1
|
Sun J, Zhang Z, Gao L, Yang F. Advances and trends for astaxanthin synthesis in Phaffia rhodozyma. Microb Cell Fact 2025; 24:100. [PMID: 40329361 PMCID: PMC12057283 DOI: 10.1186/s12934-025-02704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Astaxanthin, a carotenoid endowed with potent antioxidant capacity, exhibits considerable application prospects in nutraceuticals, pharmaceuticals, and cosmetics. In contrast to the chemical synthesis method, the biosynthesis of astaxanthin is undoubtedly a greener and more environmentally friendly production approach. In this review, we comprehensively review the biosynthetic pathways and multiple strategies for astaxanthin synthesis in Phaffia rhodozyma. Some biotechnology advancements for increasing the yield of astaxanthin in Phaffia rhodozyma encompass mutagenesis breeding, genetic modification, and optimizing fermentation conditions, thereby opening up new avenues for its application in functional foods and feed. Nevertheless, the yield of product synthesis is constrained by the host metabolic stoichiometry. Besides breaking the threshold of astaxanthin production and alleviating the impact of astaxanthin accumulation on cell growth, a comprehensive comprehension of multiple interconnected metabolic pathways and complex regulatory mechanisms is indispensable for significantly enhancing astaxanthin production. This review presents some prospects of integrating digital concepts into astaxanthin production to aid in overcoming current challenges.
Collapse
Affiliation(s)
- Jiajun Sun
- Dalian Polytechnic University, Dalian, 116034, China
| | - Zhaokun Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Innovation Center for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Innovation Center for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China.
| | - Fan Yang
- Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
2
|
Jia J, Chen Z, Li Q, Li F, Liu S, Bao G. The enhancement of astaxanthin production in Phaffia rhodozyma through a synergistic melatonin treatment and zinc finger transcription factor gene overexpression. Front Microbiol 2024; 15:1367084. [PMID: 38666259 PMCID: PMC11043562 DOI: 10.3389/fmicb.2024.1367084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Astaxanthin has multiple physiological functions and is applied widely. The yeast Phaffia rhodozyma is an ideal source of microbial astaxanthin. However, the stress conditions beneficial for astaxanthin synthesis often inhibit cell growth, leading to low productivity of astaxanthin in this yeast. In this study, 1 mg/L melatonin (MT) could increase the biomass, astaxanthin content, and yield in P. rhodozyma by 21.9, 93.9, and 139.1%, reaching 6.9 g/L, 0.3 mg/g DCW, and 2.2 mg/L, respectively. An RNA-seq-based transcriptomic analysis showed that MT could disturb the transcriptomic profile of P. rhodozyma cell. Furthermore, differentially expressed gene (DEG) analysis show that the genes induced or inhibited significantly by MT were mainly involved in astaxanthin synthesis, metabolite metabolism, substrate transportation, anti-stress, signal transduction, and transcription factor. A mechanism of MT regulating astaxanthin synthesis was proposed in this study. The mechanism is that MT entering the cell interacts with components of various signaling pathways or directly regulates their transcription levels. The altered signals are then transmitted to the transcription factors, which can regulate the expressions of a series of downstream genes as the DEGs. A zinc finger transcription factor gene (ZFTF), one of the most upregulated DEGs, induced by MT was selected to be overexpressed in P. rhodozyma. It was found that the biomass and astaxanthin synthesis of the transformant were further increased compared with those in MT-treatment condition. Combining MT-treatment and ZFTF overexpression in P. rhodozyma, the biomass, astaxanthin content, and yield were 8.6 g/L, 0.6 mg/g DCW, and 4.8 mg/L and increased by 52.1, 233.3, and 399.7% than those in the WT strain under MT-free condition. In this study, the synthesis and regulation theory of astaxanthin is deepened, and an efficient dual strategy for industrial production of microbial astaxanthin is proposed.
Collapse
Affiliation(s)
- Jianping Jia
- School of Phamacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Zhitao Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Qingqing Li
- School of Phamacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
| | - Feifei Li
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Siru Liu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Guoliang Bao
- School of Phamacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
3
|
Huang R, Ding R, Liu Y, Li F, Zhang Z, Wang S. GATA transcription factor WC2 regulates the biosynthesis of astaxanthin in yeast Xanthophyllomyces dendrorhous. Microb Biotechnol 2022; 15:2578-2593. [PMID: 35830570 PMCID: PMC9518987 DOI: 10.1111/1751-7915.14115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
Astaxanthin is a type of carotenoid widely used as powerful antioxidant and colourant in aquaculture and the poultry industry. Production of astaxanthin by yeast Xanthophyllomyces dendrorhous has attracted increasing attention due to high cell density and low requirements of water and land compared to photoautotrophic algae. Currently, the regulatory mechanisms of astaxanthin synthesis in X. dendrorhous remain obscure. In this study, we obtained a yellow X. dendrorhous mutant by Atmospheric and Room Temperature Plasma (ARTP) mutagenesis and sequenced its genome. We then identified a putative GATA transcription factor, white collar 2 (XdWC2), from the comparative genome data and verified that disruption of the XdWC2 gene resulted in a similar carotenoid profile to that of the ARTP mutant. Furthermore, transcriptomic analysis and yeast one-hybrid (Y1H) assay showed that XdWC2 regulated the expression of phytoene desaturase gene CrtI and astaxanthin synthase gene CrtS. The yeast two-hybrid (Y2H) assay demonstrated that XdWC2 interacted with white collar 1 (XdWC1) forming a heterodimer WC complex (WCC) to regulate the expression of CrtI and CrtS. Increase of the transcriptional levels of XdWC2 or CrtS in the wild-type strain did not largely modify the carotenoid profile, indicating translational and/or post-translational regulations involved in the biosynthesis of astaxanthin. Overexpression of CrtI in both the wild-type strain and the XdWC2-disrupted strain apparently improved the production of monocyclic carotenoid 3-hydroxy-3', 4'-didehydro-β, ψ-carotene-4-one (HDCO) rather than β-carotene and astaxanthin. The regulation of carotenoid biosynthesis by XdWC2 presented here provides the foundation for further understanding the global regulation of astaxanthin biosynthesis and guides the construction of astaxanthin over-producing strains.
Collapse
Affiliation(s)
- Ruilin Huang
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
- Shandong Provincial Key Laboratory of Synthetic BiologyChinese Academy of SciencesQingdao Institute of Bioenergy and Bioprocess TechnologyQingdaoChina
| | - Ruirui Ding
- Shandong Provincial Key Laboratory of Synthetic BiologyChinese Academy of SciencesQingdao Institute of Bioenergy and Bioprocess TechnologyQingdaoChina
- Shandong Energy InstituteQingdaoChina
| | - Yu Liu
- Shandong Provincial Key Laboratory of Synthetic BiologyChinese Academy of SciencesQingdao Institute of Bioenergy and Bioprocess TechnologyQingdaoChina
- Shandong Energy InstituteQingdaoChina
| | - Fuli Li
- Shandong Provincial Key Laboratory of Synthetic BiologyChinese Academy of SciencesQingdao Institute of Bioenergy and Bioprocess TechnologyQingdaoChina
- Shandong Energy InstituteQingdaoChina
| | - Zhaohui Zhang
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Shi’an Wang
- Shandong Provincial Key Laboratory of Synthetic BiologyChinese Academy of SciencesQingdao Institute of Bioenergy and Bioprocess TechnologyQingdaoChina
- Shandong Energy InstituteQingdaoChina
| |
Collapse
|
4
|
Role of ROX1, SKN7, and YAP6 Stress Transcription Factors in the Production of Secondary Metabolites in Xanthophyllomyces dendrorhous. Int J Mol Sci 2022; 23:ijms23169282. [PMID: 36012547 PMCID: PMC9409151 DOI: 10.3390/ijms23169282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Xanthophyllomyces dendrorhous is a natural source of astaxanthin and mycosporines. This yeast has been isolated from high and cold mountainous regions around the world, and the production of these secondary metabolites may be a survival strategy against the stress conditions present in its environment. Biosynthesis of astaxanthin is regulated by catabolic repression through the interaction between MIG1 and corepressor CYC8–TUP1. To evaluate the role of the stress-associated transcription factors SKN7, ROX1, and YAP6, we employed an omic and phenotypic approach. Null mutants were constructed and grown in two fermentable carbon sources. The yeast proteome and transcriptome were quantified by iTRAQ and RNA-seq, respectively. The total carotenoid, sterol, and mycosporine contents were determined and compared to the wild-type strain. Each mutant strain showed significant metabolic changes compared to the wild type that were correlated to its phenotype. In a metabolic context, the principal pathways affected were glycolysis/gluconeogenesis, the pentose phosphate (PP) pathway, and the citrate (TCA) cycle. Additionally, fatty acid synthesis was affected. The absence of ROX1 generated a significant decline in carotenoid production. In contrast, a rise in mycosporine and sterol synthesis was shown in the absence of the transcription factors SKN7 and YAP6, respectively.
