from Klebsiella pneumoniae encoding glycerol dehydrogenase and dehydroxyacetone kinase, respectively, resulted in a 3.7-fold increase (3.1 g l(-1)) in ethanol yield.
Collapse
Affiliation(s)
- Won-Kyung Hong
- Microbe-based Fusion Technology Research Center, Jeonbuk Branch Institute, KRIBB, Jeongeup, Jeonbuk 580-185, South Korea
| | | | | | | | | | | |
Collapse
|
42
|
Ishchuk OP, Abbas CA, Sibirny AA. Heterologous expression of Saccharomyces cerevisiae MPR1 gene confers tolerance to ethanol and l-azetidine-2-carboxylic acid in Hansenula polymorpha. J Ind Microbiol Biotechnol 2009; 37:213-8. [DOI: 10.1007/s10295-009-0674-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 11/22/2009] [Indexed: 12/01/2022]
|
43
|
Ishchuk OP, Voronovsky AY, Abbas CA, Sibirny AA. Construction ofHansenula polymorphastrains with improved thermotolerance. Biotechnol Bioeng 2009; 104:911-9. [DOI: 10.1002/bit.22457] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 2009; 11:234-42. [DOI: 10.1016/j.ymben.2009.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 03/18/2009] [Accepted: 04/10/2009] [Indexed: 11/18/2022]
|
45
|
Van Vleet JH, Jeffries TW. Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 2009; 20:300-6. [PMID: 19545992 DOI: 10.1016/j.copbio.2009.06.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/30/2009] [Accepted: 06/03/2009] [Indexed: 11/19/2022]
Abstract
Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of fungal xylose isomerase or modification of cofactor requirements in the yeast oxidoreductase pathway can reduce xylitol production while increasing ethanol yields, but these changes often occur at the expense of xylose utilization rates. Genetic engineering and evolutionary adaptation to increase glycolytic flux coupled with transcriptomic and proteomic studies have identified targets for further modification, as have genomic and metabolic engineering studies in native xylose fermenting yeasts.
Collapse
Affiliation(s)
- J H Van Vleet
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
46
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|