1
|
Wang Z, Wang Y, Yan J, Wei Y, Zhang Y, Wang X, Leng X. Analysis of cuproptosis-related genes in Ulcerative colitis and immunological characterization based on machine learning. Front Med (Lausanne) 2023; 10:1115500. [PMID: 37529244 PMCID: PMC10389668 DOI: 10.3389/fmed.2023.1115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Cuproptosis is a novel form of cell death, mediated by protein lipid acylation and highly associated with mitochondrial metabolism, which is regulated in the cell. Ulcerative colitis (UC) is a chronic inflammatory bowel disease that recurs frequently, and its incidence is increasing worldwide every year. Currently, a growing number of studies have shown that cuproptosis-related genes (CRGs) play a crucial role in the development and progression of a variety of tumors. However, the regulatory role of CRGs in UC has not been fully elucidated. Firstly, we identified differentially expressed genes in UC, Likewise, CRGs expression profiles and immunological profiles were evaluated. Using 75 UC samples, we typed UC based on the expression profiles of CRGs, followed by correlative immune cell infiltration analysis. Using the weighted gene co-expression network analysis (WGCNA) methodology, the cluster's differentially expressed genes (DEGs) were produced. Then, the performances of extreme gradient boosting models (XGB), support vector machine models (SVM), random forest models (RF), and generalized linear models (GLM) were constructed and predicted. Finally, the effectiveness of the best machine learning model was evaluated using five external datasets, receiver operating characteristic curve (ROC), the area under the curve of ROC (AUC), a calibration curve, a nomogram, and a decision curve analysis (DCA). A total of 13 CRGs were identified as significantly different in UC and control samples. Two subtypes were identified in UC based on CRGs expression profiles. Immune cell infiltration analysis of subtypes showed significant differences between immune cells of different subtypes. WGCNA results showed a total of 8 modules with significant differences between subtypes, with the turquoise module being the most specific. The machine learning results showed satisfactory performance of the XGB model (AUC = 0.981). Finally, the construction of the final 5-gene-based XGB model, validated by the calibration curve, nomogram, decision curve analysis, and five external datasets (GSE11223: AUC = 0.987; GSE38713: AUC = 0.815; GSE53306: AUC = 0.946; GSE94648: AUC = 0.809; GSE87466: AUC = 0.981), also proved to predict subtypes of UC with accuracy. Our research presents a trustworthy model that can predict the likelihood of developing UC and methodically outlines the complex relationship between CRGs and UC.
Collapse
Affiliation(s)
- Zhengyan Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jing Yan
- Changchun University of Chinese Medicine, Changchun, China
| | - Yuchi Wei
- Changchun University of Chinese Medicine, Changchun, China
| | - Yinzhen Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Xukai Wang
- Department of Orthopedics, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyang Leng
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Lassandro G, Palladino V, Faleschini M, Barone A, Boscarol G, Cesaro S, Chiocca E, Farruggia P, Giona F, Gorio C, Maggio A, Marinoni M, Marzollo A, Palumbo G, Russo G, Saracco P, Spinelli M, Verzegnassi F, Morga F, Savoia A, Giordano P. "CHildren with Inherited Platelet disorders Surveillance" (CHIPS) retrospective and prospective observational cohort study by Italian Association of Pediatric Hematology and Oncology (AIEOP). Front Pediatr 2022; 10:967417. [PMID: 36507135 PMCID: PMC9728612 DOI: 10.3389/fped.2022.967417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Inherited thrombocytopenias (ITs) are rare congenital bleeding disorders characterized by different clinical expression and variable prognosis. ITs are poorly known by clinicians and often misdiagnosed with most common forms of thrombocytopenia. MATERIAL AND METHODS "CHildren with Inherited Platelet disorders Surveillance" study (CHIPS) is a retrospective - prospective observational cohort study conducted between January 2003 and January 2022 in 17 centers affiliated to the Italian Association of Pediatric Hematology and Oncology (AIEOP). The primary objective of this study was to collect clinical and laboratory data on Italian pediatric patients with inherited thrombocytopenias. Secondary objectives were to calculate prevalence of ITs in Italian pediatric population and to assess frequency and genotype-phenotype correlation of different types of mutations in our