Collapse
|
5
|
Enhancing astaxanthin yield in Phaffia rhodozyma: current trends and potential of phytohormones. Appl Microbiol Biotechnol 2022; 106:3531-3538. [PMID: 35579685 DOI: 10.1007/s00253-022-11972-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 11/27/2022]
Abstract
Astaxanthin is an important ketocarotenoid with remarkable biological activities and high economic value. In recent times, natural astaxanthin production by microorganisms has attracted much attention particularly in pharmaceuticals, nutraceuticals, cosmetics, and food and feed industries. Though, currently, productivity is still low and has restricted scale-up application in the commercial market, microbial production of astaxanthin has enormous prospects as it is a greener alternative to the predominating chemical synthesis. Over the years, Phaffia rhodozyma has attracted immense interest particularly in the field of biovalorization and sustainable production of natural nutraceuticals as a promising source of natural astaxanthin since it is able to use agro-food waste as inexpensive nutrient source. Many research works have, thus, been devoted to improving the astaxanthin yield from this yeast. Considering that the yeast was first isolated from tree exudates, the use of phytohormones and plant growth stimulators as prospective stimulants of astaxanthin production in the yeast is promising. Besides, it has been shown in several studies that phytohormones could improve cell growth and astaxanthin production of algae. Nevertheless, this option is less explored for P. rhodozyma. The few studies that have examined the effect of phytohormones on the yeast and its astaxanthin productivity reported positive results, with phytohormones such as 6-benzylaminopurin and gibberellic acid resulting in increased expression of carotenogenesis genes. Although the evidence available is scanty, the results are promising. KEY POINTS: • Phaffia rhodozyma is a promising source of natural astaxanthin • For industrialization, astaxanthin productivity of P. rhodozyma still needs optimization • Phytohormones could potentially augment astaxanthin yield of P. rhodozyma.
Collapse
|
6
|
P. Silva T, M. Paixão S, S. Fernandes A, C. Roseiro J, Alves L. New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Gordonia alkanivorans strain 1B is a desulfurizing bacterium and a hyper-pigment producer. Most carotenoid optimization studies have been performed with light, but little is still known on how carbon/sulfur-source concentrations influence carotenoid production under darkness. In this work, a surface response methodology based on a two-factor Doehlert distribution (% glucose in a glucose/fructose 10 g/L mixture; sulfate concentration) was used to study carotenoid and biomass production without light. These responses were then compared to those previously obtained under light. Moreover, carbon consumption was also monitored, and different metabolic parameters were further calculated. The results indicate that both light and glucose promote slower growth rates, but stimulate carotenoid production and carbon conversion to carotenoids and biomass. Fructose induces higher growth rates, and greater biomass production at 72 h; however, its presence seems to inhibit carotenoid production. Moreover, although at a much lower yield than under light, results demonstrate that under darkness the highest carotenoid production can be achieved with 100% glucose (10 g/L), ≥27 mg/L sulfate, and high growth time (>216 h). These results give a novel insight into the metabolism of strain 1B, highlighting the importance of culture conditions optimization to increase the process efficiency for carotenoid and/or biomass production.
Collapse
|
7
|
The role of key genes in astaxanthin biosynthesis in Phaffia rhodozyma by transcript level and gene knockout. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
González AM, Venegas M, Barahona S, Gómez M, Gutiérrez MS, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J. Damage response protein 1 (Dap1) functions in the synthesis of carotenoids and sterols in Xanthophyllomyces dendrorhous. J Lipid Res 2022; 63:100175. [PMID: 35120994 PMCID: PMC8953664 DOI: 10.1016/j.jlr.2022.100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Cytochrome P450s (P450s) are heme-containing proteins involved in several cellular functions, including biosynthesis of steroidal hormones, detoxification of xenobiotic compounds, among others. Damage response protein 1 (Dap1) has been described as a positive regulator of P450s through protein-protein interactions in organisms such as Schizosaccharomyces pombe. Three P450s in the carotenogenic yeast Xanthophyllomyces dendrorhous have thus far been characterized: Cyp51 and Cyp61, which are involved in ergosterol biosynthesis, and CrtS (astaxanthin synthase), which is involved in biosynthesis of the carotenoid astaxanthin. In this work, we describe the X. dendrorhous DAP1 gene, deletion of which affected yeast pigmentation by decreasing the astaxanthin fraction and increasing the β-carotene (a substrate of CrtS) fraction, which is consistent with the known role of CrtS. We found that the proportion of ergosterol was also decreased in the Δdap1 mutant. However, even though the fractions of the end products of these two pathways (the synthesis of carotenoids and sterols) were decreased in the Δdap1 mutant, the transcript levels of genes from the P450 systems involved were higher than those in the wild-type strain. We demonstrate that Dap1 coimmunoprecipitates with these three P450s, suggesting that Dap1 interacts with these three proteins. We propose that Dap1 regulates the synthesis of astaxanthin and ergosterol in X. dendrorhous, probably by regulating the P450s involved in both biosynthetic pathways at the protein level. This work suggests a new role for Dap1 in the regulation of carotenoid biosynthesis in X. dendrorhous.
Collapse
Affiliation(s)
- Ana-María González
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Maximiliano Venegas
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Melissa Gómez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - María-Soledad Gutiérrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Flores-Cotera LB, Chávez-Cabrera C, Martínez-Cárdenas A, Sánchez S, García-Flores OU. Deciphering the mechanism by which the yeast Phaffia rhodozyma responds adaptively to environmental, nutritional, and genetic cues. J Ind Microbiol Biotechnol 2021; 48:kuab048. [PMID: 34302341 PMCID: PMC8788774 DOI: 10.1093/jimb/kuab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022]
Abstract
Phaffia rhodozyma is a basidiomycetous yeast that synthesizes astaxanthin (ASX), which is a powerful and highly valuable antioxidant carotenoid pigment. P. rhodozyma cells accrue ASX and gain an intense red-pink coloration when faced with stressful conditions such as nutrient limitations (e.g., nitrogen or copper), the presence of toxic substances (e.g., antimycin A), or are affected by mutations in the genes that are involved in nitrogen metabolism or respiration. Since cellular accrual of ASX occurs under a wide variety of conditions, this yeast represents a valuable model for studying the growth conditions that entail oxidative stress for yeast cells. Recently, we proposed that ASX synthesis can be largely induced by conditions that lead to reduction-oxidation (redox) imbalances, particularly the state of the NADH/NAD+ couple together with an oxidative environment. In this work, we review the multiple known conditions that elicit ASX synthesis expanding on the data that we formerly examined. When considered alongside the Mitchell's chemiosmotic hypothesis, the study served to rationalize the induction of ASX synthesis and other adaptive cellular processes under a much broader set of conditions. Our aim was to propose an underlying mechanism that explains how a broad range of divergent conditions converge to induce ASX synthesis in P. rhodozyma. The mechanism that links the induction of ASX synthesis with the occurrence of NADH/NAD+ imbalances may help in understanding how other organisms detect any of a broad array of stimuli or gene mutations, and then adaptively respond to activate numerous compensatory cellular processes.
