1
|
Deitert A, Fees J, Mertens A, Nguyen Van D, Maares M, Haase H, Blank LM, Keil C. Rapid Fluorescence Assay for Polyphosphate in Yeast Extracts Using JC-D7. Yeast 2024; 41:593-604. [PMID: 39262085 DOI: 10.1002/yea.3979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Polyphosphate (polyP) is an intriguing molecule that is found in almost any organism, covering a multitude of cellular functions. In industry, polyP is used due to its unique physiochemical properties, including pH buffering, water binding, and bacteriostatic activities. Despite the importance of polyP, its analytics is still challenging, with the gold standard being 31P NMR. Here, we present a simple staining method using the fluorescent dye JC-D7 for the semi-quantitative polyP evaluation in yeast extracts. Notably, fluorescence response was affected by polyP concentration and polymer chain length in the 0.5-500 µg/mL polyP concentration range. Hence, for polyP samples of unknown chain compositions, JC-D7 cannot be used for absolute quantification. Fluorescence of JC-D7 was unaffected by inorganic phosphate up to 50 mM. Trace elements (FeSO4 > CuSO4 > CoCl2 > ZnSO4) and toxic mineral salts (PbNO3 and HgCl2) diminished polyP-induced JC-D7 fluorescence, affecting its applicability to samples containing polyP-metal complexes. The fluorescence was only marginally affected by other parameters, such as pH and temperature. After validation, this simple assay was used to elucidate the degree of polyP production by yeast strains carrying gene deletions in (poly)phosphate homeostasis. The results suggest that staining with JC-D7 provides a robust and sensitive method for detecting polyP in yeast extracts and likely in extracts of other microbes. The simplicity of the assay enables high-throughput screening of microbes to fully elucidate and potentially enhance biotechnological polyP production, ultimately contributing to a sustainable phosphorus utilization.
Collapse
Affiliation(s)
- Alexander Deitert
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Jana Fees
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Anna Mertens
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Duc Nguyen Van
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Maria Maares
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Kaur H, Mir RA, Hussain SJ, Prasad B, Kumar P, Aloo BN, Sharma CM, Dubey RC. Prospects of phosphate solubilizing microorganisms in sustainable agriculture. World J Microbiol Biotechnol 2024; 40:291. [PMID: 39105959 DOI: 10.1007/s11274-024-04086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Phosphorus (P), an essential macronutrient for various plant processes, is generally a limiting soil component for crop growth and yields. Organic and inorganic types of P are copious in soils, but their phyto-availability is limited as it is present largely in insoluble forms. Although phosphate fertilizers are applied in P-deficit soils, their undue use negatively impacts soil quality and the environment. Moreover, many P fertilizers are lost because of adsorption and fixation mechanisms, further reducing fertilizer efficiencies. The application of phosphate-solubilizing microorganisms (PSMs) is an environmentally friendly, low-budget, and biologically efficient method for sustainable agriculture without causing environmental hazards. These beneficial microorganisms are widely distributed in the rhizosphere and can hydrolyze inorganic and organic insoluble P substances to soluble P forms which are directly assimilated by plants. The present review summarizes and discusses our existing understanding related to various forms and sources of P in soils, the importance and P utilization by plants and microbes,, the diversification of PSMs along with mixed consortia of diverse PSMs including endophytic PSMs, the mechanism of P solubilization, and lastly constraints being faced in terms of production and adoption of PSMs on large scale have also been discussed.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu, Kashmir, 191201, India
| | - Sofi Javed Hussain
- Department of Botany, Central University of Kashmir, Ganderbal, Jammu, Kashmir, 191201, India
| | - Bhairav Prasad
- Department of Biotechnology, Chandigarh Group of Colleges, SAS Nagar, Landran, Punjab, 140307, India
| | - Pankaj Kumar
- Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Becky N Aloo
- Department of Biological Sciences, University of Eldoret, P. O. Box 1125-30100, Eldoret, Kenya
| | - Chandra Mohan Sharma
- Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India
| | - Ramesh Chandra Dubey
- Department of Botany and Microbiology, Gurukul Kangri Vishwavidyalaya, Haridwar, Uttarakhand, 249404, India
| |
Collapse
|
3
|
Zhang Y, He Y, Huang J, Chen J, Jia X, Peng X. Dimorphism of Candida tropicalis and its effect on nitrogen and phosphorus removal and sludge settleability. BIORESOURCE TECHNOLOGY 2023; 382:129186. [PMID: 37201869 DOI: 10.1016/j.biortech.2023.129186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
Candida tropicalis PNY, a novel dimorphic strain with the capacity of simultaneous carbon, nitrogen and phosphorus removal in anaerobic and aerobic conditions, was isolated from activated sludge. Dimorphism of C. tropicalis PNY had effect on removing nitrogen and phosphorous and slightly affected COD removal under aerobic condition. Sample with high hypha formation rate (40 ± 5%) had more removal efficiencies of NH4+-N (50 mg/L) and PO43--P (10 mg/L), which could achieve 82.19% and 97.53%, respectively. High hypha cells dosage exhibited good settleability and filamentous overgrowth was not observed. According to label-free quantitative proteomics assays. Up-regulated proteins involved in the mitogen-activated protein kinase (MAPK) pathway indicated the active growth and metabolism process of sample with high hypha formation rate (40 ± 5%). And proteins concerning about glutamate synthetase and SPX domain-contain protein explain for the nutrient removal mechanism including assimilation of ammonia and polyphosphates synthesis.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfei Huang
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China.