study cohort. RESULTS A total of 139 children, with ITs (82 male - 57 female) were enrolled. ITs prevalence in Italy ranged from 0.7 per 100,000 children during 2010 to 2 per 100,000 children during 2022. The median time between the onset of thrombocytopenia and the diagnosis of ITs was 1 years (range 0 - 18 years). A family history of thrombocytopenia has been reported in 90 patients (65%). Among 139 children with ITs, in 73 (53%) children almost one defective gene has been identified. In 61 patients a pathogenic mutation has been identified. Among them, 2 patients also carry a variant of uncertain significance (VUS), and 4 others harbour 2 VUS variants. VUS variants were identified in further 8 patients (6%), 4 of which carry more than one variant VUS. Three patients (2%) had a likely pathogenic variant while in 1 patient (1%) a variant was identified that was initially given an uncertain significance but was later classified as benign. In addition, in 17 patients the genetic diagnosis is not available, but their family history and clinical/laboratory features strongly suggest the presence of a specific genetic cause. In 49 children (35%) no genetic defect were identified. In ninetyseven patients (70%), thrombocytopenia was not associated with other clinically apparent disorders. However, 42 children (30%) had one or more additional clinical alterations. CONCLUSION Our study provides a descriptive collection of ITs in the pediatric Italian population.
Collapse
Affiliation(s)
- Giuseppe Lassandro
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Palladino
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Michela Faleschini
- Department of Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Angelica Barone
- Pediatric Hematology Oncology, Dipartimento Materno-Infantile, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gianluca Boscarol
- Department of Pediatrics, Central Teaching Hospital of Bolzano/Bozen, Bolzano, Italy
| | - Simone Cesaro
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Elena Chiocca
- Pediatric Hematology Oncology, Department of Pediatric Hematology/Oncology and HSCT, Meyer Children's University Hospital, Florence, Italy
| | - Piero Farruggia
- Pediatric Hematology and Oncology Unit, ARNAS (Azienda di Rilievo Nazionale ad Alta Specializzazione) Ospedale Civico, Palermo, Italy
| | - Fiorina Giona
- Department of Translational and Precision Medicine, Sapienza University of Rome, AOU Policlinico Umberto I, Rome, Italy
| | - Chiara Gorio
- Hematology Oncology Unit, Children's Hospital, ASST Spedali Civili, Brescia, Italy
| | - Angela Maggio
- UOC Oncoematologia Pediatrica-IRCCS Ospedale Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Maddalena Marinoni
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Socio Sanitaria Settelaghi, Varese, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Giuseppe Palumbo
- Department of Pediatric Hematology and Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giovanna Russo
- Pediatric Hematology Oncology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Paola Saracco
- Pediatric Hematology, Department of Pediatrics, University Hospital Città Della Salute e Della Scienza, Turin, Italy
| | - Marco Spinelli
- Pediatric Hematology Oncology, Department of Pediatrics, MBBM Foundation, Monza, Italy
| | - Federico Verzegnassi
- Department of Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Francesca Morga
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Savoia
- Department of Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Paola Giordano
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
3
|
A Novel Mutation in WAS Gene Causing a Phenotypic Presentation of Wiskott-Aldrich Syndrome: A Case Report. J Pediatr Hematol Oncol 2021; 43:e234-e236. [PMID: 32287099 DOI: 10.1097/mph.0000000000001790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/29/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS) is an X-linked disorder characterized by immunodeficiency, thrombocytopenia, and atopic dermatitis. OBSERVATIONS This infant presented at birth with petechiae and bruising, with severe neonatal thrombocytopenia. Genetic testing for WAS revealed a variant of unknown significance hemizygous missense mutation in the WAS gene. This variant has not previously been reported. On the basis of the patient's clinical course including bleeding, infection, abnormal immune evaluation, and dermatologic sequelae, he was diagnosed with WAS and underwent allogeneic hematopoietic stem cell transplantation. CONCLUSIONS We report a novel mutation in the WAS gene that causes a phenotypic presentation of Wiskott-Aldrich Syndrome.