Collapse
Affiliation(s)
- Luis B Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| | - Cipriano Chávez-Cabrera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| | - Anahi Martínez-Cárdenas
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| | - Sergio Sánchez
- Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México city 04510, México
| | - Oscar Ulises García-Flores
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México city 07360, México
| |
Collapse
|
10
|
Vega-Ramon F, Zhu X, Savage TR, Petsagkourakis P, Jing K, Zhang D. Kinetic and hybrid modeling for yeast astaxanthin production under uncertainty. Biotechnol Bioeng 2021; 118:4854-4866. [PMID: 34612511 DOI: 10.1002/bit.27950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/11/2022]
Abstract
Astaxanthin is a high-value compound commercially synthesized through Xanthophyllomyces dendrorhous fermentation. Using mixed sugars decomposed from biowastes for yeast fermentation provides a promising option to improve process sustainability. However, little effort has been made to investigate the effects of multiple sugars on X. dendrorhous biomass growth and astaxanthin production. Furthermore, the construction of a high-fidelity model is challenging due to the system's variability, also known as batch-to-batch variation. Two innovations are proposed in this study to address these challenges. First, a kinetic model was developed to compare process kinetics between the single sugar (glucose) based and the mixed sugar (glucose and sucrose) based fermentation methods. Then, the kinetic model parameters were modeled themselves as Gaussian processes, a probabilistic machine learning technique, to improve the accuracy and robustness of model predictions. We conclude that although the presence of sucrose does not affect the biomass growth kinetics, it introduces a competitive inhibitory mechanism that enhances astaxanthin accumulation by inducing adverse environmental conditions such as osmotic gradients. Moreover, the hybrid model was able to greatly reduce model simulation error and was particularly robust to uncertainty propagation. This study suggests the advantage of mixed sugar-based fermentation and provides a novel approach for bioprocess dynamic modeling.
Collapse
Affiliation(s)
- Fernando Vega-Ramon
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Xianfeng Zhu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Thomas R Savage
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | | | - Keju Jing
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Dongda Zhang
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Torres-Haro A, Verdín J, Kirchmayr MR, Arellano-Plaza M. Metabolic engineering for high yield synthesis of astaxanthin in Xanthophyllomyces dendrorhous. Microb Cell Fact 2021; 20:175. [PMID: 34488760 PMCID: PMC8420053 DOI: 10.1186/s12934-021-01664-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Astaxanthin is a carotenoid with a number of assets useful for the food, cosmetic and pharmaceutical industries. Nowadays, it is mainly produced by chemical synthesis. However, the process leads to an enantiomeric mixture where the biologically assimilable forms (3R, 3'R or 3S, 3'S) are a minority. Microbial production of (3R, 3'R) astaxanthin by Xanthophyllomyces dendrorhous is an appealing alternative due to its fast growth rate and easy large-scale production. In order to increase X. dendrorhous astaxanthin yields, random mutant strains able to produce from 6 to 10 mg/g dry mass have been generated; nevertheless, they often are unstable. On the other hand, site-directed mutant strains have also been obtained, but they increase only the yield of non-astaxanthin carotenoids. In this review, we insightfully analyze the metabolic carbon flow converging in astaxanthin biosynthesis and, by integrating the biological features of X. dendrorhous with available metabolic, genomic, transcriptomic, and proteomic data, as well as the knowledge gained with random and site-directed mutants that lead to increased carotenoids yield, we propose new metabolic engineering targets to increase astaxanthin biosynthesis.
Collapse
Affiliation(s)
- Alejandro Torres-Haro
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Jorge Verdín
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Manuel R Kirchmayr
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Melchor Arellano-Plaza
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico.
| |
Collapse
|
12
|
Sandmann G, Pollmann H, Gassel S, Breitenbach J. Xanthophyllomyces dendrorhous, a Versatile Platform for the Production of Carotenoids and Other Acetyl-CoA-Derived Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1261:137-151. [PMID: 33783736 DOI: 10.1007/978-981-15-7360-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xanthophyllomyces dendrorhous (with Phaffia rhodozyma as its anamorphic state) is a basidiomycetous, moderately psychrophilic, red yeast belonging to the Cystofilobasidiales. Its red pigmentation is caused by the accumulation of astaxanthin, which is a unique feature among fungi. The present chapter reviews astaxanthin biosynthesis and acetyl-CoA metabolism in X. dendrorhous and describes the construction of a versatile platform for the production of carotenoids, such as astaxanthin, and other acetyl-CoA-derived compounds including fatty acids by using this fungus.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Biosynthesis Group, Molecular Biosciences, Goethe University, Frankfurt, Germany.
| | - Hendrik Pollmann
- Biosynthesis Group, Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Sören Gassel
- Biosynthesis Group, Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Jürgen Breitenbach
- Biosynthesis Group, Molecular Biosciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
13
|
Convergence between Regulation of Carbon Utilization and Catabolic Repression in Xanthophyllomyces dendrorhous. mSphere 2020; 5:5/2/e00065-20. [PMID: 32238568 PMCID: PMC7113583 DOI: 10.1128/msphere.00065-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xanthophyllomyces dendrorhous is a carotenogenic yeast with a singular metabolic capacity to produce astaxanthin, a valuable antioxidant pigment. This yeast can assimilate several carbon sources and sustain fermentation even under aerobic conditions. Since astaxanthin biosynthesis is affected by the carbon source, the study of carotenogenesis regulatory mechanisms is key for improving astaxanthin yield in X. dendrorhous This study aimed to elucidate the regulation of the metabolism of different carbon sources and the phenomenon of catabolic repression in this yeast. To this end, protein and transcript levels were quantified by iTRAQ (isobaric tags for relative and absolute quantification) and transcriptomic sequencing (RNA-seq) in the wild-type strain under conditions of glucose, maltose, or succinate treatment and in the mutant strains for genes MIG1, CYC8, and TUP1 under conditions of glucose treatment. Alternative carbon sources such as maltose and succinate affected the relative abundances of 14% of the wild-type proteins, which were mainly grouped into the carbohydrate metabolism category, with the glycolysis/gluconeogenesis and citrate cycle pathways being the most highly represented pathways. Each mutant strain showed significant proteomic profile changes, affecting approximately 2% of the total proteins identified, compared to the wild-type strain under glucose treatment conditions. Similarly to the results seen with the alternative carbon sources, the changes in the mutant strains mainly affected carbohydrate metabolism, with glycolysis/gluconeogenesis and the pentose phosphate and citrate cycle pathways being the most highly represented pathways. Our results showed convergence between carbon assimilation and catabolic repression in the strains studied. Interestingly, indications of cooperative, opposing, and overlapping processes during catabolic regulation were found. We also identified target proteins of the regulatory processes, reinforcing the likelihood of catabolic repression at the posttranscriptional level.IMPORTANCE The conditions affecting catabolic regulation in X. dendrorhous are complex and suggest the presence of an alternative mechanism of regulation. The repressors Mig1, Cyc8, and Tup1 are essential elements for the regulation of the use of glucose and other carbon sources. All play different roles but, depending on the growth conditions, can work in convergent, synergistic, and complementary ways to use carbon sources and to regulate other targets for yeast metabolism. Our results reinforced the belief that further studies in X. dendrorhous are needed to clarify a specific regulatory mechanism at the domain level of the repressors as well as its relationship with those of other metabolic repressors, i.e., the stress response, to elucidate carotenogenic regulation at the transcriptomic and proteomic levels in this yeast.