| | - Jiejing Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoshan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
PHM6 and PHM7 genes are essential for phosphate surplus in the cells of Saccharomyces cerevisiae. Arch Microbiol 2023; 205:47. [PMID: 36592238 DOI: 10.1007/s00203-022-03394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
The cells of Saccharomyces cerevisiae are capable for phosphate surplus: the increased uptake of phosphate (Pi) and accumulation of inorganic polyphosphate (polyP) occur when the cells after Pi limitation were cultivated in a medium supplemented with Pi. We demonstrated that single knockout mutations in the PHO84, PHO87, and PHO89 genes encoding plasma membrane phosphate transporters suppressed the Pi uptake and polyP accumulation under phosphate surplus at nitrogen starvation. The knockout strains in the PHM6 and PHM7 genes encoding unannotated PHO-proteins showed decreased polyP accumulation under Pi surplus both at nitrogen starvation and in complete YPD medium. This is due to the suppression of Pi uptake in the cells of these mutant strains. We speculate that Pi transporters of plasma membrane, and Phm6 and Phm7 proteins function in concert providing increased Pi uptake at phosphate surplus conditions.
Collapse
|
5
|
Diaz R, Mackey B, Chadalavada S, Kainthola J, Heck P, Goel R. Enhanced Bio-P removal: Past, present, and future - A comprehensive review. CHEMOSPHERE 2022; 309:136518. [PMID: 36191763 DOI: 10.1016/j.chemosphere.2022.136518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Excess amounts of phosphorus (P) and nitrogen (N) from anthropogenic activities such as population growth, municipal and industrial wastewater discharges, agriculture fertilization and storm water runoffs, have affected surface water chemistry, resulting in episodes of eutrophication. Enhanced biological phosphorus removal (EBPR) based treatment processes are an economical and environmentally friendly solution to address the present environmental impacts caused by excess P present in municipal discharges. EBPR practices have been researched and operated for more than five decades worldwide, with promising results in decreasing orthophosphate to acceptable levels. The advent of molecular tools targeting bacterial genomic deoxyribonucleic acid (DNA) has also helped us reveal the identity of potential polyphosphate-accumulating organisms (PAO) and denitrifying PAO (DPAO) responsible for the success of EBPR. Integration of process engineering and environmental microbiology has provided much-needed confidence to the wastewater community for the successful implementation of EBPR practices around the globe. Despite these successes, the process of EBPR continues to evolve in terms of its microbiology and application in light of other biological processes such as anaerobic ammonia oxidation and on-site carbon capture. This review provides an overview of the history of EBPR, discusses different operational parameters critical for the successful operation of EBPR systems, reviews current knowledge of EBPR microbiology, the influence of PAO/DPAO on the disintegration of microbial communities, stoichiometry, EBPR clades, current practices, and upcoming potential innovations.
Collapse
Affiliation(s)
- Ruby Diaz
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brendan Mackey
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sreeni Chadalavada
- School of Engineering, University of Southern Queensland Springfield, Queensland, 4350, Australia.
| | - Jyoti Kainthola
- Department of Civil Engineering, École Centrale School of Engineering, Mahindra University, Hyderabad, India, 500043
| | - Phil Heck
- Central Valley Water Reclamation Facility, Salt Lake City, UT, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
6
|
Abstract
As non-renewable resource, the recovery and utilization of phosphorus from wastewater is an enduring topic. Stimulated by the advances in research on polyphosphates (polyP) as well as the development of Enhanced Biological Phosphorus Removal (EBPR) technology to achieve the efficient accumulation of polyP via polyphosphate accumulating organisms (PAOs), a novel phosphorus removal strategy is considered with promising potential for application in real wastewater treatment processes. This review mainly focuses on the mechanism of phosphorus aggregation in the form of polyP during the phosphate removal process. Further discussion about the reuse of polyP with different chain lengths is provided herein so as to suggest possible application pathways for this biosynthetic product.
Collapse
|
7
|
Regulation of inorganic polyphosphate is required for proper vacuolar proteolysis in fission yeast. J Biol Chem 2021; 297:100891. [PMID: 34147496 PMCID: PMC8294586 DOI: 10.1016/j.jbc.2021.100891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Regulation of cellular proliferation and quiescence is a central issue in biology that has been studied using model unicellular eukaryotes, such as the fission yeast Schizosaccharomyces pombe. We previously reported that the ubiquitin/proteasome pathway and autophagy are essential to maintain quiescence induced by nitrogen deprivation in S. pombe; however, specific ubiquitin ligases that maintain quiescence are not fully understood. Here we investigated the SPX-RING-type ubiquitin ligase Pqr1, identified as required for quiescence in a genetic screen. Pqr1 is found to be crucial for vacuolar proteolysis, the final step of autophagy, through proper regulation of phosphate and its polymer polyphosphate. Pqr1 restricts phosphate uptake into the cell through ubiquitination and subsequent degradation of phosphate transporters on plasma membranes. We hypothesized that Pqr1 may act as the central regulator for phosphate control in S. pombe, through the function of the SPX domain involved in phosphate sensing. Deletion of pqr1+ resulted in hyperaccumulation of intracellular phosphate and polyphosphate and in improper autophagy-dependent proteolysis under conditions of nitrogen starvation. Polyphosphate hyperaccumulation in pqr1+-deficient cells was mediated by the polyphosphate synthase VTC complex in vacuoles. Simultaneous deletion of VTC complex subunits rescued Pqr1 mutant phenotypes, including defects in proteolysis and loss of viability during quiescence. We conclude that excess polyphosphate may interfere with proteolysis in vacuoles by mechanisms that as yet remain unknown. The present results demonstrate a connection between polyphosphate metabolism and vacuolar functions for proper autophagy-dependent proteolysis, and we propose that polyphosphate homeostasis contributes to maintenance of cellular viability during quiescence.