Collapse
|
4
|
Halle-Bikovski A, Fried S, Rozentur-Shkop E, Biber G, Shaked H, Joseph N, Barda-Saad M, Chill JH. New Structural Insights into Formation of the Key Actin Regulating WIP-WASp Complex Determined by NMR and Molecular Imaging. ACS Chem Biol 2018; 13:100-109. [PMID: 29215267 DOI: 10.1021/acschembio.7b00486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wiskott-Aldrich syndrome protein (WASp) is exclusively expressed in hematopoietic cells and responsible for actin-dependent processes, including cellular activation, migration, and invasiveness. The C-terminal domain of WASp-Interacting Protein (WIP) binds to WASp and regulates its activity by shielding it from degradation in a phosphorylation dependent manner as we previously demonstrated. Mutations in the WAS-encoding gene lead to the primary immunodeficiencies Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT). Here, we shed a first structural light upon this function of WIP using nuclear magnetic resonance (NMR) and in vivo molecular imaging. Coexpression of fragments WASp(20-158) and WIP(442-492) allowed the purification and structural characterization of a natively folded complex, determined to form a characteristic pleckstrin homology domain with a mixed α/β-fold and central two-winged β-sheet. The WIP-derived peptide, unstructured in its free form, wraps around and interacts with WASp through short structural elements. Förster resonance energy transfer (FRET) and biochemical experiments demonstrated that, of these elements, WIP residues 454-456 are the major contributor to WASp affinity, and the previously overlooked residues 449-451 were found to have the largest effect upon WASp ubiquitylation and, presumably, degradation. Results obtained from this complementary combination of technologies link WIP-WASp affinity to protection from degradation. Our findings about the nature of WIP·WASp complex formation are relevant for ongoing efforts to understand hematopoietic cell behavior, paving the way for new therapeutic approaches to WAS and XLT.
Collapse
Affiliation(s)
- Adi Halle-Bikovski
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Sophia Fried
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Eva Rozentur-Shkop
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Guy Biber
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Hadassa Shaked
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Noah Joseph
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Mira Barda-Saad
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Jordan H. Chill
- Department
of Chemistry, and ‡Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
5
|
Filteau M, Hamel V, Pouliot MC, Gagnon-Arsenault I, Dubé AK, Landry CR. Evolutionary rescue by compensatory mutations is constrained by genomic and environmental backgrounds. Mol Syst Biol 2015; 11:832. [PMID: 26459777 PMCID: PMC4631203 DOI: 10.15252/msb.20156444] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since deleterious mutations may be rescued by secondary mutations during evolution, compensatory evolution could identify genetic solutions leading to therapeutic targets. Here, we tested this hypothesis and examined whether these solutions would be universal or would need to be adapted to one's genetic and environmental makeups. We performed experimental evolutionary rescue in a yeast disease model for the Wiskott–Aldrich syndrome in two genetic backgrounds and carbon sources. We found that multiple aspects of the evolutionary rescue outcome depend on the genotype, the environment, or a combination thereof. Specifically, the compensatory mutation rate and type, the molecular rescue mechanism, the genetic target, and the associated fitness cost varied across contexts. The course of compensatory evolution is therefore highly contingent on the initial conditions in which the deleterious mutation occurs. In addition, these results reveal biologically favored therapeutic targets for the Wiskott–Aldrich syndrome, including the target of an unrelated clinically approved drug. Our results experimentally illustrate the importance of epistasis and environmental evolutionary constraints that shape the adaptive landscape and evolutionary rate of molecular networks.
