1
|
Fasullo M, Dolan M. The continuing evolution of barcode applications: Functional toxicology to cell lineage. Exp Biol Med (Maywood) 2022; 247:2119-2127. [PMID: 36113119 PMCID: PMC9837303 DOI: 10.1177/15353702221121600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DNA barcoding is a method to identify biological entities, including individual cells, tissues, organs, or species, by unique DNA sequences. With the advent of next generation sequencing (NGS), there has been an exponential increase in data acquisition pertaining to medical diagnosis, genetics, toxicology, ecology, cancer, and developmental biology. While barcoding first gained wide access in identifying species, signature tagged mutagenesis has been useful in elucidating gene function, particularly in microbes. With the advent of CRISPR/CAS9, methodology to profile eukaryotic genes has made a broad impact in toxicology and cancer biology. Designed homing guide RNAs (hgRNAs) that self-target DNA sequences facilitate cell lineage barcoding by introducing stochastic mutations within cell identifiers. While each of these applications has their limitations, the potential of sequence barcoding has yet to be realized. This review will focus on signature-tagged mutagenesis and briefly discuss the history of barcoding, experimental problems, novel detection methods, and future directions.
Collapse
Affiliation(s)
- Michael Fasullo
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Michael Dolan
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| |
Collapse
|
2
|
Vanacloig-Pedros E, Fisher KJ, Liu L, Debrauske DJ, Young MKM, Place M, Hittinger CT, Sato TK, Gasch AP. Comparative chemical genomic profiling across plant-based hydrolysate toxins reveals widespread antagonism in fitness contributions. FEMS Yeast Res 2022; 21:6650360. [PMID: 35883225 PMCID: PMC9508847 DOI: 10.1093/femsyr/foac036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been used extensively in fermentative industrial processes, including biofuel production from sustainable plant-based hydrolysates. Myriad toxins and stressors found in hydrolysates inhibit microbial metabolism and product formation. Overcoming these stresses requires mitigation strategies that include strain engineering. To identify shared and divergent mechanisms of toxicity and to implicate gene targets for genetic engineering, we used a chemical genomic approach to study fitness effects across a library of S. cerevisiae deletion mutants cultured anaerobically in dozens of individual compounds found in different types of hydrolysates. Relationships in chemical genomic profiles identified classes of toxins that provoked similar cellular responses, spanning inhibitor relationships that were not expected from chemical classification. Our results also revealed widespread antagonistic effects across inhibitors, such that the same gene deletions were beneficial for surviving some toxins but detrimental for others. This work presents a rich dataset relating gene function to chemical compounds, which both expands our understanding of plant-based hydrolysates and provides a useful resource to identify engineering targets.
Collapse
Affiliation(s)
- Elena Vanacloig-Pedros
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Kaitlin J Fisher
- Laboratory of Genetics, University of Wisconsin-Madison, 53706, Madison, WI, United States
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 53706, Madison, WI, United States
- J.F. Crow Institute for the Study of Evolution, 53706, Madison, WI, United States
| | - Lisa Liu
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Derek J Debrauske
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Megan K M Young
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Michael Place
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
- Laboratory of Genetics, University of Wisconsin-Madison, 53706, Madison, WI, United States
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 53706, Madison, WI, United States
- J.F. Crow Institute for the Study of Evolution, 53706, Madison, WI, United States
| | - Trey K Sato
- Corresponding author: Trey K. Sato, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 4117 Wisconsin Energy Institute, 1552 University Ave, Madison, WI 53726. Tel: (608) 890-2546; E-mail:
| | - Audrey P Gasch
- Corresponding author: Audrey P. Gasch, Center for Genomic Science Innovation, University of Wisconsin-Madison, 3422 Genetics-Biotechnology Center, 425 Henry Mall, Madison, WI 53704, United States. Tel: (608)265-0859; E-mail:
| |
Collapse
|
3
|
Abdul-Rahman F, Tranchina D, Gresham D. Fluctuating Environments Maintain Genetic Diversity through Neutral Fitness Effects and Balancing Selection. Mol Biol Evol 2021; 38:4362-4375. [PMID: 34132791 PMCID: PMC8476146 DOI: 10.1093/molbev/msab173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genetic variation is the raw material upon which selection acts. The majority of environmental conditions change over time and therefore may result in variable selective effects. How temporally fluctuating environments impact the distribution of fitness effects and in turn population diversity is an unresolved question in evolutionary biology. Here, we employed continuous culturing using chemostats to establish environments that switch periodically between different nutrient limitations and compared the dynamics of selection to static conditions. We used the pooled Saccharomyces cerevisiae haploid gene deletion collection as a synthetic model for populations comprising thousands of unique genotypes. Using barcode sequencing, we find that static environments are uniquely characterized by a small number of high-fitness genotypes that rapidly dominate the population leading to dramatic decreases in genetic diversity. By contrast, fluctuating environments are enriched in genotypes with neutral fitness effects and an absence of extreme fitness genotypes contributing to the maintenance of genetic diversity. We also identified a unique class of genotypes whose frequencies oscillate sinusoidally with a period matching the environmental fluctuation. Oscillatory behavior corresponds to large differences in short-term fitness that are not observed across long timescales pointing to the importance of balancing selection in maintaining genetic diversity in fluctuating environments. Our results are consistent with a high degree of environmental specificity in the distribution of fitness effects and the combined effects of reduced and balancing selection in maintaining genetic diversity in the presence of variable selection.
