1
|
Alternative Lengthening of Telomeres in the Budding Yeast Naumovozyma castellii. G3-GENES GENOMES GENETICS 2019; 9:3345-3358. [PMID: 31427453 PMCID: PMC6778800 DOI: 10.1534/g3.119.400428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The enzyme telomerase ensures the integrity of linear chromosomes by maintaining telomere length. As a hallmark of cancer, cell immortalization and unlimited proliferation is gained by reactivation of telomerase. However, a significant fraction of cancer cells instead uses alternative telomere lengthening mechanisms to ensure telomere function, collectively known as Alternative Lengthening of Telomeres (ALT). Although the budding yeast Naumovozyma castellii (Saccharomyces castellii) has a proficient telomerase activity, we demonstrate here that telomeres in N. castellii are efficiently maintained by a novel ALT mechanism after telomerase knockout. Remarkably, telomerase-negative cells proliferate indefinitely without any major growth crisis and display wild-type colony morphology. Moreover, ALT cells maintain linear chromosomes and preserve a wild-type DNA organization at the chromosome termini, including a short stretch of terminal telomeric sequence. Notably, ALT telomeres are elongated by the addition of ∼275 bp repeats containing a short telomeric sequence and the subtelomeric DNA located just internally (TelKO element). Although telomeres may be elongated by several TelKO repeats, no dramatic genome-wide amplification occurs, thus indicating that the repeat addition may be regulated. Intriguingly, a short interstitial telomeric sequence (ITS) functions as the initiation point for the addition of the TelKO element. This implies that N. castellii telomeres are structurally predisposed to efficiently switch to the ALT mechanism as a response to telomerase dysfunction.
Collapse
|
2
|
Hsu M, Lue NF. The mechanisms of K. lactis Cdc13 in telomere DNA-binding and telomerase regulation. DNA Repair (Amst) 2017; 61:37-45. [PMID: 29197718 DOI: 10.1016/j.dnarep.2017.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/04/2017] [Accepted: 11/24/2017] [Indexed: 11/28/2022]
Abstract
Eukaryotic chromosome ends, or telomeres, are essential for genome stability and are protected by an intricate nucleoprotein assembly. Cdc13, the major single-strand telomere-binding protein in budding yeasts, mediates critical functions in both telomere protection and telomere elongation by telomerase. In particular, the interaction between S. cerevisiae Cdc13 and telomerase subunit Est1 has long served as a paradigm for telomerase regulation. However, despite extensive investigations, the role of this interaction in regulating telomerase recruitment or activation remains controversial. In addition, budding yeast telomere repeat sequences are extraordinarily variable and how Cdc13 orthologs recognize diverse repeats is not well understood. In this report, we examined these issues using an alternative model, K. lactis. We reconstituted a direct physical interaction between purified K. lactis Cdc13 and Est1, and by analyzing point mutations, we demonstrated a close correspondence between telomere maintenance defects in vivo and Cdc13-Est1 binding defects in vitro, thus supporting a purely recruitment function for this interaction in K. lactis. Because mutations in well aligned residues of Cdc13 and Est1 in S. cerevisiae and K. lactis do not cause identical defects, our results also point to significant evolutionary divergence in the Cdc13-Est1 interface. In addition, we found that K. lactic Cdc13, unlike previously characterized orthologs, recognizes an unusually long and non-G-rich target sequence, underscoring the flexibility of the Cdc13 DNA-binding domain. Analysis of K. lactis Cdc13 and Est1 thus broadens understanding of telomere and telomerase regulation in budding yeast.