Collapse
Affiliation(s)
- Marie Filteau
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Véronique Hamel
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Marie-Christine Pouliot
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Isabelle Gagnon-Arsenault
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Alexandre K Dubé
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval, Québec, Qc, Canada
| |
Collapse
|
6
|
Liu DW, Zhang ZY, Zhao Q, Jiang LP, Liu W, Tu WW, Song WX, Zhao XD. Wiskott-Aldrich syndrome/X-linked thrombocytopenia in China: Clinical characteristic and genotype-phenotype correlation. Pediatr Blood Cancer 2015; 62:1601-8. [PMID: 25931402 DOI: 10.1002/pbc.25559] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT) are caused by mutations of the WAS gene. The genotype-phenotype association of WAS and XLT have not been fully elucidated. Here, we established the largest database of WAS in China to further determine the potential correlation between genotype and phenotype and long-term outcome. PROCEDURES We collected clinical data of 81 WAS/XLT patients, analyzed mutations of WAS gene at the genomic DNA and transcriptional/translational levels, and quantified three different patterns of WAS protein (WASp) expression in PBMCs by flow cytometry. RESULTS There were 60 unique mutations identified, including 20 novel mutations and eight hotspots, from 75 unrelated families with a total of 81 affected members. Nearly all the patients with XLT had missense mutations and were WASp-positive in the peripheral cells, while only half of the patients with missense mutations exhibited the XLT phenotype and detectable WASp. In contrast, patients with nonsense mutations, deletions, insertions, and complex mutations were WASp-negative and developed the classic WAS phenotype. An equal number of patients with splice anomalies were either WASp-positive or WASp-negative. Long-term survival rates were lower in WASp-negative patients compared to WASp-positive patients. CONCLUSIONS The clinical phenotype of classic WAS or milder XLT and long-term outcome are potentially influenced by the effect of these defects on gene transcription and translation. Patients with missense mutations allowing expression of mutated WASp and those with splice anomalies, which result in generation of multiple products, including normal WASp, present the attenuated XLT phenotype and show better prognosis.
Collapse
Affiliation(s)
- Da-Wei Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Zhi-Yong Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Qin Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Li-Ping Jiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Wei Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Wen-Wei Tu
- Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Wen-Xia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland
| | - Xiao-Dong Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Abstract
Pathogenic bacteria produce virulence factors called effectors, which are important components of the infection process. Effectors aid in pathogenesis by facilitating bacterial attachment, pathogen entry into or exit from the host cell, immunoevasion, and immunosuppression. Effectors also have the ability to subvert host cellular processes, such as hijacking cytoskeletal machinery or blocking protein translation. However, host cells possess an evolutionarily conserved innate immune response that can sense the pathogen through the activity of its effectors and mount a robust immune response. This “effector triggered immunity” (ETI) was first discovered in plants but recent evidence suggest that the process is also well conserved in metazoans. We will discuss salient points of the mechanism of ETI in metazoans from recent studies done in mammalian cells and invertebrate model hosts.