Collapse
|
8
|
Tomashevsky A, Kulakovskaya E, Trilisenko L, Kulakovskiy IV, Kulakovskaya T, Fedorov A, Eldarov M. VTC4 Polyphosphate Polymerase Knockout Increases Stress Resistance of Saccharomyces cerevisiae Cells. BIOLOGY 2021; 10:487. [PMID: 34070801 PMCID: PMC8227513 DOI: 10.3390/biology10060487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
Inorganic polyphosphate (polyP) is an important factor of alkaline, heavy metal, and oxidative stress resistance in microbial cells. In yeast, polyP is synthesized by Vtc4, a subunit of the vacuole transporter chaperone complex. Here, we report reduced but reliably detectable amounts of acid-soluble and acid-insoluble polyPs in the Δvtc4 strain of Saccharomyces cerevisiae, reaching 10% and 20% of the respective levels of the wild-type strain. The Δvtc4 strain has decreased resistance to alkaline stress but, unexpectedly, increased resistance to oxidation and heavy metal excess. We suggest that increased resistance is achieved through elevated expression of DDR2, which is implicated in stress response, and reduced expression of PHO84 encoding a phosphate and divalent metal transporter. The decreased Mg2+-dependent phosphate accumulation in Δvtc4 cells is consistent with reduced expression of PHO84. We discuss a possible role that polyP level plays in cellular signaling of stress response mobilization in yeast.
Collapse
Affiliation(s)
- Alexander Tomashevsky
- Federal Scientific Center, Pushchino Research Center for Biology of the Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Russia; (A.T.); (E.K.); (L.T.)
| | - Ekaterina Kulakovskaya
- Federal Scientific Center, Pushchino Research Center for Biology of the Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Russia; (A.T.); (E.K.); (L.T.)
| | - Ludmila Trilisenko
- Federal Scientific Center, Pushchino Research Center for Biology of the Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Russia; (A.T.); (E.K.); (L.T.)
| | - Ivan V. Kulakovskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana Kulakovskaya
- Federal Scientific Center, Pushchino Research Center for Biology of the Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Russia; (A.T.); (E.K.); (L.T.)
| | - Alexey Fedorov
- Federal Scientific Center for Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Russian Academy of Sciences, Leninsky prosp. 33-2, 119071 Moscow, Russia; (A.F.); (M.E.)
| | - Mikhail Eldarov
- Federal Scientific Center for Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Russian Academy of Sciences, Leninsky prosp. 33-2, 119071 Moscow, Russia; (A.F.); (M.E.)
| |
Collapse
|
9
|
Trilisenko L, Valiakhmetov A, Kulakovskaya T. Phosphate efflux as a test of plasma membrane leakage in Saccharomyces cerevisiae cells. Can J Microbiol 2020; 67:226-230. [PMID: 32910859 DOI: 10.1139/cjm-2020-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasma membrane integrity is a key to cell viability. Currently, the main approach to assessing plasma membrane integrity is the detection of penetration of special dyes, such as trypan blue and propidium iodide, into the cells. However, this method needs expensive equipment: a fluorescent microscope or a flow cytometer. Besides, staining with propidium iodide occasionally gives false-positive results. Here, we suggest the phosphate (Pi) leakage assay as an approach to assess the increase in permeability of the plasma membrane of yeast cells. We studied the dependence of phosphate efflux and uptake into Saccharomyces cerevisiae cells on the composition of the incubation medium, time, and ambient pH. The difference in optimal conditions for these processes suggests that Pi efflux is not conducted by the Pi uptake system. The Pi efflux in water correlated with the proportion of cells stained with propidium iodide. This indicated that Pi efflux is associated with cytoplasmic membrane disruption in a portion of the yeast cell population. The assay of Pi efflux was used to evaluate membrane disruption in S. cerevisiae cells treated with some heavy metal ions and detergents.