Collapse
|
14
|
Jinendiran S, Dileep Kumar BS, Dahms HU, Arulanandam CD, Sivakumar N. Optimization of submerged fermentation process for improved production of β-carotene by Exiguobacterium acetylicum S01. Heliyon 2019; 5:e01730. [PMID: 31193511 PMCID: PMC6535579 DOI: 10.1016/j.heliyon.2019.e01730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/15/2019] [Accepted: 05/10/2019] [Indexed: 11/23/2022] Open
Abstract
Carotenoids are natural pigments with substantial applications in nutraceutical, pharmaceutical, and food industries. In this study, optimization of the fermentation process for enhancement of β-carotene and biomass production by Exiguobacterium acetylicum S01 was achieved by employing statistical designs including the Placket-Burman design (PBD) and response surface methodology (RSM). Among the seven variables investigated by two levels in PBD, glucose, peptone, pH and temperature were indicated as crucial variables (p < 0.0001) for β-carotene and biomass productivity. Response surface methodology was further applied to evaluate the optimal concentrations of these four variables for maximum β-carotene and biomass productivity. The optimized medium contained glucose 1.4 g/L, peptone 26.5 g/L, pH 8.5, and temperature 30 °C, respectively. A significant increase in β-carotene (40.32 ± 2.55 mg/L) and biomass (2.19 ± 0.10 g/L) productivities in E. acetylicum S01 were achieved by using RSM, which was 3.47-fold and 2.36-fold higher in the optimized medium compared to the un-optimized medium. Further, the optimum fermentation condition in the 5-L bioreactor was achieved a maximal β-carotene yield of 107.22 ± 5.78 mg/L within 96 h. Moreover, the expression levels of carotenoid biosynthetic genes (phytoene desaturase (CrtI) and phytoene synthase (CrtB)) were up-regulated (2.89-fold and 3.71-fold) in E. acetylicum under the optimized medium conditions. Overall, these results suggest that E. acetylicum S01 can be used as a promising microorganism for the commercial production of β-carotene.
Collapse
Affiliation(s)
- Sekar Jinendiran
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | - B S Dileep Kumar
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Marine Biotechnology and Bioresources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Charli Deepak Arulanandam
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Natesan Sivakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| |
Collapse
|
15
|
Tian L, Xu X, Jiang L, Zhang Z, Huang H. Optimization of fermentation conditions for carotenoid production in the radiation-resistant strain Deinococcus xibeiensis R13. Bioprocess Biosyst Eng 2019; 42:631-642. [DOI: 10.1007/s00449-018-02069-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/27/2018] [Indexed: 01/30/2023]
|
16
|
Breitenbach J, Pollmann H, Sandmann G. Genetic modification of the carotenoid pathway in the red yeast Xanthophyllomyces dendrorhous: Engineering of a high-yield zeaxanthin strain. J Biotechnol 2019; 289:112-117. [DOI: 10.1016/j.jbiotec.2018.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/11/2018] [Accepted: 11/25/2018] [Indexed: 12/23/2022]
|
17
|
Martínez-Cárdenas A, Chávez-Cabrera C, Vasquez-Bahena JM, Flores-Cotera LB. A common mechanism explains the induction of aerobic fermentation and adaptive antioxidant response in Phaffia rhodozyma. Microb Cell Fact 2018; 17:53. [PMID: 29615045 PMCID: PMC5883411 DOI: 10.1186/s12934-018-0898-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
Background Growth conditions that bring about stress on Phaffia rhodozyma cells encourage the synthesis of astaxanthin, an antioxidant carotenoid, which protects cells against oxidative damage. Using P. rhodozyma cultures performed with and without copper limitation, we examined the kinetics of astaxanthin synthesis along with the expression of asy, the key astaxanthin synthesis gene, as well as aox, which encodes an alternative oxidase protein. Results Copper deficiency had a detrimental effect on the rates of oxygen consumption and ethanol reassimilation at the diauxic shift. In contrast, copper deficiency prompted alcoholic fermentation under aerobic conditions and had a favorable effect on the astaxanthin content of cells, as well as on aox expression. Both cultures exhibited strong aox expression while consuming ethanol, but particularly when copper was absent. Conclusion We show that the induction of either astaxanthin production, aox expression, or aerobic fermentation exemplifies the crucial role that redox imbalance plays in triggering any of these phenomena. Based on our own results and data from others, we propose a mechanism that rationalizes the central role played by changes of respiratory activity, which lead to redox imbalances, in triggering both the short-term antioxidant response as well as fermentation in yeasts and other cell types.
Collapse
Affiliation(s)
- Anahí Martínez-Cárdenas
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Cipriano Chávez-Cabrera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico.,College of Science and Technology Studies of the State of Michoacán, Loma de las Liebres 180, Fraccionamiento Lomas del Sur, 58095, Morelia, Michoacán, Mexico
| | - Jazmín M Vasquez-Bahena
- Avi-mex Laboratory S.A de C.V, Trigo 169, Col. Granjas Esmeralda, 09810, Mexico City, Mexico
| | - Luis B Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
18
|
Patel VK, Srivastava R, Sharma A, Srivastava AK, Singh S, Srivastava AK, Kashyap PL, Chakdar H, Pandiyan K, Kalra A, Saxena AK. Halotolerant Exiguobacterium profundum PHM11 Tolerate Salinity by Accumulating L-Proline and Fine-Tuning Gene Expression Profiles of Related Metabolic Pathways. Front Microbiol 2018; 9:423. [PMID: 29662469 PMCID: PMC5890156 DOI: 10.3389/fmicb.2018.00423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/22/2018] [Indexed: 11/13/2022] Open
Abstract
Salinity stress is one of the serious factors, limiting production of major agricultural crops; especially, in sodic soils. A number of approaches are being applied to mitigate the salt-induced adverse effects in agricultural crops through implying different halotolerant microbes. In this aspect, a halotolerant, Exiguobacterium profundum PHM11 was evaluated under eight different salinity regimes; 100, 250, 500, 1000, 1500, 2000, 2500, and 3000 mM to know its inherent salt tolerance limits and salt-induced consequences affecting its natural metabolism. Based on the stoichiometric growth kinetics; 100 and 1500 mM concentrations were selected as optimal and minimal performance limits for PHM11. To know, how salt stress affects the expression profiles of regulatory genes of its key metabolic pathways, and total production of important metabolites; biomass, carotenoids, beta-carotene production, IAA and proline contents, and expression profiles of key genes affecting the protein folding, structural adaptations, transportation across the cell membrane, stress tolerance, carotenoids, IAA and mannitol production in PHM11 were studied under 100 and 1500 mM salinity. E. profundum PHM11 showed maximum and minimum growth, biomass and metabolite production at 100 and 1500 mM salinity respectively. Salt-induced fine-tuning of expression profiles of key genes of stress pathways was determined in halotolerant bacterium PHM11.
Collapse
Affiliation(s)
- Vikas K Patel
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Ruchi Srivastava
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Anjney Sharma
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Anchal K Srivastava
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Savita Singh
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Alok K Srivastava
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Prem L Kashyap
- Division of Plant Pathology, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Hillol Chakdar
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - K Pandiyan
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Alok Kalra
- Department of Microbial Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Anil K Saxena
- Laboratory of Genomics, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
19
|
Landolfo S, Ianiri G, Camiolo S, Porceddu A, Mulas G, Chessa R, Zara G, Mannazzu I. CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa. Microbiology (Reading) 2018; 164:78-87. [DOI: 10.1099/mic.0.000588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sara Landolfo
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Via Francesco de Sanctis, 86100 Campobasso, Italy
- Present address: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Salvatore Camiolo
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Andrea Porceddu
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Giuliana Mulas
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Rossella Chessa
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| |
Collapse
|
20
|
Bu X, Sun L, Shang F, Yan G. Comparative metabolomics profiling of engineered Saccharomyces cerevisiae lead to a strategy that improving β-carotene production by acetate supplementation. PLoS One 2017; 12:e0188385. [PMID: 29161329 PMCID: PMC5697841 DOI: 10.1371/journal.pone.0188385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022] Open
Abstract
A comparative metabolomic analysis was conducted on recombinant Saccharomyces cerevisiae strain producing β-carotene and the parent strain cultivated with glucose as carbon source using gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography-mass spectrometry (HPLC-MS) and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based approach. The results showed that most of the central intermediates associated with amino acids, carbohydrates, glycolysis and TCA cycle intermediates (acetic acid, glycerol, citric acid, pyruvic acid and succinic acid), fatty acids, ergosterol and energy metabolites were produced in a lower amount in recombinant strain, as compared to the parent strain. To increase β-carotene production in recombinant strain, a strategy that exogenous addition of acetate (10 g/l) in exponential phase was developed, which could enhance most intracellular metabolites levels and result in 39.3% and 14.2% improvement of β-carotene concentration and production, respectively, which was accompanied by the enhancement of acetyl-CoA, fatty acids, ergosterol and ATP contents in cells. These results indicated that the amounts of intracellular metabolites in engineered strain are largely consumed by carotenoid formation. Therefore, maintaining intracellular metabolites pool at normal levels is essential for carotenoid biosynthesis. To relieve this limitation, rational supplementation of acetate could be a potential way because it can partially restore the levels of intracellular metabolites and improve the production of carotenoid compounds in recombinant S. cerevisiae.
