1
|
Li H, Liu Y, Wang D, Wang YH, Sheng RC, Kong ZQ, Klosterman SJ, Chen JY, Subbarao KV, Chen FM, Zhang DD. The 24-kDa subunit of mitochondrial complex I regulates growth, microsclerotia development, stress tolerance, and virulence in Verticillium dahliae. BMC Biol 2024; 22:289. [PMID: 39696205 DOI: 10.1186/s12915-024-02084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The complete mitochondrial respiratory chain is a precondition for maintaining cellular energy supply, development, and metabolic balance. Due to the evolutionary differentiation of complexes and the semi-autonomy of mitochondria, respiratory chain subunits have become critical targets for crop improvement and fungal control. In fungi, mitochondrial complex I mediates growth and metabolism. However, the role of this complex in the pathogenesis of phytopathogenic fungi is largely unknown. RESULTS In this study, we identified the NADH: ubiquinone oxidoreductase 24-kDa subunit (VdNuo1) of complex in vascular wilt pathogen, Verticillium dahliae, and examined its functional conservation in phytopathogenic fungi. Based on the treatments with respiratory chain inhibitors, the mitochondria-localized VdNuo1 was confirmed to regulate mitochondrial morphogenesis and homeostasis. VdNuo1 was induced during the different developmental stages in V. dahliae, including hyphal growth, conidiation, and melanized microsclerotia development. The VdNuo1 mutants displayed variable sensitivity to stress factors and decreased pathogenicity in multiple hosts, indicating that VdNuo1 is necessary in stress tolerance and full virulence. Comparative transcriptome analysis demonstrated that VdNuo1 mediates global transcriptional effects, including oxidation and reduction processes, fatty acid, sugar, and energy metabolism. These defects are partly attributed to impairments of mitochondrial morphological integrity, complex assembly, and related functions. Its homologue (CgNuo1) functions in the vegetative growth, melanin biosynthesis, and pathogenicity of Colletotrichum gloeosporioides; however, CgNuo1 does not restore the VdNuo1 mutant to normal phenotypes. CONCLUSIONS Our results revealed that VdNuo1 plays important roles in growth, metabolism, microsclerotia development, stress tolerance, and virulence of V. dahliae, sharing novel insight into the function of complex I and a potential fungicide target for pathogenic fungi.
Collapse
Affiliation(s)
- Huan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ying Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Dan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Ya-Hong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ruo-Cheng Sheng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi-Qiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Sam Farr United States Crop Improvement and Protection Research Center, Salinas, CA, USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o Sam Farr United States Crop Improvement and Protection Research Center, University of California, Davis, Salinas, CA, USA.
| | - Feng-Mao Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
2
|
Cloning and Organelle Expression of Bamboo Mitochondrial Complex I Subunits Nad1, Nad2, Nad4, and Nad5 in the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms23074054. [PMID: 35409414 PMCID: PMC8999482 DOI: 10.3390/ijms23074054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial respiratory complex I catalyzes electron transfer from NADH to ubiquinone and pumps protons from the matrix into the intermembrane space. In particular, the complex I subunits Nad1, Nad2, Nad4, and Nad5, which are encoded by the nad1, nad2, nad4, and nad5 genes, reside at the mitochondrial inner membrane and possibly function as proton (H+) and ion translocators. To understand the individual functional roles of the Nad1, Nad2, Nad4, and Nad5 subunits in bamboo, each cDNA of these four genes was cloned into the pYES2 vector and expressed in the mitochondria of the yeast Saccharomyces cerevisiae. The mitochondrial targeting peptide mt gene (encoding MT) and the egfp marker gene (encoding enhanced green fluorescent protein, EGFP) were fused at the 5'-terminal and 3'-terminal ends, respectively. The constructed plasmids were then transformed into yeast. RNA transcripts and fusion protein expression were observed in the yeast transformants. Mitochondrial localizations of the MT-Nad1-EGFP, MT-Nad2-EGFP, MT-Nad4-EGFP, and MT-Nad5-EGFP fusion proteins were confirmed by fluorescence microscopy. The ectopically expressed bamboo subunits Nad1, Nad2, Nad4, and Nad5 may function in ion translocation, which was confirmed by growth phenotype assays with the addition of different concentrations of K+, Na+, or H+.