Collapse
Affiliation(s)
- Farah Abdul-Rahman
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Daniel Tranchina
- Department of Biology, New York University, New York, NY, USA
- Courant Math Institute, New York University, New York, NY, USA
| | - David Gresham
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
4
|
Shurson GC, Urriola PE, van de Ligt JLG. Can we effectively manage parasites, prions, and pathogens in the global feed industry to achieve One Health? Transbound Emerg Dis 2021; 69:4-30. [PMID: 34171167 DOI: 10.1111/tbed.14205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
Prions and certain endoparasites, bacteria, and viruses are internationally recognized as types of disease-causing biological agents that can be transmitted from contaminated feed to animals. Historically, foodborne biological hazards such as prions (transmissible spongiform encephalopathy), endoparasites (Trichinella spiralis, Toxoplasma gondii), and pathogenic bacteria (Salmonella spp., Listeria monocytogenes, Escherichia coli O157, Clostridium spp., and Campylobacter spp.) were major food safety concerns from feeding uncooked or improperly heated animal-derived food waste and by-products. However, implementation of validated thermal processing conditions along with verifiable quality control procedures has been effective in enabling safe use of these feed materials in animal diets. More recently, the occurrence of global Porcine Epidemic Diarrhea Virus and African Swine Fever Virus epidemics, dependence on international feed ingredient supply chains, and the discovery that these viruses can survive in some feed ingredient matrices under environmental conditions of trans-oceanic shipments has created an urgent need to develop and implement rigorous biosecurity protocols that prevent and control animal viruses in feed ingredients. Implementation of verifiable risk-based preventive controls, traceability systems from origin to destination, and effective mitigation procedures is essential to minimize these food security, safety, and sustainability threats. Creating a new biosafety and biosecurity framework will enable convergence of the diverging One Health components involving low environmental impact and functional feed ingredients that are perceived as having elevated biosafety risks when used in animal feeds.
Collapse
Affiliation(s)
- Gerald C Shurson
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Pedro E Urriola
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Jennifer L G van de Ligt
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
5
|
Wehrs M, Thompson MG, Banerjee D, Prahl JP, Morella NM, Barcelos CA, Moon J, Costello Z, Keasling JD, Shih PM, Tanjore D, Mukhopadhyay A. Investigation of Bar-seq as a method to study population dynamics of Saccharomyces cerevisiae deletion library during bioreactor cultivation. Microb Cell Fact 2020; 19:167. [PMID: 32811554 PMCID: PMC7437010 DOI: 10.1186/s12934-020-01423-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Despite the latest advancements in metabolic engineering for genome editing and characterization of host performance, the successful development of robust cell factories used for industrial bioprocesses and accurate prediction of the behavior of microbial systems, especially when shifting from laboratory-scale to industrial conditions, remains challenging. To increase the probability of success of a scale-up process, data obtained from thoroughly performed studies mirroring cellular responses to typical large-scale stimuli may be used to derive crucial information to better understand potential implications of large-scale cultivation on strain performance. This study assesses the feasibility to employ a barcoded yeast deletion library to assess genome-wide strain fitness across a simulated industrial fermentation regime and aims to understand the genetic basis of changes in strain physiology during industrial fermentation, and the corresponding roles these genes play in strain performance. Results We find that mutant population diversity is maintained through multiple seed trains, enabling large scale fermentation selective pressures to act upon the community. We identify specific deletion mutants that were enriched in all processes tested in this study, independent of the cultivation conditions, which include MCK1, RIM11, MRK1, and YGK3 that all encode homologues of mammalian glycogen synthase kinase 3 (GSK-3). Ecological analysis of beta diversity between all samples revealed significant population divergence over time and showed feed specific consequences of population structure. Further, we show that significant changes in the population diversity during fed-batch cultivations reflect the presence of significant stresses. Our observations indicate that, for this yeast deletion collection, the selection of the feeding scheme which affects the accumulation of the fermentative by-product ethanol impacts the diversity of the mutant pool to a higher degree as compared to the pH of the culture broth. The mutants that were lost during the time of most extreme population selection suggest that specific biological processes may be required to cope with these specific stresses. Conclusions Our results demonstrate the feasibility of Bar-seq to assess fermentation associated stresses in yeast populations under industrial conditions and to understand critical stages of a scale-up process where variability emerges, and selection pressure gets imposed. Overall our work highlights a promising avenue to identify genetic loci and biological stress responses required for fitness under industrial conditions.
Collapse
Affiliation(s)
- Maren Wehrs
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Mitchell G Thompson
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Deepanwita Banerjee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jan-Philip Prahl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Norma M Morella
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Carolina A Barcelos
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jadie Moon
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Zak Costello
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Energy Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2970, Horsholm, Denmark.,Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Patrick M Shih
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA. .,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|