Collapse
Affiliation(s)
- Xiao Bu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R., China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, P.R., China
| | - Liang Sun
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R., China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, P.R., China
| | - Fei Shang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, P.R., China
| | - Guoliang Yan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R., China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, P.R., China
- * E-mail:
| |
Collapse
|
21
|
Barredo JL, García-Estrada C, Kosalkova K, Barreiro C. Biosynthesis of Astaxanthin as a Main Carotenoid in the Heterobasidiomycetous Yeast Xanthophyllomyces dendrorhous. J Fungi (Basel) 2017; 3:E44. [PMID: 29371561 PMCID: PMC5715937 DOI: 10.3390/jof3030044] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
Carotenoids are organic lipophilic yellow to orange and reddish pigments of terpenoid nature that are usually composed of eight isoprene units. This group of secondary metabolites includes carotenes and xanthophylls, which can be naturally obtained from photosynthetic organisms, some fungi, and bacteria. One of the microorganisms able to synthesise carotenoids is the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous, which represents the teleomorphic state of Phaffia rhodozyma, and is mainly used for the production of the xanthophyll astaxanthin. Upgraded knowledge on the biosynthetic pathway of the main carotenoids synthesised by X. dendrorhous, the biotechnology-based improvement of astaxanthin production, as well as the current omics approaches available in this yeast are reviewed in depth.
Collapse
Affiliation(s)
- Jose L Barredo
- CRYSTAL PHARMA S.A.U. Parque Tecnológico de León, C/Nicostrato Vela s/n, 24009 León, Spain.
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real, 1, 24006 León, Spain.
- Área de Toxicología, Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana, 24071 León, Spain.
| | - Katarina Kosalkova
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real, 1, 24006 León, Spain.
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real, 1, 24006 León, Spain.
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Ponferrada, Avda, Astorga, s/n, 24400 Ponferrada, Spain.
| |
Collapse
|
22
|
Córdova P, Gonzalez AM, Nelson DR, Gutiérrez MS, Baeza M, Cifuentes V, Alcaíno J. Characterization of the cytochrome P450 monooxygenase genes (P450ome) from the carotenogenic yeast Xanthophyllomyces dendrorhous. BMC Genomics 2017; 18:540. [PMID: 28724407 PMCID: PMC5516332 DOI: 10.1186/s12864-017-3942-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/13/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases involved in the oxidative metabolism of an enormous diversity of substrates. These enzymes require electrons for their activity, and the electrons are supplied by NAD(P)H through a P450 electron donor system, which is generally a cytochrome P450 reductase (CPR). The yeast Xanthophyllomyces dendrorhous has evolved an exclusive P450-CPR system that specializes in the synthesis of astaxanthin, a carotenoid with commercial potential. For this reason, the aim of this work was to identify and characterize other potential P450 genes in the genome of this yeast using a bioinformatic approach. RESULTS Thirteen potential P450-encoding genes were identified, and the analysis of their deduced proteins allowed them to be classified in ten different families: CYP51, CYP61, CYP5139 (with three members), CYP549A, CYP5491, CYP5492 (with two members), CYP5493, CYP53, CYP5494 and CYP5495. Structural analyses of the X. dendrorhous P450 proteins showed that all of them have a predicted transmembrane region at their N-terminus and have the conserved domains characteristic of the P450s, including the heme-binding region (FxxGxRxCxG); the PER domain, with the characteristic signature for fungi (PxRW); the ExxR motif in the K-helix region and the oxygen-binding domain (OBD) (AGxDTT); also, the characteristic secondary structure elements of all the P450 proteins were identified. The possible functions of these P450s include primary, secondary and xenobiotic metabolism reactions such as sterol biosynthesis, carotenoid synthesis and aromatic compound degradation. CONCLUSIONS The carotenogenic yeast X. dendrorhous has thirteen P450-encoding genes having potential functions in primary, secondary and xenobiotic metabolism reactions, including some genes of great interest for fatty acid hydroxylation and aromatic compound degradation. These findings established a basis for future studies about the role of P450s in the carotenogenic yeast X. dendrorhous and their potential biotechnological applications.
Collapse
Affiliation(s)
- Pamela Córdova
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Ana-María Gonzalez
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - María-Soledad Gutiérrez
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| |
Collapse
|
23
|
Córdova P, Alcaíno J, Bravo N, Barahona S, Sepúlveda D, Fernández-Lobato M, Baeza M, Cifuentes V. Regulation of carotenogenesis in the red yeast Xanthophyllomyces dendrorhous: the role of the transcriptional co-repressor complex Cyc8-Tup1 involved in catabolic repression. Microb Cell Fact 2016; 15:193. [PMID: 27842591 PMCID: PMC5109733 DOI: 10.1186/s12934-016-0597-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/10/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The yeast Xanthophyllomyces dendrorhous produces carotenoids of commercial interest, including astaxanthin and β-carotene. Although carotenogenesis in this yeast and the expression profiles of the genes controlling this pathway are known, the mechanisms regulating this process remain poorly understood. Several studies have demonstrated that glucose represses carotenogenesis in X. dendrorhous, suggesting that this pathway could be regulated by catabolic repression. Catabolic repression is a highly conserved regulatory mechanism in eukaryotes and has been widely studied in Saccharomyces cerevisiae. Glucose-dependent repression is mainly observed at the transcriptional level and depends on the DNA-binding regulator Mig1, which recruits the co-repressor complex Cyc8-Tup1, which then represses the expression of target genes. In this work, we studied the regulation of carotenogenesis by catabolic repression in X. dendrorhous, focusing on the role of the co-repressor complex Cyc8-Tup1. RESULTS The X. dendrorhous CYC8 and TUP1 genes were identified, and their functions were demonstrated by heterologous complementation in S. cerevisiae. In addition, cyc8 - and tup1 - mutant strains of X. dendrorhous were obtained, and both mutations were shown to prevent the glucose-dependent repression of carotenogenesis in X. dendrorhous, increasing the carotenoid production in both mutant strains. Furthermore, the effects of glucose on the transcript levels of genes involved in carotenogenesis differed between the mutant strains and wild-type X. dendrorhous, particularly for genes involved in the synthesis of carotenoid precursors, such as HMGR, idi and FPS. Additionally, transcriptomic analyses showed that cyc8 - and tup1 - mutations affected the expression of over 250 genes in X. dendrorhous. CONCLUSIONS The CYC8 and TUP1 genes are functional in X. dendrorhous, and their gene products are involved in catabolic repression and carotenogenesis regulation. This study presents the first report involving the participation of Cyc8 and Tup1 in carotenogenesis regulation in yeast.