Collapse
Affiliation(s)
- Ludmila Trilisenko
- FRC Pushchino Center for Biological Research, Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, pr. Nauki 5, Pushchino, 142290 Russia.,FRC Pushchino Center for Biological Research, Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, pr. Nauki 5, Pushchino, 142290 Russia
| | - Airat Valiakhmetov
- FRC Pushchino Center for Biological Research, Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, pr. Nauki 5, Pushchino, 142290 Russia.,FRC Pushchino Center for Biological Research, Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, pr. Nauki 5, Pushchino, 142290 Russia
| | - Tatiana Kulakovskaya
- FRC Pushchino Center for Biological Research, Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, pr. Nauki 5, Pushchino, 142290 Russia.,FRC Pushchino Center for Biological Research, Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, pr. Nauki 5, Pushchino, 142290 Russia
| |
Collapse
|
10
|
Nguyen TQ, Dziuba N, Lindahl PA. Isolated Saccharomyces cerevisiae vacuoles contain low-molecular-mass transition-metal polyphosphate complexes. Metallomics 2020; 11:1298-1309. [PMID: 31210222 DOI: 10.1039/c9mt00104b] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vacuoles play major roles in the trafficking, storage, and homeostasis of metal ions in fungi and plants. In this study, 29 batches of vacuoles were isolated from Saccharomyces cerevisiae. Flow-through solutions (FTS) obtained by passing vacuolar extracts through a 10 kDa cut-off membrane were characterized for metal content using an anaerobic liquid chromatography system interfaced to an online ICP-MS. Nearly all iron, zinc, and manganese ions in these solutions were present as low-molecular-mass (LMM) complexes. Metal-detected peaks with masses between 500-1700 Da dominated; phosphorus-detected peaks generally comigrated. The distribution of metal:polyphosphate complexes was dominated by particular chain-lengths rather than a broad binomial distribution. Similarly treated synthetic FeIII polyphosphate complexes showed similar peaks. Treatment with a phosphatase disrupted the LMM metal-bound species in vacuolar FTSs. These results indicated metal:polyphosphate complexes 6-20 phosphate units in length and coordinated by 1-3 metals on average per chain. The speciation of iron in FTSs from iron-deficient cells was qualitatively similar, but intensities were lower. Under healthy conditions, nearly all copper ions in vacuolar FTSs were present as 1-2 species with masses between 4800-7800 Da. The absence of these high-mass peaks in vacuolar FTS from cup1Δ cells suggests that they were due to metallothionein, Cup1. Disrupting copper homeostasis increased the amount of LMM copper:polyphosphate complexes in vacuoles (masses between 1500-1700 Da). Potentially dangerous LMM copper species in the cytosol of metallothionein-deficient cells may traffic into vacuoles for sequestration and detoxification.
Collapse
Affiliation(s)
- Trang Q Nguyen
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
| | - Nathaniel Dziuba
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA. and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Christ JJ, Willbold S, Blank LM. Methods for the Analysis of Polyphosphate in the Life Sciences. Anal Chem 2020; 92:4167-4176. [PMID: 32039586 DOI: 10.1021/acs.analchem.9b05144] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inorganic polyphosphate (polyP) is the polymer of orthophosphate and can be found in all living organisms. For polyP characterization, one or more of six parameters are of interest: the molecular structure (linear, cyclic, or branched), the concentration, the average chain length, the chain length distribution, the cellular localization, and the cation composition. Here, the merits, limitations, and critical parameters of the state-of-the-art methods for the analysis of the six parameters from the life sciences are discussed. With this contribution, we aim to lower the entry barrier into the analytics of polyP, a molecule with prominent, yet often incompletely understood, contributions to cellular function.
Collapse
Affiliation(s)
- Jonas Johannes Christ
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, Worringer Weg 1, RWTH Aachen University, D-52074 Aachen, Germany
| | - Sabine Willbold
- Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3), Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, Worringer Weg 1, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
12
|
A High Throughput Isolation Method for Phosphate-Accumulating Organisms. Sci Rep 2019; 9:18083. [PMID: 31792245 PMCID: PMC6888830 DOI: 10.1038/s41598-019-53429-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/01/2019] [Indexed: 11/08/2022] Open
Abstract
Hyperphosphatemia is a secondary issue associated with chronic kidney disorder. Use of phosphate binders and dialysis are the treatments for hyperphosphatemia, albeit with harmful side effects and high cost, respectively. A safer and healthier approach is attempted to administer phosphate-accumulating organisms (PAOs) from probiotics to prevent hyperphosphatemia. However, screening and isolation of PAOs are limited by inefficient enrichment of relevant metabolism and contamination. Therefore, we devised a novel strategy to isolate elite PAOs from Lactobacillus casei JCM 1134 and Bifidobacterium adolescentis JCM 1275 (previously reported PAOs). PAOs were first enriched for phosphate uptake and incubated in low-pH phosphate-free media to dormant non-PAOs, and then purified using Percoll density gradient centrifugation. Subsequently, elite PAOs were isolated from centrifuged pellet on a toluidine blue O-supplemented agar-based media. Using this technique, elite PAOs could not only be isolated, but also semi-quantitatively scored for their phosphate accumulation capabilities. Additionally, these scores correlated well with their accumulated phosphate values. The elite PAOs isolated from L. casei and B. adolescentis showed 0.81 and 0.70 [mg-phosphate/mg-dry cell], respectively (23- and 4.34-fold increase, respectively). Thus, our method can be used to successfully isolate elite PAOs, which might be of use to prevent hyperphosphatemia at early stages.