Collapse
Affiliation(s)
- Min Hsu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Karademir Andersson A, Cohn M. Naumovozyma castellii: an alternative model for budding yeast molecular biology. Yeast 2016; 34:95-109. [PMID: 27794167 DOI: 10.1002/yea.3218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/18/2016] [Indexed: 11/11/2022] Open
Abstract
Naumovozyma castellii (Saccharomyces castellii) is a member of the budding yeast family Saccharomycetaceae. It has been extensively used as a model organism for telomere biology research and has gained increasing interest as a budding yeast model for functional analyses owing to its amenability to genetic modifications. Owing to the suitable phylogenetic distance to S. cerevisiae, the whole genome sequence of N. castellii has provided unique data for comparative genomic studies, and it played a key role in the establishment of the timing of the whole genome duplication and the evolutionary events that took place in the subsequent genomic evolution of the Saccharomyces lineage. Here we summarize the historical background of its establishment as a laboratory yeast species, and the development of genetic and molecular tools and strains. We review the research performed on N. castellii, focusing on areas where it has significantly contributed to the discovery of new features of molecular biology and to the advancement of our understanding of molecular evolution. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Marita Cohn
- Department of Biology, Genetics group, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Karademir Andersson A, Oredsson S, Cohn M. Development of stable haploid strains and molecular genetic tools for Naumovozyma castellii (Saccharomyces castellii). Yeast 2016; 33:633-646. [PMID: 27669110 DOI: 10.1002/yea.3213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 11/09/2022] Open
Abstract
The budding yeast Naumovozyma castellii (syn. Saccharomyces castellii) has been included in comparative genomics studies and functional analyses of centromere DNA elements, and has been shown to possess beneficial traits for telomere biology research. To provide useful tools for molecular genetic approaches, we produced stable haploid heterothallic strains from an early ancestral strain derived from the N. castellii collection strain CBS 4310. To this end, we deleted the gene encoding the Ho endonuclease, which is essential for the mating type switching. Gene replacement of HO with the kanMX3 resistance cassette was performed in diploid strains, followed by sporulation and tetrad microdissection of the haploid spores. The mating type (MATa or MATα) was determined for each hoΔ mutant, and was stable under sporulation-inducing conditions, showing that the switching system was totally non-functional. The hoΔstrains showed wild-type growth rates and were successfully transformed with linear DNA using the general protocol. Opposite mating types of the hoΔstrains were mated, resulting in diploid cells that efficiently formed asci and generated viable spores when microdissected. By introduction of a point mutation in the URA3 gene, we created a uracil auxotrophic strain, and by exchanging the kanMX3 cassette for the hphMX4 cassette we show that hygromycin B resistance can be used as a selection marker in N. castellii. These haploid strains containing genetic markers will be useful tools for performing genetic analyses in N. castellii. Moreover, we demonstrate that homology regions of 200-230 bp can be successfully used for target site-specific integration into genomic loci. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Stina Oredsson
- Department of Biology, Functional zoology, Lund University, Lund, Sweden
| | - Marita Cohn
- Department of Biology, Genetics group, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Steinberg-Neifach O, Wellington K, Vazquez L, Lue NF. Combinatorial recognition of a complex telomere repeat sequence by the Candida parapsilosis Cdc13AB heterodimer. Nucleic Acids Res 2015; 43:2164-76. [PMID: 25662607 PMCID: PMC4344524 DOI: 10.1093/nar/gkv092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The telomere repeat units of Candida species are substantially longer and more complex than those in other organisms, raising interesting questions concerning the recognition mechanisms of telomere-binding proteins. Herein we characterized the properties of Candida parapsilosis Cdc13A and Cdc13B, two paralogs that are responsible for binding and protecting the telomere G-strand tails. We found that Cdc13A and Cdc13B can each form complexes with itself and a heterodimeric complex with each other. However, only the heterodimer exhibits high-affinity and sequence-specific binding to the telomere G-tail. EMSA and crosslinking analysis revealed a combinatorial mechanism of DNA recognition, which entails the A and B subunit making contacts to the 3′ and 5′ region of the repeat unit. While both the DBD and OB4 domain of Cdc13A can bind to the equivalent domain in Cdc13B, only the OB4 complex behaves as a stable heterodimer. The unstable Cdc13ABDBD complex binds G-strand with greatly reduced affinity but the same sequence specificity. Thus the OB4 domains evidently contribute to binding by promoting dimerization of the DBDs. Our investigation reveals a rare example of combinatorial recognition of single-stranded DNA and offers insights into the co-evolution of telomere DNA and cognate binding proteins.