Collapse
Affiliation(s)
- Pamela Córdova
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Natalia Bravo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma Madrid, Campus de Cantoblanco, calle Nicolás Cabrera No 1, Cantoblanco, 28049 Madrid, Spain
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile
| |
Collapse
|
24
|
Bellora N, Moliné M, David-Palma M, Coelho MA, Hittinger CT, Sampaio JP, Gonçalves P, Libkind D. Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited tremellomycete: Phaffia rhodozyma. BMC Genomics 2016; 17:901. [PMID: 27829365 PMCID: PMC5103461 DOI: 10.1186/s12864-016-3244-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The class Tremellomycete (Agaricomycotina) encompasses more than 380 fungi. Although there are a few edible Tremella spp., the only species with current biotechnological use is the astaxanthin-producing yeast Phaffia rhodozyma (Cystofilobasidiales). Besides astaxanthin, a carotenoid pigment with potent antioxidant activity and great value for aquaculture and pharmaceutical industries, P. rhodozyma possesses multiple exceptional traits of fundamental and applied interest. The aim of this study was to obtain, and analyze two new genome sequences of representative strains from the northern (CBS 7918T, the type strain) and southern hemispheres (CRUB 1149) and compre them to a previously published genome sequence (strain CBS 6938). Photoprotection and antioxidant related genes, as well as genes involved in sexual reproduction were analyzed. RESULTS Both genomes had ca. 19 Mb and 6000 protein coding genes, similar to CBS 6938. Compared to other fungal genomes P. rhodozyma strains and other Cystofilobasidiales have the highest number of intron-containing genes and highest number of introns per gene. The Patagonian strain showed 4.4 % of nucleotide sequence divergence compared to the European strains which differed from each other by only 0.073 %. All known genes related to the synthesis of astaxanthin were annotated. A hitherto unknown gene cluster potentially responsible for photoprotection (mycosporines) was found in the newly sequenced P. rhodozyma strains but was absent in the non-mycosporinogenic strain CBS 6938. A broad battery of enzymes that act as scavengers of free radical oxygen species were detected, including catalases and superoxide dismutases (SODs). Additionally, genes involved in sexual reproduction were found and annotated. CONCLUSIONS A draft genome sequence of the type strain of P. rhodozyma is now available, and comparison with that of the Patagonian population suggests the latter deserves to be assigned to a distinct variety. An unexpected genetic trait regarding high occurrence of introns in P. rhodozyma and other Cystofilobasidiales was revealed. New genomic insights into fungal homothallism were also provided. The genetic basis of several additional photoprotective and antioxidant strategies were described, indicating that P. rhodozyma is one of the fungi most well-equipped to cope with environmental oxidative stress, a factor that has probably contributed to shaping its genome.
Collapse
Affiliation(s)
- Nicolás Bellora
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino-Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - UNComahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Martín Moliné
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino-Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - UNComahue, Quintral 1250, 8400, Bariloche, Argentina
| | - Márcia David-Palma
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - José P Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino-Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - UNComahue, Quintral 1250, 8400, Bariloche, Argentina.
| |
Collapse
|
25
|
Alcaíno J, Bravo N, Córdova P, Marcoleta AE, Contreras G, Barahona S, Sepúlveda D, Fernández-Lobato M, Baeza M, Cifuentes V. The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production. PLoS One 2016; 11:e0162838. [PMID: 27622474 PMCID: PMC5021340 DOI: 10.1371/journal.pone.0162838] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/29/2016] [Indexed: 11/18/2022] Open
Abstract
The red yeast X. dendrorhous is one of the few natural sources of astaxanthin, a carotenoid used in aquaculture for salmonid fish pigmentation and in the cosmetic and pharmaceutical industries for its antioxidant properties. Genetic control of carotenogenesis is well characterized in this yeast; however, little is known about the regulation of the carotenogenesis process. Several lines of evidence have suggested that carotenogenesis is regulated by catabolic repression, and the aim of this work was to identify and functionally characterize the X. dendrorhous MIG1 gene encoding the catabolic repressor Mig1, which mediates transcriptional glucose-dependent repression in other yeasts and fungi. The identified gene encodes a protein of 863 amino acids that demonstrates the characteristic conserved features of Mig1 proteins, and binds in vitro to DNA fragments containing Mig1 boxes. Gene functionality was demonstrated by heterologous complementation in a S. cerevisiae mig1- strain; several aspects of catabolic repression were restored by the X. dendrorhous MIG1 gene. Additionally, a X. dendrorhous mig1- mutant was constructed and demonstrated a higher carotenoid content than the wild-type strain. Most important, the mig1- mutation alleviated the glucose-mediated repression of carotenogenesis in X. dendrorhous: the addition of glucose to mig1- and wild-type cultures promoted the growth of both strains, but carotenoid synthesis was observed only in the mutant strain. Transcriptomic and RT-qPCR analyses revealed that several genes were differentially expressed between X. dendrorhous mig1- and the wild-type strain when cultured with glucose as the sole carbon source. The results obtained in this study demonstrate that catabolic repression in X. dendrorhous is an active process in which the identified MIG1 gene product plays a central role in the regulation of several biological processes, including carotenogenesis.
Collapse
Affiliation(s)
- Jennifer Alcaíno
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Natalia Bravo
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pamela Córdova
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrés E. Marcoleta
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gabriela Contreras
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma, Madrid, Cantoblanco, España
| | - Marcelo Baeza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
26
|
Castelblanco-Matiz LM, Barbachano-Torres A, Ponce-Noyola T, Ramos-Valdivia AC, Cerda García-Rojas CM, Flores-Ortiz CM, Barahona-Crisóstomo SK, Baeza-Cancino ME, Alcaíno-Gorman J, Cifuentes-Guzmán VH. Carotenoid production and gene expression in an astaxanthin-overproducing Xanthophyllomyces dendrorhous mutant strain. Arch Microbiol 2015; 197:1129-39. [DOI: 10.1007/s00203-015-1153-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/07/2015] [Accepted: 09/11/2015] [Indexed: 12/25/2022]
|
27
|
Leiva K, Werner N, Sepúlveda D, Barahona S, Baeza M, Cifuentes V, Alcaíno J. Identification and functional characterization of the CYP51 gene from the yeast Xanthophyllomyces dendrorhous that is involved in ergosterol biosynthesis. BMC Microbiol 2015; 15:89. [PMID: 25906980 PMCID: PMC4415319 DOI: 10.1186/s12866-015-0428-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/17/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Xanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, a carotenoid with great biotechnological impact. The ergosterol and carotenoid synthetic pathways derive from the mevalonate pathway and involve cytochrome P450 enzymes. Among these enzymes, the CYP51 family, which is involved in ergosterol biosynthesis, is one of the most remarkable that has C14-demethylase activity. RESULTS In this study, the CYP51 gene from X. dendrorhous was isolated and its function was analyzed. The gene is composed of ten exons and encodes a predicted 550 amino acid polypeptide that exhibits conserved cytochrome P450 structural characteristics and shares significant identity with the sterol C14-demethylase from other fungi. The functionality of this gene was confirmed by heterologous complementation in S. cerevisiae. Furthermore, a CYP51 gene mutation in X. dendrorhous reduced sterol production by approximately 40% and enhanced total carotenoid production by approximately 90% compared to the wild-type strain after 48 and 120 h of culture, respectively. Additionally, the CYP51 gene mutation in X. dendrorhous increased HMGR (hydroxy-methylglutaryl-CoA reductase, involved in the mevalonate pathway) and crtR (cytochrome P450 reductase) transcript levels, which could be associated with reduced ergosterol production. CONCLUSIONS These results suggest that the CYP51 gene identified in X. dendrorhous encodes a functional sterol C14-demethylase that is involved in ergosterol biosynthesis.