Collapse
|
3
|
Wang S, Hu F, Diao Q, Li S, Tu Y, Bi Y. Comparison of Growth Performance, Immunity, Antioxidant Capacity, and Liver Transcriptome of Calves between Whole Milk and Plant Protein-Based Milk Replacer under the Same Energy and Protein Levels. Antioxidants (Basel) 2022; 11:antiox11020270. [PMID: 35204153 PMCID: PMC8868243 DOI: 10.3390/antiox11020270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/29/2022] Open
Abstract
High-cost milk proteins necessitate cheaper, effective milk replacer alternatives, such as plant proteins. To examine plant protein-based milk replacer’s impact on growth performance, serum immune and antioxidant indicators, and liver transcriptome profiles in suckling calves. We assigned 28 newborn Holstein calves (41.60 ± 3.67 kg of body weight at birth) to milk (M) or milk replacer (MR) and starter diets pre-weaning (0–70 d of age) but with the same starter diet post-weaning (71–98 d of age). During the pre-weaning period, compared with the M group, MR group had significantly lower body weight, withers height, heart girth, average daily gain, feed efficiency, serum immunoglobulin (Ig) M concentration, superoxide dismutase concentration, and total antioxidant capacity; whereas they had significantly higher serum aspartate aminotransferase concentration. During the post-weaning period, MR group presented significantly higher average daily gain, alanine transaminase, aspartate aminotransferase, and malonaldehyde concentrations; whereas they had significantly lower serum IgA and IgM concentrations than the M group. Transcriptome analysis revealed 1, 120 and 293 differentially expressed genes (DEGs; MR vs. M group) in the calves from pre- and post-weaning periods, respectively. The DEGs related to xenobiotic and lipid metabolism and those related to energy metabolism, immune function, and mineral metabolism were up- and downregulated, respectively, during the pre-weaning period; during the post-weaning period, the DEGs related to osteoclast differentiation and metabolic pathways showed difference. In this study, compared with M group, MR group had the same growth performance during the overall experimental period; however, MR affected the hepatic metabolism, immune, and antioxidant function of calves. These observations can facilitate future studies on milk replacers.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (F.H.); (Q.D.); (S.L.)
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengming Hu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (F.H.); (Q.D.); (S.L.)
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (F.H.); (Q.D.); (S.L.)
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuang Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (F.H.); (Q.D.); (S.L.)
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (F.H.); (Q.D.); (S.L.)
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.T.); (Y.B.)
| | - Yanliang Bi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (F.H.); (Q.D.); (S.L.)
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.T.); (Y.B.)
| |
Collapse
|
4
|
Kurbalija Novičić Z, Bodén R, Kozarski K, Jelić M, Jovanović VM, Cunningham JL. Lithium influences whole-organism metabolic rate in Drosophila subobscura. J Neurosci Res 2020; 99:407-418. [PMID: 32729199 DOI: 10.1002/jnr.24678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 11/09/2022]
Abstract
Lithium is widely used to treat bipolar disorder. However, the efficacy and vulnerability as to its side effects are known to differ. Although the specific biochemical mechanism of action is still elusive, lithium may influence mitochondrial function, and consequently, metabolism. Lithium exposure in this study was conducted on a unique set of mito-nuclear introgression lines of Drosophila subobscura to disentangle the independent effects of mitochondrial DNA (mtDNA) against a common nuclear DNA background. The study addressed three issues: (a) whether lithium has a dose-dependent effect on whole-organism metabolic rate, (b) whether mtDNA haplotypes show divergent metabolic efficiency measured by metabolic rate to lithium exposure and (c) whether lithium influences the whole-organism metabolic rate across sexes. The results confirm that lithium influenced the whole-organism metabolic rate, showing a subtle balance between efficacy and adverse effects within a narrow dose range. In addition, lithium exposure was found to influence metabolism differently based on mtDNA haplotypes and sex. This preliminary research may have a range of biological implications for the role of mitochondrial variability in psychiatric disease and treatment by contributing to the understanding and predicting of the lithium treatment response and risk for toxic side effects.