Collapse
Affiliation(s)
- Olga Steinberg-Neifach
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Hostos Community College, City University of New York, 500 Grand Concourse, Bronx, NY 10451, USA
| | - Kemar Wellington
- Hostos Community College, City University of New York, 500 Grand Concourse, Bronx, NY 10451, USA
| | - Leslie Vazquez
- Hostos Community College, City University of New York, 500 Grand Concourse, Bronx, NY 10451, USA
| | - Neal F. Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
- To whom correspondence should be addressed. Tel: +1 212 746 6506; Fax: +1 212 746 8587;
| |
Collapse
|
6
|
Steinberg-Neifach O, Lue NF. Telomere DNA recognition in Saccharomycotina yeast: potential lessons for the co-evolution of ssDNA and dsDNA-binding proteins and their target sites. Front Genet 2015; 6:162. [PMID: 25983743 PMCID: PMC4416457 DOI: 10.3389/fgene.2015.00162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/10/2015] [Indexed: 01/22/2023] Open
Abstract
In principle, alterations in the telomere repeat sequence would be expected to disrupt the protective nucleoprotein complexes that confer stability to chromosome ends, and hence relatively rare events in evolution. Indeed, numerous organisms in diverse phyla share a canonical 6 bp telomere repeat unit (5'-TTAGGG-3'/5'-CCCTAA-3'), suggesting common descent from an ancestor that carries this particular repeat. All the more remarkable, then, are the extraordinarily divergent telomere sequences that populate the Saccharomycotina subphylum of budding yeast. These sequences are distinguished from the canonical telomere repeat in being long, occasionally degenerate, and frequently non-G/C-rich. Despite the divergent telomere repeat sequences, studies to date indicate that the same families of single-strand and double-strand telomere binding proteins (i.e., the Cdc13 and Rap1 families) are responsible for telomere protection in Saccharomycotina yeast. The recognition mechanisms of the protein family members therefore offer an informative paradigm for understanding the co-evolution of DNA-binding proteins and the cognate target sequences. Existing data suggest three potential, inter-related solutions to the DNA recognition problem: (i) duplication of the recognition protein and functional modification; (ii) combinatorial recognition of target site; and (iii) flexibility of the recognition surfaces of the DNA-binding proteins to adopt alternative conformations. Evidence in support of these solutions and the relevance of these solutions to other DNA-protein regulatory systems are discussed.
Collapse
Affiliation(s)
- Olga Steinberg-Neifach
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College, Cornell University , New York, NY, USA ; Hostos Community College, City University of New York , Bronx, NY, USA
| | - Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College, Cornell University , New York, NY, USA
| |
Collapse
|
7
|
Fridholm H, Astromskas E, Cohn M. Telomerase-dependent generation of 70-nt-long telomeric single-stranded 3' overhangs in yeast. Nucleic Acids Res 2012; 41:242-52. [PMID: 23125369 PMCID: PMC3592436 DOI: 10.1093/nar/gks1028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Telomeres, the chromatin structures at the ends of eukaryotic chromosomes, are essential for chromosome stability. The telomere terminates with a TG-rich 3' overhang, which is bound by sequence-specific proteins that both protect the end and regulate the telomerase elongation process. Here, we demonstrate the presence of 3' overhangs as long as 200 nt in asynchronously growing cells of the budding yeast Saccharomyces castellii. The 3' overhangs show a wide distribution of 14-200 nt in length, thus resembling the distribution found in human cells. A substantially large fraction of the 3' overhangs resides in the 70-200 nt range. Remarkably, we found an accumulation of a distinct class of 70-nt-long 3' overhangs in the S phase of the cell cycle. Cells without a functional telomerase showed the same wide distribution of 3' overhangs, but significantly, lacked the specific fraction of 70-nt 3' overhangs. Hence, our data show that the highly defined 70-nt 3' overhangs are generated by a telomerase-dependent mechanism, which is uncoupled to the mechanisms producing the bulk of the 3' overhangs. These data provide new insights that will be helpful for deciphering the complex interplay between the specialized telomere replication machinery and the conventional DNA replication.
Collapse
Affiliation(s)
- Helena Fridholm
- Department of Biology, Genetics Group, Lund University, Lund, Sweden
| | | | | |
Collapse
|
8
|
Rhodin Edsö J, Gustafsson C, Cohn M. Single- and double-stranded DNA binding proteins act in concert to conserve a telomeric DNA core sequence. Genome Integr 2011; 2:2. [PMID: 21235754 PMCID: PMC3033795 DOI: 10.1186/2041-9414-2-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Telomeres are protective cap structures at the ends of the linear eukaryotic chromosomes, which provide stability to the genome by shielding from degradation and chromosome fusions. The cap consists of telomere-specific proteins binding to the respective single- and double-stranded parts of the telomeric sequence. In addition to the nucleation of the chromatin structure the telomere-binding proteins are involved in the regulation of the telomere length. However, the telomeric sequences are highly diverged among yeast species. During the evolution this high rate of divergency presents a challenge for the sequence recognition of the telomere-binding proteins. RESULTS We found that the Saccharomyces castellii protein Rap1, a negative regulator of telomere length, binds a 12-mer minimal binding site (MBS) within the double-stranded telomeric DNA. The sequence specificity is dependent on the interaction with two 5 nucleotide motifs, having a 6 nucleotide centre-to-centre spacing. The isolated DNA-binding domain binds the same MBS and retains the same motif binding characteristics as the full-length Rap1 protein. However, it shows some deviations in the degree of sequence-specific dependence in some nucleotide positions. Intriguingly, the positions of most importance for the sequence-specific binding of the full-length Rap1 protein coincide with 3 of the 4 nucleotides utilized by the 3' overhang binding protein Cdc13. These nucleotides are very well conserved within the otherwise highly divergent telomeric sequences of yeasts. CONCLUSIONS Rap1 and Cdc13 are two very distinct types of DNA-binding proteins with highly separate functions. They interact with the double-stranded vs. the single-stranded telomeric DNA via significantly different types of DNA-binding domain structures. However, we show that they are dependent on coinciding nucleotide positions for their sequence-specific binding to telomeric sequences. Thus, we conclude that during the molecular evolution they act together to preserve a core sequence of the telomeric DNA.