Collapse
Affiliation(s)
- Kritsye Leiva
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Nicole Werner
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| |
Collapse
|
28
|
Baeza M, Alcaíno J, Barahona S, Sepúlveda D, Cifuentes V. Codon usage and codon context bias in Xanthophyllomyces dendrorhous. BMC Genomics 2015; 16:293. [PMID: 25887493 PMCID: PMC4404019 DOI: 10.1186/s12864-015-1493-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/27/2015] [Indexed: 01/11/2023] Open
Abstract
Background Synonymous codons are used differentially in organisms from the three domains of life, a phenomenon referred to as codon usage bias. In addition, codon pair bias, particularly in the 3’ codon context, has also been described in several organisms and is associated with the accuracy and rate of translation. An improved understanding of both types of bias is important for the optimization of heterologous protein expression, particularly in biotechnologically important organisms, such as the yeast Xanthophyllomyces dendrorhous, a promising bioresource for the carotenoid astaxanthin. Using genomic and transcriptomic data, the codon usage and codon context biases of X. dendrorhous open reading frames (ORFs) were analyzed to determine their expression levels, GC% and sequence lengths. X. dendrorhous totiviral ORFs were also included in these analyses. Results A total of 1,695 X. dendrorhous ORFs were identified through comparison with sequences in multiple databases, and the intron-exon structures of these sequences were determined. Although there were important expression variations among the ORFs under the studied conditions (different phases of growth and available carbon sources), most of these sequences were highly expressed under at least one of the analyzed conditions. Independent of the culture conditions, the highly expressed genes showed a strong bias in both codon usage and the 3’ context, with a minor association with the GC% and no relationship to the sequence length. The codon usage and codon-pair bias of the totiviral ORFs were highly variable with no similarities to the host ORFs. Conclusions There is a direct relation between the level of gene expression and codon usage and 3′ context bias in X. dendrorhous, which is more evident for ORFs that are expressed at the highest levels under the studied conditions. However, there is no direct relation between the totiviral ORF biases and the host ORFs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1493-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| |
Collapse
|
29
|
Martinez-Moya P, Niehaus K, Alcaíno J, Baeza M, Cifuentes V. Proteomic and metabolomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous using different carbon sources. BMC Genomics 2015; 16:289. [PMID: 25887121 PMCID: PMC4404605 DOI: 10.1186/s12864-015-1484-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/25/2015] [Indexed: 11/27/2022] Open
Abstract
Background Astaxanthin is a potent antioxidant with increasing biotechnological interest. In Xanthophyllomyces dendrorhous, a natural source of this pigment, carotenogenesis is a complex process regulated through several mechanisms, including the carbon source. X. dendrorhous produces more astaxanthin when grown on a non-fermentable carbon source, while decreased astaxanthin production is observed in the presence of high glucose concentrations. In the present study, we used a comparative proteomic and metabolomic analysis to characterize the yeast response when cultured in minimal medium supplemented with glucose (fermentable) or succinate (non-fermentable). Results A total of 329 proteins were identified from the proteomic profiles, and most of these proteins were associated with carotenogenesis, lipid and carbohydrate metabolism, and redox and stress responses. The metabolite profiles revealed 92 metabolites primarily associated with glycolysis, the tricarboxylic acid cycle, amino acids, organic acids, sugars and phosphates. We determined the abundance of proteins and metabolites of the central pathways of yeast metabolism and examined the influence of these molecules on carotenogenesis. Similar to previous proteomic-stress response studies, we observed modulation of abundance from several redox, stress response, carbohydrate and lipid enzymes. Additionally, the accumulation of trehalose, absence of key ROS response enzymes, an increased abundance of the metabolites of the pentose phosphate pathway and tricarboxylic acid cycle suggested an association between the accumulation of astaxanthin and oxidative stress in the yeast. Moreover, we observed the increased abundance of late carotenogenesis enzymes during astaxanthin accumulation under succinate growth conditions. Conclusions The use of succinate as a carbon source in X. dendrorhous cultures increases the availability of acetyl-CoA for the astaxanthin production compared with glucose, likely reflecting the positive regulation of metabolic enzymes of the tricarboxylic acid and glyoxylate cycles. The high metabolite level generated in this pathway could increase the cellular respiration rate, producing reactive oxygen species, which induces carotenogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1484-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pilar Martinez-Moya
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Karsten Niehaus
- Department of Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Centro de Biotecnologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
30
|
Sharma R, Gassel S, Steiger S, Xia X, Bauer R, Sandmann G, Thines M. The genome of the basal agaricomycete Xanthophyllomyces dendrorhous provides insights into the organization of its acetyl-CoA derived pathways and the evolution of Agaricomycotina. BMC Genomics 2015; 16:233. [PMID: 25887949 PMCID: PMC4393869 DOI: 10.1186/s12864-015-1380-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/21/2015] [Indexed: 11/14/2022] Open
Abstract
Background Xanthophyllomyces dendrorhous is a basal agaricomycete with uncertain taxonomic placement, known for its unique ability to produce astaxanthin, a carotenoid with antioxidant properties. It was the aim of this study to elucidate the organization of its CoA-derived pathways and to use the genomic information of X. dendrorhous for a phylogenomic investigation of the Basidiomycota. Results The genome assembly of a haploid strain of Xanthophyllomyces dendrorhous revealed a genome of 19.50 Megabases with 6385 protein coding genes. Phylogenetic analyses were conducted including 48 fungal genomes. These revealed Ustilaginomycotina and Agaricomycotina as sister groups. In the latter a well-supported sister-group relationship of two major orders, Polyporales and Russulales, was inferred. Wallemia occupies a basal position within the Agaricomycotina and X. dendrorhous represents the basal lineage of the Tremellomycetes, highlighting that the typical tremelloid parenthesomes have either convergently evolved in Wallemia and the Tremellomycetes, or were lost in the Cystofilobasidiales lineage. A detailed characterization of the CoA-related pathways was done and all genes for fatty acid, sterol and carotenoid synthesis have been assigned. Conclusions The current study ascertains that Wallemia with tremelloid parenthesomes is the most basal agaricomycotinous lineage and that Cystofilobasidiales without tremelloid parenthesomes are deeply rooted within Tremellomycetes, suggesting that parenthesomes at septal pores might be the core synapomorphy for the Agaricomycotina. Apart from evolutionary insights the genome sequence of X. dendrorhous will facilitate genetic pathway engineering for optimized astaxanthin or oxidative alcohol production. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1380-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rahul Sharma
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany. .,Center for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany.
| | - Sören Gassel
- Department of Molecular Bioscience, J.W. Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany.
| | - Sabine Steiger
- Department of Molecular Bioscience, J.W. Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany.
| | - Xiaojuan Xia
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany.
| | - Robert Bauer
- Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| | - Gerhard Sandmann
- Department of Molecular Bioscience, J.W. Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany.
| | - Marco Thines
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany. .,Center for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany.