Collapse
|
13
|
McCarthy L, Bentley‐DeSousa A, Denoncourt A, Tseng Y, Gabriel M, Downey M. Proteins required for vacuolar function are targets of lysine polyphosphorylation in yeast. FEBS Lett 2019; 594:21-30. [DOI: 10.1002/1873-3468.13588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Liam McCarthy
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Amanda Bentley‐DeSousa
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Yi‐Chieh Tseng
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Matthew Gabriel
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| |
Collapse
|
14
|
Ota S, Kawano S. Three-dimensional ultrastructure and hyperspectral imaging of metabolite accumulation and dynamics in Haematococcus and Chlorella. Microscopy (Oxf) 2019; 68:57-68. [PMID: 30576509 DOI: 10.1093/jmicro/dfy142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 05/11/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022] Open
Abstract
Phycology has developed alongside light and electron microscopy techniques. Since the 1950s, progress in the field has accelerated dramatically with the advent of electron microscopy. Transmission electron microscopes can only acquire imaging data on a 2D plane. Currently, many of the life sciences are seeking to obtain 3D images with electron microscopy for the accurate interpretation of subcellular dynamics. Three-dimensional reconstruction using serial sections is a method that can cover relatively large cells or tissues without requiring special equipment. Another challenge is monitoring secondary metabolites (such as lipids or carotenoids) in intact cells. This became feasible with hyperspectral cameras, which enable the acquisition of wide-range spectral information in living cells. Here, we review bioimaging studies on the intracellular dynamics of substances such as lipids, carotenoids and phosphorus using conventional to state-of-the-art microscopy techniques in the field of algal biorefining.
Collapse
Affiliation(s)
- Shuhei Ota
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan.,Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan.,Future Center Initiative, The University of Tokyo, Wakashiba, Kashiwa, Chiba, Japan
| |
Collapse
|
15
|
Christ JJ, Blank LM. Saccharomyces cerevisiae containing 28% polyphosphate and production of a polyphosphate-rich yeast extract thereof. FEMS Yeast Res 2019; 19:5306445. [DOI: 10.1093/femsyr/foz011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/01/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
Currently, inorganic polyphosphate is chemically synthesized from phosphate rock and added directly to food products. Yeast extract is a concentrate of soluble fractions of Saccharomyces cerevisiae and is, as a food additive, generally regarded as safe. The aim of this study was to biotechnologically produce a naturally polyphosphate-rich yeast extract. Polyphosphate-rich cells were produced with a wild type (non-genetically modified) S. cerevisiae by orthophosphate-starvation and subsequent orthophosphate-feeding, and contained 28% (w/w) polyphosphate (as KPO3) in cell dry weight, which is the highest content reported so far. Four yeast extract production protocols (autolysis, plasmolysis, enzymatic hydrolysis without and with prior heat inactivation) were tested, whereas the latter was the most promising. From the polyphosphate-rich cells, yeast extract paste and powder were produced containing 20% and 14% (w/w, as KPO3) polyphosphate with an average chain length of 31 and 3 P-subunits, 7% and 14% (w/w, as K1.5H1.5PO4) orthophosphate, 22% and 0% (w/w) water, respectively. For the first time, naturally polyphosphate-rich yeast extracts were produced, which possibly can be used as a clean-label food additive and biological alternative to chemically synthesized polyphosphate in food products.
Collapse
Affiliation(s)
- Jonas Johannes Christ
- Institute of Applied Microbiology – iAMB, Aachen Biology and Biotechnology – ABBt, Worringer Weg 1, RWTH Aachen University, D-52074 Aachen, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology – iAMB, Aachen Biology and Biotechnology – ABBt, Worringer Weg 1, RWTH Aachen University, D-52074 Aachen, Germany
| |
Collapse
|
16
|
Anand A, Sato M, Aoyagi H. Screening of Phosphate-accumulating Probiotics for Potential Use in Chronic Kidney Disorder. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.89] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ajeeta Anand
- Institute of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Mayuko Sato
- Institute of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Hideki Aoyagi
- Institute of Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba
- Faculty of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
17
|
Christ JJ, Blank LM. Analytical polyphosphate extraction from Saccharomyces cerevisiae. Anal Biochem 2018; 563:71-78. [DOI: 10.1016/j.ab.2018.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
|
18
|
Kulakovskaya T, Ryazanova L, Zvonarev A, Khokhlova G, Ostroumov V, Vainshtein M. The biosorption of cadmium and cobalt and iron ions by yeast Cryptococcus humicola at nitrogen starvation. Folia Microbiol (Praha) 2018; 63:507-510. [PMID: 29350355 DOI: 10.1007/s12223-018-0583-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/08/2018] [Indexed: 11/27/2022]
Abstract
Yeasts Cryptococcus humicola accumulated cadmium, cobalt, and iron (~ 50, 17, and 4% of the content in the medium, respectively) from the medium containing glucose, phosphate, and 2 mmol/L of metal salts. The effects of metal absorption on the levels of orthophosphate (Pi) and inorganic polyphosphate (polyP) varied for the metals under study. The levels of Pi and polyP increased in the case of cadmium and cobalt, respectively. In the case of iron, no changes in the levels of Pi and polyP were observed. Multiple DAPI-stained polyP inclusions were observed in the cytoplasm of cadmium-containing cells. The intensity of DAPI staining of the cell wall especially increased in case of cobalt and iron accumulation.