Collapse
Affiliation(s)
- Rajmohan Rajamuthiah
- a Division of Infectious Diseases; Rhode Island Hospital; Alpert Medical School of Brown University; Providence, RI USA
| | | |
Collapse
|
8
|
Jain N, Tan JH, Feng S, George B, Thanabalu T. X-linked thrombocytopenia causing mutations in WASP (L46P and A47D) impair T cell chemotaxis. J Biomed Sci 2014; 21:91. [PMID: 25200405 PMCID: PMC4266975 DOI: 10.1186/s12929-014-0091-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 09/02/2014] [Indexed: 11/28/2022] Open
Abstract
Background Mutation in the Wiskott-Aldrich syndrome Protein (WASP) causes Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT) and X-linked congenital neutropenia (XLN). The majority of missense mutations causing WAS and XLT are found in the WH1 (WASP Homology) domain of WASP, known to mediate interaction with WIP (WASP Interacting Protein) and CIB1 (Calcium and Integrin Binding). Results We analyzed two WASP missense mutants (L46P and A47D) causing XLT for their effects on T cell chemotaxis. Both mutants, WASPRL46P and WASPRA47D (S1-WASP shRNA resistant) expressed well in JurkatWASP-KD T cells (WASP knockdown), however expression of these two mutants did not rescue the chemotaxis defect of JurkatWASP-KD T cells towards SDF-1α. In addition JurkatWASP-KD T cells expressing these two WASP mutants were found to be defective in T cell polarization when stimulated with SDF-1α. WASP exists in a closed conformation in the presence of WIP, however both the mutants (WASPRL46P and WASPRA47D) were found to be in an open conformation as determined in the bi-molecular complementation assay. WASP protein undergoes proteolysis upon phosphorylation and this turnover of WASP is critical for T cell migration. Both the WASP mutants were found to be stable and have reduced tyrosine phosphorylation after stimulation with SDF-1α. Conclusion Thus our data suggest that missense mutations WASPRL46P or WASPRA47D affect the activity of WASP in T cell chemotaxis probably by affecting the turnover of the protein. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0091-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Thirumaran Thanabalu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
9
|
Fried S, Reicher B, Pauker MH, Eliyahu S, Matalon O, Noy E, Chill J, Barda-Saad M. Triple-color FRET analysis reveals conformational changes in the WIP-WASp actin-regulating complex. Sci Signal 2014; 7:ra60. [PMID: 24962707 DOI: 10.1126/scisignal.2005198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wiskott-Aldrich syndrome protein (WASp) is a key regulator of the actin cytoskeletal machinery. Binding of WASp-interacting protein (WIP) to WASp modulates WASp activity and protects it from degradation. Formation of the WIP-WASp complex is crucial for the adaptive immune response. We found that WIP and WASp interacted in cells through two distinct molecular interfaces. One interaction occurred between the WASp-homology-1 (WH1) domain of WASp and the carboxyl-terminal domain of WIP that depended on the phosphorylation status of WIP, which is phosphorylated by protein kinase C θ (PKCθ) in response to T cell receptor activation. The other interaction occurred between the verprolin homology, central hydrophobic region, and acidic region (VCA) domain of WASp and the amino-terminal domain of WIP. This latter interaction required actin, because it was inhibited by latrunculin A, which sequesters actin monomers. With triple-color fluorescence resonance energy transfer (3FRET) technology, we demonstrated that the WASp activation mechanism involved dissociation of the first interaction, while leaving the second interaction intact. This conformation exposed the ubiquitylation site on WASp, leading to degradation of WASp. Together, these data suggest that the activation and degradation of WASp are delicately balanced and depend on the phosphorylation state of WIP. Our molecular analysis of the WIP-WASp interaction provides insight into the regulation of actin-dependent processes.