| |
Collapse
|
31
|
Ye L, Xie W, Zhou P, Yu H. Biotechnological Production of Astaxanthin through Metabolic Engineering of Yeasts. CHEMBIOENG REVIEWS 2015. [DOI: 10.1002/cben.201400023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Alcaíno J, Romero I, Niklitschek M, Sepúlveda D, Rojas MC, Baeza M, Cifuentes V. Functional characterization of the Xanthophyllomyces dendrorhous farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase encoding genes that are involved in the synthesis of isoprenoid precursors. PLoS One 2014; 9:e96626. [PMID: 24796858 PMCID: PMC4010515 DOI: 10.1371/journal.pone.0096626] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/09/2014] [Indexed: 12/21/2022] Open
Abstract
The yeast Xanthophyllomyces dendrorhous synthesizes the carotenoid astaxanthin, which has applications in biotechnology because of its antioxidant and pigmentation properties. However, wild-type strains produce too low amounts of carotenoids to be industrially competitive. Considering this background, it is indispensable to understand how the synthesis of astaxanthin is controlled and regulated in this yeast. In this work, the steps leading to the synthesis of the carotenoid precursor geranylgeranyl pyrophosphate (GGPP, C20) in X. dendrorhous from isopentenyl pyrophosphate (IPP, C5) and dimethylallyl pyrophosphate (DMAPP, C5) was characterized. Two prenyl transferase encoding genes, FPS and crtE, were expressed in E. coli. The enzymatic assays using recombinant E. coli protein extracts demonstrated that FPS and crtE encode a farnesyl pyrophosphate (FPP, C15) synthase and a GGPP-synthase, respectively. X. dendrorhous FPP-synthase produces geranyl pyrophosphate (GPP, C10) from IPP and DMAPP and FPP from IPP and GPP, while the X. dendrorhous GGPP-synthase utilizes only FPP and IPP as substrates to produce GGPP. Additionally, the FPS and crtE genes were over-expressed in X. dendrorhous, resulting in an increase of the total carotenoid production. Because the parental strain is diploid, the deletion of one of the alleles of these genes did not affect the total carotenoid production, but the composition was significantly altered. These results suggest that the over-expression of these genes might provoke a higher carbon flux towards carotenogenesis, most likely involving an earlier formation of a carotenogenic enzyme complex. Conversely, the lower carbon flux towards carotenogenesis in the deletion mutants might delay or lead to a partial formation of a carotenogenic enzyme complex, which could explain the accumulation of astaxanthin carotenoid precursors in these mutants. In conclusion, the FPS and the crtE genes represent good candidates to manipulate to favor carotenoid biosynthesis in X. dendrorhous.
Collapse
Affiliation(s)
- Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ignacio Romero
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Niklitschek
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - María Cecilia Rojas
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
33
|
|
34
|
Contreras G, Barahona S, Rojas MC, Baeza M, Cifuentes V, Alcaíno J. Increase in the astaxanthin synthase gene (crtS) dose by in vivo DNA fragment assembly in Xanthophyllomyces dendrorhous. BMC Biotechnol 2013; 13:84. [PMID: 24103677 PMCID: PMC3852557 DOI: 10.1186/1472-6750-13-84] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/04/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Xanthophyllomyces dendrorhous is a basidiomycetous yeast that is relevant to biotechnology, as it can synthesize the carotenoid astaxanthin. However, the astaxanthin levels produced by wild-type strains are low. Although different approaches for promoting increased astaxanthin production have been attempted, no commercially competitive results have been obtained thus far. A promising alternative to facilitate the production of carotenoids in this yeast involves the use of genetic modification. However, a major limitation is the few available molecular tools to manipulate X. dendrorhous. RESULTS In this work, the DNA assembler methodology that was previously described in Saccharomyces cerevisiae was successfully applied to assemble DNA fragments in vivo and integrate these fragments into the genome of X. dendrorhous by homologous recombination in only one transformation event. Using this method, the gene encoding astaxanthin synthase (crtS) was overexpressed in X. dendrorhous and a higher level of astaxanthin was produced. CONCLUSIONS This methodology could be used to easily and rapidly overexpress individual genes or combinations of genes simultaneously in X. dendrorhous, eliminating numerous steps involved in conventional cloning methods.
Collapse
Affiliation(s)
- Gabriela Contreras
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - María Cecilia Rojas
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla, Santiago 653, Chile
| |
Collapse
|
35
|
Wriessnegger T, Pichler H. Yeast metabolic engineering – Targeting sterol metabolism and terpenoid formation. Prog Lipid Res 2013; 52:277-93. [DOI: 10.1016/j.plipres.2013.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/28/2022]
|
36
|
Loto I, Gutiérrez MS, Barahona S, Sepúlveda D, Martínez-Moya P, Baeza M, Cifuentes V, Alcaíno J. Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61) in Xanthophyllomyces dendrorhous. BMC Microbiol 2012; 12:235. [PMID: 23075035 PMCID: PMC3552872 DOI: 10.1186/1471-2180-12-235] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/12/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Xanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, which is a carotenoid with a great biotechnological impact. The ergosterol and carotenoid synthesis pathways are derived from the mevalonate pathway, and in both pathways, cytochrome P450 enzymes are involved. RESULTS In this study, we isolated and described the X. dendrorhous CYP61 gene, which encodes a cytochrome P450 involved in ergosterol biosynthesis. This gene is composed of nine exons and encodes a 526 amino acid polypeptide that shares significant percentages of identity and similitude with the C22-sterol desaturase, CYP61, from other fungi. Mutants derived from different parental strains were obtained by disrupting the CYP61 gene with an antibiotic selection marker. These mutants were not able to produce ergosterol and accumulated ergosta-5,8,22-trien-3-ol and ergosta-5,8-dien-3-ol. Interestingly, all of the mutants had a more intense red color phenotype than their respective parental strains. The carotenoid composition was qualitatively and quantitatively analyzed by RP-HPLC, revealing that the carotenoid content was higher in the mutant strains without major changes in their composition. The expression of the HMGR gene, which encodes an enzyme involved in the mevalonate pathway (3-hydroxy-3-methylglutaryl-CoA reductase), was analyzed by RT-qPCR showing that its transcript levels are higher in the CYP61 mutants. CONCLUSIONS These results suggest that in X. dendrorhous, ergosterol regulates HMGR gene expression by a negative feedback mechanism and in this way; it contributes in the regulation of the carotenoid biosynthesis.
Collapse
Affiliation(s)
- Iris Loto
- Laboratorio de Genética. Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago Casilla 653, Chile
| | - María Soledad Gutiérrez
- Laboratorio de Genética. Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago Casilla 653, Chile
| | - Salvador Barahona
- Laboratorio de Genética. Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago Casilla 653, Chile
| | - Dionisia Sepúlveda
- Laboratorio de Genética. Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago Casilla 653, Chile
| | - Pilar Martínez-Moya
- Laboratorio de Genética. Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago Casilla 653, Chile
| | - Marcelo Baeza
- Laboratorio de Genética. Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago Casilla 653, Chile
| | - Víctor Cifuentes
- Laboratorio de Genética. Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago Casilla 653, Chile
| | - Jennifer Alcaíno
- Laboratorio de Genética. Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago Casilla 653, Chile
| |
Collapse
|
37
|
Marcoleta A, Niklitschek M, Wozniak A, Lozano C, Alcaíno J, Baeza M, Cifuentes V. "Glucose and ethanol-dependent transcriptional regulation of the astaxanthin biosynthesis pathway in Xanthophyllomyces dendrorhous". BMC Microbiol 2011; 11:190. [PMID: 21861883 PMCID: PMC3184065 DOI: 10.1186/1471-2180-11-190] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 08/23/2011] [Indexed: 11/15/2022] Open
Abstract
Background The yeast Xanthophyllomyces dendrorhous is one of the most promising and economically attractive natural sources of astaxanthin. The biosynthesis of this valuable carotenoid is a complex process for which the regulatory mechanisms remain mostly unknown. Several studies have shown a strong correlation between the carbon source present in the medium and the amount of pigments synthesized. Carotenoid production is especially low when high glucose concentrations are used in the medium, while a significant increase is observed with non-fermentable carbon sources. However, the molecular basis of this phenomenon has not been established. Results In this work, we showed that glucose caused transcriptional repression of the three genes involved in the synthesis of astaxanthin from geranylgeranyl pyrophosphate in X. dendrorhous, which correlates with a complete inhibition of pigment synthesis. Strikingly, this regulatory response was completely altered in mutant strains that are incapable of synthesizing astaxanthin. However, we found that addition of ethanol caused the induction of crtYB and crtS gene expression and promoted de novo synthesis of carotenoids. The induction of carotenogenesis was noticeable as early as 24 h after ethanol addition. Conclusion For the first time, we demonstrated that carbon source-dependent regulation of astaxanthin biosynthesis in X. dendrorhous involves changes at the transcriptional level. Such regulatory mechanism provides an explanation for the strong and early inhibitory effect of glucose on the biosynthesis of this carotenoid.
Collapse
Affiliation(s)
- Andrés Marcoleta
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800024, Chile
| | | | | | | | | | | | | |
Collapse
|