Collapse
Affiliation(s)
- Jenny Rhodin Edsö
- Department of Biology, Lund University, Biology building, Sölvegatan 35, SE-223 62 Lund, Sweden.
| | | | | |
Collapse
|
9
|
Kramara J, Willcox S, Gunisova S, Kinsky S, Nosek J, Griffith JD, Tomaska L. Tay1 protein, a novel telomere binding factor from Yarrowia lipolytica. J Biol Chem 2010; 285:38078-92. [PMID: 20923774 DOI: 10.1074/jbc.m110.127605] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inspection of the complete genome of the yeast Yarrowia lipolytica for the presence of genes encoding homologues of known telomere-binding proteins surprisingly revealed no counterparts of typical yeast Myb domain-containing telomeric factors including Rap1 or Taz1. Instead, we identified a gene, YALIOD10923g, encoding a protein containing two Myb domains, exhibiting a high degree of similarity to the Myb domain of human telomeric proteins TRF1 and TRF2 and homologous to an essential fission yeast protein Mug152 whose expression is elevated during meiosis. The protein, which we named Tay1p (telomere-associated in Yarrowia lipolytica 1), was purified for biochemical studies. Using a model Y. lipolytica telomere, we demonstrate that the protein preferentially binds to Y. lipolytica telomeric tracts. Tay1p binds along the telomeric tract as dimers and larger oligomers, and it is able to remodel the telomeric DNA into both looped structures and synaptic complexes of two model telomere DNAs. The ability of Tay1p to induce dimerization of telomeres in vitro goes in line with its oligomeric nature, where each oligomer can employ several Myb domains to form intermolecular telomere clusters. We also provide experimental evidence that Tay1p may be associated with Y. lipolytica telomeres in vivo. Together with its homologues from Schizosaccharomyces pombe and several basidiomycetous fungi (Sánchez-Alonso, P., and Guzman, P. (2008) Fungal Genet. Biol. 45, S54-S62), Tay1p constitutes a novel family of putative telomeric factors whose analysis may be instrumental in understanding the function and evolution of double-stranded DNA telomeric proteins.
Collapse
Affiliation(s)
- Juraj Kramara
- Department of Genetics, Comenius University, Faculty of Natural Sciences, Mlynska dolina, 842 15 Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
10
|
Kinsky S, Mihalikova A, Kramara J, Nosek J, Tomaska L. Lack of the catalytic subunit of telomerase leads to growth defects accompanied by structural changes at the chromosomal ends in Yarrowia lipolytica. Curr Genet 2010; 56:413-25. [PMID: 20549213 DOI: 10.1007/s00294-010-0310-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 12/01/2022]
Abstract
Comparative analysis of the telomeres of distantly related species has proven to be helpful for identifying novel components involved in telomere maintenance. We therefore initiated such a study in the nonconventional yeast Yarrowia lipolytica. Its genome encodes only a small fraction of the proteins that are typically associated with telomeres in other yeast models, indicating that its telomeres may employ noncanonical means for their stabilization and maintenance. In this report, we have measured the size of the telomeric fragments in wild-type strains, and characterized the catalytic subunit of telomerase (YlEst2p). In silico analysis of the YlEst2 amino acid sequence revealed the presence of domains typical for telomerase reverse transcriptases. Disruption of YlEST2 is not lethal, but results in retarded growth accompanied by a rapid loss of the telomeric sequences. This phenotype is associated with structural changes at the chromosomal ends in the ΔYlest2 mutants, likely the circularization of all six chromosomes. An apparent absence of several typical telomere-associated factors, as well as the presence of an efficient means of telomerase-independent telomere maintenance, qualify Y. lipolytica as an attractive model for the study of telomere maintenance mechanisms and a promising source of novel players in telomere dynamics.
Collapse
Affiliation(s)
- Slavomir Kinsky
- Department of Genetics, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
11
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|