Collapse
Affiliation(s)
- Tatiana Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, Russia, 142290.
| | - Lyubov Ryazanova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, Russia, 142290
| | - Anton Zvonarev
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, Russia, 142290
| | - Galina Khokhlova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, Russia, 142290
| | - Vladimir Ostroumov
- Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, Pr. Nauki 2, Pushchino, Moscow Region, Russia, 142290
| | - Mikhail Vainshtein
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, Russia, 142290
| |
Collapse
|
19
|
Trilisenko L, Kulakovskaya E, Kulakovskaya T. The cadmium tolerance in Saccharomyces cerevisiae depends on inorganic polyphosphate. J Basic Microbiol 2017; 57:982-986. [PMID: 28809038 DOI: 10.1002/jobm.201700257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/08/2017] [Accepted: 07/15/2017] [Indexed: 11/08/2022]
Abstract
The sensitivity to cadmium (Cd(II)), an important environmental pollutant, was studied in the cells of Saccharomyces cerevisiae strains with genetically altered polyphosphate metabolism. The strains overproducing polyphosphatases PPX1 or PPN1 were more sensitive to Cd(II) than the parent strain. The half maximal inhibitory concentrations were 0.02 and 0.05 mM for the transformants and the parent strain, respectively. Transformant strains cultivated in the presence of Cd(II) show a decrease in the content of short-chained cytosolic acid soluble polyphosphate. The role of this polyphosphate fraction in detoxification of heavy metal ions is discussed.
Collapse
Affiliation(s)
- Ludmila Trilisenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Ekaterina Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Tatiana Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
20
|
Zvonarev AN, Crowley DE, Ryazanova LP, Lichko LP, Rusakova TG, Kulakovskaya TV, Dmitriev VV. Cell wall canals formed upon growth of Candida maltosa in the presence of hexadecane are associated with polyphosphates. FEMS Yeast Res 2017; 17:3798215. [DOI: 10.1093/femsyr/fox026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 05/01/2017] [Indexed: 01/01/2023] Open
|
21
|
Ramos CL, Gomes FM, Girard-Dias W, Almeida FP, Albuquerque PC, Kretschmer M, Kronstad JW, Frases S, de Souza W, Rodrigues ML, Miranda K. Phosphorus-rich structures and capsular architecture in Cryptococcus neoformans. Future Microbiol 2017; 12:227-238. [PMID: 28262043 DOI: 10.2217/fmb-2017-0060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM In this study, we aimed to analyze the relationship of phosphorus-rich structures with surface architecture in Cryptococcus neoformans. METHODS Phosphorus-rich structures in C. neoformans were analyzed by combining fluorescence microscopy, biochemical extraction, scanning electron microscopy, electron probe x-ray microanalysis and 3D reconstruction of high pressure frozen and freeze substituted cells by focused ion beam-scanning electron microscopy (FIB-SEM). RESULTS & CONCLUSION Intracellular and surface phosphorus-enriched structures were identified. These molecules were required for capsule assembly, as demonstrated in experiments using polysaccharide incorporation by capsule-deficient cells and mutants with defects in polyphosphate synthesis. The demonstration of intracellular and cell wall-associated polyphosphates in C. neoformans may lead to future studies involving their participation in both physiologic and pathogenic events.
Collapse
Affiliation(s)
- Caroline L Ramos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio M Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wendell Girard-Dias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fernando P Almeida
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila C Albuquerque
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Matthias Kretschmer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio L Rodrigues
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Bru S, Martínez-Laínez JM, Hernández-Ortega S, Quandt E, Torres-Torronteras J, Martí R, Canadell D, Ariño J, Sharma S, Jiménez J, Clotet J. Polyphosphate is involved in cell cycle progression and genomic stability in Saccharomyces cerevisiae. Mol Microbiol 2016; 101:367-380. [PMID: 27072996 DOI: 10.1111/mmi.13396] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 04/09/2016] [Indexed: 11/27/2022]
Abstract
Polyphosphate (polyP) is a linear chain of up to hundreds of inorganic phosphate residues that is necessary for many physiological functions in all living organisms. In some bacteria, polyP supplies material to molecules such as DNA, thus playing an important role in biosynthetic processes in prokaryotes. In the present study, we set out to gain further insight into the role of polyP in eukaryotic cells. We observed that polyP amounts are cyclically regulated in Saccharomyces cerevisiae, and those mutants that cannot synthesise (vtc4Δ) or hydrolyse polyP (ppn1Δ, ppx1Δ) present impaired cell cycle progression. Further analysis revealed that polyP mutants show delayed nucleotide production and increased genomic instability. Based on these findings, we concluded that polyP not only maintains intracellular phosphate concentrations in response to fluctuations in extracellular phosphate levels, but also muffles internal cyclic phosphate fluctuations, such as those produced by the sudden demand of phosphate to synthetize deoxynucleotides just before and during DNA duplication. We propose that the presence of polyP in eukaryotic cells is required for the timely and accurate duplication of DNA.
Collapse
Affiliation(s)
- Samuel Bru
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Sara Hernández-Ortega
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - David Canadell
- Department of Biochemistry and Molecular Biology and the Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquin Ariño
- Department of Biochemistry and Molecular Biology and the Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | - Javier Jiménez
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
23
|
Tarayre C, Nguyen HT, Brognaux A, Delepierre A, De Clercq L, Charlier R, Michels E, Meers E, Delvigne F. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2016; 16:E797. [PMID: 27258275 PMCID: PMC4934223 DOI: 10.3390/s16060797] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 11/16/2022]
Abstract
Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treatment plants, phosphorus is eliminated by physicochemical and/or biological techniques. In this latter case, a specific microbiota, phosphate accumulating organisms (PAOs), accumulates phosphate as polyphosphate. This molecule can be considered as an alternative phosphate source, and is directly extracted from wastewater generated by human activities. This review focuses on the techniques which can be applied to enrich and try to isolate these PAOs, and to detect the presence of polyphosphate in microbial cells.