Collapse
Affiliation(s)
- Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Maor H Pauker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shani Eliyahu
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Elad Noy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Jordan Chill
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
10
|
Wiskott-Aldrich Syndrome causing mutation, Pro373Ser restricts conformational changes essential for WASP activity in T-cells. Biochim Biophys Acta Mol Basis Dis 2014; 1842:623-34. [PMID: 24440360 DOI: 10.1016/j.bbadis.2014.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 01/04/2014] [Accepted: 01/08/2014] [Indexed: 11/22/2022]
Abstract
Wiskott-Aldrich Syndrome (WAS) is caused by mutations in Wiskott-Aldrich Syndrome Protein (WASP) and majority of the mutations are found in the WASP Homology 1 (WH1) domain which mediates interaction with WIP (WASP Interacting Protein), a WASP chaperone. Two point mutations together in the proline rich region (PRR) domain of WASP (S339Y/P373S) have been reported to cause WAS however the molecular defect has not been characterized. Expression of these mutants separately (WASPR(S339Y), WASPR(P373S)) or together (WASPR(SP/YS)) did not rescue the chemotaxis defect or membrane projection defect of Jurkat(WKD) T-cells (WASP knockdown). This is not due to the inability of WASP-PRR mutants to form functional WASP-WIP complex in growth rescue experiments in las17Δ yeast strain. Expression of WASPR(S339Y) but not WASPR(P373S) or WASPR(SP/YS) rescued the IL-2 expression defect of Jurkat(WKD) T-cells, suggesting that Pro373Ser mutation alone is sufficient to inhibit WASP functions in T-cell activation. The diffused localization of WASP-PRR mutants in activated Jurkat T-cells suggests that Ser339 and Pro373 are critical for WASP localization. WASP-PRR mutations either together or individually did not abolish interaction of WASP with sixteen WASP binding proteins including Hck, however they caused reduction in Hck mediated tyrosine phosphorylation of WASP which is critical for WASP activity. The auto-inhibitory conformation of WASP(P373S) mutant was not relieved by the binding of Toca-1 or Nck1. Thus, our results suggest that Pro373Ser mutation reduces Tyr291 phosphorylation and prevents conformational changes required for WASP activity in chemotaxis and T-cell activation. Thus Pro3373Ser is probably responsible for all the defects associated with WAS in the patients.
Collapse
|
11
|
Jayamani E, Mylonakis E. Effector triggered manipulation of host immune response elicited by different pathotypes of Escherichia coli. Virulence 2014; 5:733-9. [PMID: 25513774 PMCID: PMC4189879 DOI: 10.4161/viru.29948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022] Open
Abstract
Effectors are virulence factors that are secreted by bacteria during an infection in order to subvert cellular processes or induce the surveillance system of the host. Pathogenic microorganisms encode effectors, toxins and components of secretion systems that inject the effectors to the host. Escherichia coli is part of the innocuous commensal microbial flora of the gastrointestinal tract. However, pathogenic E. coli can cause diarrheal and extraintestinal diseases. Pathogenic E. coli uses secretion systems to inject an array of effector proteins directly into the host cells. Herein, we discuss the effectors secreted by different pathotypes of E. coli and provide an overview of strategies employed by effectors to target the host cellular and subcellular processes as well as their role in triggering host immune response.
Collapse
Affiliation(s)
- Elamparithi Jayamani
- Division of Infectious Diseases; Rhode Island Hospital; Alpert Medical School of Brown University; Providence, RI USA
| | - Eleftherios Mylonakis
- Division of Infectious Diseases; Rhode Island Hospital; Alpert Medical School of Brown University; Providence, RI USA
| |
Collapse
|
12
|
Matalon O, Reicher B, Barda-Saad M. Wiskott-Aldrich syndrome protein - dynamic regulation of actin homeostasis: from activation through function and signal termination in T lymphocytes. Immunol Rev 2013; 256:10-29. [DOI: 10.1111/imr.12112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| |
Collapse
|
13
|
Ubiquitylation-dependent negative regulation of WASp is essential for actin cytoskeleton dynamics. Mol Cell Biol 2012; 32:3153-63. [PMID: 22665495 DOI: 10.1128/mcb.00161-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of actin dynamics during cell motility and adhesion, and mutations in its gene are responsible for Wiskott-Aldrich syndrome (WAS). Here, we demonstrate that WASp is ubiquitylated following T-cell antigen receptor (TCR) activation. WASp phosphorylation at tyrosine 291 results in recruitment of the E3 ligase Cbl-b, which, together with c-Cbl, carries out WASp ubiquitylation. Lysine residues 76 and 81, located at the WASp WH1 domain, which contains the vast majority of WASp gene mutations, serve as the ubiquitylation sites. Disruption of WASp ubiquitylation causes WASp accumulation and alters actin dynamics and the formation of actin-dependent structures. Our data suggest that regulated degradation of activated WASp might be an efficient strategy by which the duration and localization of actin rearrangement and the intensity of T-cell activation are controlled.