Collapse
Affiliation(s)
- Zorana Kurbalija Novičić
- Department of Neuroscience, Psychiatry, Uppsala University Hospital, Uppsala, Sweden.,Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Robert Bodén
- Department of Neuroscience, Psychiatry, Uppsala University Hospital, Uppsala, Sweden
| | - Ksenija Kozarski
- Department of Neuroscience, Psychiatry, Uppsala University Hospital, Uppsala, Sweden
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vladimir M Jovanović
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany.,Human Biology Group, Freie Universität Berlin, Berlin, Germany.,Institute for Zoology, Freie Universität Berlin, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
5
|
Hwang JY, Lee CK, Kim H, Nam BH, An CM, Park JY, Park KH, Huh CS, Kim EB. Comparative genomic analysis of mitochondrial protein-coding genes in Veneroida clams: Analysis of superfamily-specific genomic and evolutionary features. Mar Genomics 2015; 24 Pt 3:329-34. [PMID: 26343338 DOI: 10.1016/j.margen.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022]
Abstract
Veneroida is the largest order of bivalves, and these clams are commercially important in Asian countries. Although numerous studies have focused on the genomic characters of individual species or genera in Veneroida, superfamily-specific genomic characters have not been determined. In this study, we performed a comparative genomic analysis of 12 mitochondrial protein coding genes (PCGs) from 25 clams in six Veneroida superfamilies to determine genomic and evolutionary features of each superfamily. Length and distribution of nucleotides encoding the PCGs were too variable to define superfamily-specific genomic characters. Phylogenetic analysis revealed that PCGs are suitable for classification of species in three superfamilies: Cardioidea, Mactroidea, and Veneroidea. However, one species classified in Tellinoidea, Sinonovacula constricta, was evolutionarily closer to Solenoidea clams than Tellinoidea clams. dN/dS analysis showed that positively selected sites in NADH dehydrogenase subunit, nd4 and subunit of ATP synthase, atp6 were present in Mactroidea. Differences in selected sites in the nd4 and atp6 could be caused by superfamily-level differences in sodium transport or ATP synthesis functions, respectively. These differences in selected sites in NADH may have conferred these animals, which have low motility and do not generally move, with increased flexibility to maintain homeostasis in the face of osmotic pressure. Our study provides insight into evolutionary traits as well as facilitates identification of veneroids.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Animal Life Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Kangwon-do 232-916, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Kangwon-do 232-916, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea
| | - Cheul Min An
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea
| | - Kyu-Hyun Park
- Department of Animal Life System, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Chul-Sung Huh
- Graduate School of International Agricultural Technology/GBST, Seoul National University, Pyeongchang 232-916, Republic of Korea
| | - Eun Bae Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
6
|
Cation transport by the respiratory NADH:quinone oxidoreductase (complex I): facts and hypotheses. Biochem Soc Trans 2014; 41:1280-7. [PMID: 24059520 DOI: 10.1042/bst20130024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The respiratory complex I (electrogenic NADH:quinone oxidoreductase) has been considered to act exclusively as a H+ pump. This was questioned when the search for the NADH-driven respiratory Na+ pump in Klebsiella pneumoniae initiated by Peter Dimroth led to the discovery of a Na+-translocating complex in this enterobacterium. The 3D structures of complex I from different organisms support the idea that the mechanism of cation transport by complex I involves conformational changes of the membrane-bound NuoL, NuoM and NuoN subunits. In vitro methods to follow Na+ transport were compared with in vivo approaches to test whether complex I, or its individual NuoL, NuoM or NuoN subunits, extrude Na+ from the cytoplasm to the periplasm of bacterial host cells. The truncated NuoL subunit of the Escherichia coli complex I which comprises amino acids 1-369 exhibits Na+ transport activity in vitro. This observation, together with an analysis of putative cation channels in NuoL, suggests that there exists in NuoL at least one continuous pathway for cations lined by amino acid residues from transmembrane segments 3, 4, 5, 7 and 8. Finally, we discuss recent studies on Na+ transport by mitochondrial complex I with respect to its putative role in the cycling of Na+ ions across the inner mitochondrial membrane.
Collapse
|