Collapse
Affiliation(s)
- Cédric Tarayre
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Huu-Thanh Nguyen
- Natural Products and Industrial Biochemistry Research Group (NPIB), Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Alison Brognaux
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Anissa Delepierre
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Lies De Clercq
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Raphaëlle Charlier
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Evi Michels
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Erik Meers
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Frank Delvigne
- Natural Products and Industrial Biochemistry Research Group (NPIB), Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
- Microbial Processes and Interactions, Bât. G1 Bio-Industries, Passage des Déportés 2, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| |
Collapse
|
24
|
Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri. Sci Rep 2016; 6:25731. [PMID: 27180903 PMCID: PMC4867602 DOI: 10.1038/srep25731] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/18/2016] [Indexed: 01/08/2023] Open
Abstract
Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism.
Collapse
|
25
|
Zhang J, Liu S, Zhang L, Nian H, Chen L. Effect of aluminum stress on the expression of calmodulin and the role of calmodulin in aluminum tolerance. J Biosci Bioeng 2016; 122:558-562. [PMID: 27133707 DOI: 10.1016/j.jbiosc.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/17/2022]
Abstract
Calmodulin (CaM) is a calcium ion-binding protein that regulates a variety of cellular functions through its downstream target proteins. Previous studies have reported that overexpression of CaM enhances tolerance to stress, including resistance to salt, heat, cold, drought and plant pathogens. In this study, the growth of Cryptococcus humicola was inhibited by the CaM inhibitor, trifluoperazine, under aluminum (Al) stress. The expression of CaM of C. humicola (ChCaM) was upregulated when the concentration and treatment time with Al was increased. These results indicate that Al stress affects the transcription and translation of ChCaM and that ChCaM may play an important role in Al tolerance. Transgenic ChCaM Saccharomyces cerevisiae was constructed and designated as Sc-ChCaM. The ability of Sc-ChCaM to develop resistance to Al was significantly higher than that of control yeast containing the empty vector pYES3/CT designated as Sc. The residual Al content in the medium containing ChCaM transgenic yeast in culture was significantly lower than the initial amount of Al added in the medium or the residual Al content in the medium containing the control yeast in culture. This finding suggests that ChCaM confers Al tolerance in transgenic yeast, and the absorption of active Al from the culture may be one reason for Al tolerance. These results indicate that ChCaM may be a candidate gene for Al tolerance in engineered plants.
Collapse
Affiliation(s)
- Jingjing Zhang
- Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuai Liu
- Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Zhang
- Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongjuan Nian
- Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650500, China.
| | - Limei Chen
- Biotechnology Research Center, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
26
|
Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J Microbiol Biotechnol 2016; 32:27. [DOI: 10.1007/s11274-015-1983-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
|
27
|
Manganese tolerance in yeasts involves polyphosphate, magnesium, and vacuolar alterations. Folia Microbiol (Praha) 2015; 61:311-7. [DOI: 10.1007/s12223-015-0440-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
28
|
Kulakovskaya TV, Lichko LP, Ryazanova LP. Diversity of phosphorus reserves in microorganisms. BIOCHEMISTRY (MOSCOW) 2015; 79:1602-14. [PMID: 25749167 DOI: 10.1134/s0006297914130100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phosphorus compounds are indispensable components of the Earth's biomass metabolized by all living organisms. Under excess of phosphorus compounds in the environment, microorganisms accumulate reserve phosphorus compounds that are used under phosphorus limitation. These compounds vary in their structure and also perform structural and regulatory functions in microbial cells. The most common phosphorus reserve in microorganism is inorganic polyphosphates, but in some archae and bacteria insoluble magnesium phosphate plays this role. Some yeasts produce phosphomannan as a phosphorus reserve. This review covers also other topics, i.e. accumulation of phosphorus reserves under nutrient limitation, phosphorus reserves in activated sludge, mycorrhiza, and the role of mineral phosphorus compounds in mammals.
Collapse
Affiliation(s)
- T V Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
29
|
Morales L, Noel B, Porcel B, Marcet-Houben M, Hullo MF, Sacerdot C, Tekaia F, Leh-Louis V, Despons L, Khanna V, Aury JM, Barbe V, Couloux A, Labadie K, Pelletier E, Souciet JL, Boekhout T, Gabaldon T, Wincker P, Dujon B. Complete DNA sequence of Kuraishia capsulata illustrates novel genomic features among budding yeasts (Saccharomycotina). Genome Biol Evol 2014; 5:2524-39. [PMID: 24317973 PMCID: PMC3879985 DOI: 10.1093/gbe/evt201] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The numerous yeast genome sequences presently available provide a rich source of information for functional as well as evolutionary genomics but unequally cover the large phylogenetic diversity of extant yeasts. We present here the complete sequence of the nuclear genome of the haploid-type strain of Kuraishia capsulata (CBS1993T), a nitrate-assimilating Saccharomycetales of uncertain taxonomy, isolated from tunnels of insect larvae underneath coniferous barks and characterized by its copious production of extracellular polysaccharides. The sequence is composed of seven scaffolds, one per chromosome, totaling 11.4 Mb and containing 6,029 protein-coding genes, ∼13.5% of which being interrupted by introns. This GC-rich yeast genome (45.7%) appears phylogenetically related with the few other nitrate-assimilating yeasts sequenced so far, Ogataea polymorpha, O. parapolymorpha, and Dekkera bruxellensis, with which it shares a very reduced number of tRNA genes, a novel tRNA sparing strategy, and a common nitrate assimilation cluster, three specific features to this group of yeasts. Centromeres were recognized in GC-poor troughs of each scaffold. The strain bears MAT alpha genes at a single MAT locus and presents a significant degree of conservation with Saccharomyces cerevisiae genes, suggesting that it can perform sexual cycles in nature, although genes involved in meiosis were not all recognized. The complete absence of conservation of synteny between K. capsulata and any other yeast genome described so far, including the three other nitrate-assimilating species, validates the interest of this species for long-range evolutionary genomic studies among Saccharomycotina yeasts.