Collapse
|
14
|
Ditlev JA, Michalski PJ, Huber G, Rivera GM, Mohler WA, Loew LM, Mayer BJ. Stoichiometry of Nck-dependent actin polymerization in living cells. ACTA ACUST UNITED AC 2012; 197:643-58. [PMID: 22613834 PMCID: PMC3365498 DOI: 10.1083/jcb.201111113] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of actin dynamics through the Nck/N-WASp (neural Wiskott-Aldrich syndrome protein)/Arp2/3 pathway is essential for organogenesis, cell invasiveness, and pathogen infection. Although many of the proteins involved in this pathway are known, the detailed mechanism by which it functions remains undetermined. To examine the signaling mechanism, we used a two-pronged strategy involving computational modeling and quantitative experimentation. We developed predictions for Nck-dependent actin polymerization using the Virtual Cell software system. In addition, we used antibody-induced aggregation of membrane-targeted Nck SH3 domains to test these predictions and to determine how the number of molecules in Nck aggregates and the density of aggregates affected localized actin polymerization in living cells. Our results indicate that the density of Nck molecules in aggregates is a critical determinant of actin polymerization. Furthermore, results from both computational simulations and experimentation support a model in which the Nck/N-WASp/Arp2/3 stoichiometry is 4:2:1. These results provide new insight into activities involving localized actin polymerization, including tumor cell invasion, microbial pathogenesis, and T cell activation.
Collapse
Affiliation(s)
- Jonathon A Ditlev
- Department of Genetics and Developmental Biology, Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, and Richard D Berlin Center for Cell Analysis & Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Massaad MJ, Ramesh N, Le Bras S, Giliani S, Notarangelo LD, Al-Herz W, Notarangelo LD, Geha RS. A peptide derived from the Wiskott-Aldrich syndrome (WAS) protein-interacting protein (WIP) restores WAS protein level and actin cytoskeleton reorganization in lymphocytes from patients with WAS mutations that disrupt WIP binding. J Allergy Clin Immunol 2011; 127:998-1005.e1-2. [PMID: 21376381 PMCID: PMC3077682 DOI: 10.1016/j.jaci.2011.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND The Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT) are caused by mutations in WAS, which encodes for WAS protein (WASP). The WASP-interacting protein (WIP) stabilizes WASP, as evidenced by severely decreased WASP levels in T cells from WIP-deficient mice. The majority of missense mutations in patients with WAS/XLT are located in the WIP-binding domain of WASP and might result in dissociation of the WASP-WIP complex and WASP degradation. OBJECTIVE To restore WASP levels and correct T-cell function in WAS/XLT patients with mutations in the WIP-binding domain of WASP. METHODS WIP, and a WIP-derived 41-amino acid-long peptide, which interacts with WASP and was designated nanoWIP (nWIP), were fused to enhanced green fluorescent protein and introduced by electroporation into EBV-transformed B cells, and by retroviral transduction into purified blood T cells from patients with WAS. WASP levels were measured by intracellular fluorescence-activated cell sorting staining. The actin cytoskeleton was visualized by intracellular phalloidin staining. RESULTS Introduction of WIP and nWIP restored WASP levels to normal in EBV-transformed B-cell lines from XLT patients with missense mutations in the WIP-binding domain of WASP and residual WASP levels, and corrected the defective spreading and pseudopodia formation of their T cells in response to immobilized anti-CD3. CONCLUSION A WASP-binding WIP-derived peptide stabilizes WASP in cells from XLT patients with missense mutations that disrupt WIP binding, and corrects their T-cell actin cytoskeleton defect. This may provide a novel therapeutic strategy for these patients.
Collapse
Affiliation(s)
- Michel J Massaad
- Division of Immunology, Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|