Collapse
Affiliation(s)
- Lucia Morales
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, CNRS UMR3525, Univ. P. M. Curie UFR927, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vainshtein M, Belova N, Kulakovskaya T, Suzina N, Sorokin V. Synthesis of magneto-sensitive iron-containing nanoparticles by yeasts. J Ind Microbiol Biotechnol 2014; 41:657-63. [PMID: 24577642 DOI: 10.1007/s10295-014-1417-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/06/2014] [Indexed: 01/26/2023]
Abstract
Industrial production of magneto-sensitive nanoparticles, which can be used in the production of target drug delivery carriers, is a subject of interest for biotechnology and microbiology. Synthesis of these nanoparticles by microorganisms has been described only for bacterial species. At the same time, it is well known that yeasts can form various metal-containing nanoparticles used, for instance, in semiconductors, etc. This paper describes the first results of the biosynthesis of magneto-sensitive nanoparticles by yeasts. The organisms we used-Saccharomyces cerevisiae and Cryptococcus humicola-represented two different genera. Magneto-sensitive nanoparticles were synthesized at room temperature in bench-scale experiments. The study included transmission electron microscopy of the yeast cells and their energy dispersive spectrum analyses and revealed the presence of iron-containing nanoparticles. Both yeast cultures synthesized nanoparticles at high concentrations of dissolved iron. Electron microscopy showed that nanoparticles were associated mainly with the yeast cell wall. Formation of magneto-sensitive nanoparticles was studied under conditions of applied magnetic fields; a possible stimulating role of magnetic field is suggested. On the whole, the paper reports a novel approach to green biosynthesis of magneto-sensitive nanoparticles.
Collapse
Affiliation(s)
- Mikhail Vainshtein
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, Pushchino, Moscow Region, 142290, Russia,
| | | | | | | | | |
Collapse
|
31
|
Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola. Folia Microbiol (Praha) 2014; 59:381-9. [PMID: 24531869 DOI: 10.1007/s12223-014-0310-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
The basidiomycetous yeast Cryptococcus humicola was shown to be tolerant to manganese, cobalt, nickel, zinc, lanthanum, and cadmium cations at a concentration of 2.5 mmol/L, which is toxic for many yeasts. The basidiomycetous yeast Cryptococcus terreus was sensitive to all these ions and did not grow at the above concentration. In the presence of heavy metal cations, С. humicola, as opposed to C. terreus, was characterized by the higher content of acid-soluble inorganic polyphosphates. In vivo 4',6'-diamino-2-phenylindole dihydrochloride staining revealed polyphosphate accumulation in the cell wall and cytoplasmic inclusions of С. humicola in the presence of heavy metals. In C. terreus, polyphosphates in the presence of heavy metals accumulate mainly in vacuoles, which results in morphological changes in these organelles and, probably, disturbance of their function. The role of polyphosphate accumulation and cellular localization as factors of heavy metal tolerance of Cryptococcus humicola is discussed.
Collapse
|
32
|
Lichko LP, Kulakovskaya TV, Kulaev IS. Extracellular phosphomannan as a phosphate reserve in the yeast Kuraishia capsulata. BIOCHEMISTRY (MOSCOW) 2013; 78:674-7. [DOI: 10.1134/s0006297913060138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Andreeva N, Ryazanova L, Dmitriev V, Kulakovskaya T, Kulaev I. Adaptation of Saccharomyces cerevisiae to toxic manganese concentration triggers changes in inorganic polyphosphates. FEMS Yeast Res 2013; 13:463-70. [PMID: 23663411 DOI: 10.1111/1567-1364.12049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 04/16/2013] [Accepted: 05/06/2013] [Indexed: 11/30/2022] Open
Abstract
The ability of Saccharomyces cerevisiae to adapt to toxic Mn(2+) concentration (4 mM) after an unusually long lag phase has been demonstrated for the first time. The mutants lacking exopolyphosphatase PPX1 did not change the adaptation time, whereas the mutants lacking exopolyphosphatase PPN1 reduced the lag period compared with the wild-type strains. The cell populations of WT and ΔPPN1 in the stationary phase at cultivation with Mn(2+) contained a substantial number of enlarged cells with a giant vacuole. The adaptation correlated with the triggering of polyphosphate metabolism: the drastic increase in the rate and chain length of acid-soluble polyphosphate. The share of this fraction, which is believed to be localized in the cytoplasm, increased to 76%. Its average chain length increased to 200 phosphate residues compared with 15 at the cultivation in the absence of manganese. DAPI-stained inclusions in the cytoplasm were accumulated in the lag phase during the cultivation with Mn(2+).
Collapse
Affiliation(s)
- Nadezhda Andreeva
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | | | | | | | | |
Collapse
|