1
|
Anderson MD, Taylor DL, Olson K, Ruess RW. Composition of soil Frankia assemblages across ecological drivers parallels that of nodule assemblages in Alnus incana ssp. tenuifolia in interior Alaska. Ecol Evol 2024; 14:e11458. [PMID: 38979008 PMCID: PMC11229434 DOI: 10.1002/ece3.11458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 07/10/2024] Open
Abstract
In root nodule symbioses (RNS) between nitrogen (N)-fixing bacteria and plants, bacterial symbionts cycle between nodule-inhabiting and soil-inhabiting niches that exert differential selection pressures on bacterial traits. Little is known about how the resulting evolutionary tension between host plants and symbiotic bacteria structures naturally occurring bacterial assemblages in soils. We used DNA cloning to examine soil-dwelling assemblages of the actinorhizal symbiont Frankia in sites with long-term stable assemblages in Alnus incana ssp. tenuifolia nodules. We compared: (1) phylogenetic diversity of Frankia in soil versus nodules, (2) change in Frankia assemblages in soil versus nodules in response to environmental variation: both across succession, and in response to long-term fertilization with N and phosphorus, and (3) soil assemblages in the presence and absence of host plants. Phylogenetic diversity was much greater in soil-dwelling than nodule-dwelling assemblages and fell into two large clades not previously observed. The presence of host plants was associated with enhanced representation of genotypes specific to A. tenuifolia, and decreased representation of genotypes specific to a second Alnus species. The relative proportion of symbiotic sequence groups across a primary chronosequence was similar in both soil and nodule assemblages. Contrary to expectations, both N and P enhanced symbiotic genotypes relative to non-symbiotic ones. Our results provide a rare set of field observations against which predictions from theoretical and experimental work in the evolutionary ecology of RNS can be compared.
Collapse
Affiliation(s)
- M. D. Anderson
- Biology DepartmentMacalester CollegeSaint PaulMinnesotaUSA
- Institute of Arctic BiologyUniversity of AlaskaFairbanksAlaskaUSA
| | - D. L. Taylor
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - K. Olson
- Institute of Arctic BiologyUniversity of AlaskaFairbanksAlaskaUSA
| | - R. W. Ruess
- Institute of Arctic BiologyUniversity of AlaskaFairbanksAlaskaUSA
| |
Collapse
|
2
|
Normand P, Pujic P, Abrouk D, Vemulapally S, Guerra T, Carlos-Shanley C, Hahn D. Draft Genomes of Symbiotic Frankia Strains AgB32 and AgKG'84/4 from Root Nodules of Alnus Glutinosa growing under Contrasted Environmental Conditions. J Genomics 2022; 10:61-68. [PMID: 35979511 PMCID: PMC9379372 DOI: 10.7150/jgen.75779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022] Open
Abstract
The genomes of two nitrogen-fixing Frankia strains, AgB32 and AgKG'84/4, were isolated from spore-containing (spore+) and spore-free (spore-) root nodules of Alnus glutinosa, but they did not sporulate upon reinfection. The two strains are described as representatives of two novel candidate species. Phylogenomic and ANI analyses indicate that each strain represents a novel species within cluster 1, with genome sizes of 6.3 and 6.7 Mb smaller than or similar to those of other cultivated Alnus-infective cluster 1 strains. Genes essential for nitrogen-fixation, clusters of orthologous genes, secondary metabolite clusters and transcriptional regulators analyzed by comparative genomic analyses were typical of those from Alnus-infective cluster 1 cultivated strains in both genomes. Compared to other cultivated Alnus-infective strains with large genomes, those of AgB32 and AgKG'84/4 had lost 380 or 409 genes, among which one hup cluster, one shc gene and the gvp cluster, which indicates genome erosion is taking place in these two strains.
Collapse
Affiliation(s)
- Philippe Normand
- Université Claude-Bernard Lyon 1, Université de Lyon, UMR 5557 CNRS Ecologie Microbienne, Villeurbanne, Cedex 69622, France
| | - Petar Pujic
- Université Claude-Bernard Lyon 1, Université de Lyon, UMR 5557 CNRS Ecologie Microbienne, Villeurbanne, Cedex 69622, France
| | - Danis Abrouk
- Université Claude-Bernard Lyon 1, Université de Lyon, UMR 5557 CNRS Ecologie Microbienne, Villeurbanne, Cedex 69622, France
| | - Spandana Vemulapally
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Trina Guerra
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Camila Carlos-Shanley
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
3
|
Vemulapally S, Guerra T, Hahn D. Effect of different Alnus taxa on abundance and diversity of introduced and indigenous Frankia in soils and root nodules. FEMS Microbiol Ecol 2022; 98:6529231. [PMID: 35170731 DOI: 10.1093/femsec/fiac020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The effect of host plants on the abundance and distribution of introduced and indigenous Frankia populations was assessed in soils and root nodules of four alder species, Alnus glutinosa, Alnus cordata, Alnus rubra and Alnus viridis. Plants were grown in microcosms with either a sandy soil without detectable frankiae, with or without inoculation of a mixture of Frankia isolates, or with a silty clay loam soil with indigenous Frankia. The presence of frankiae in soils increased plant height and root nodule formation, with significant increases in the presence of indigenous frankiae. Abundance in soils increased significantly for both introduced and indigenous Frankia populations independent of alder species, with generally largest increases in cluster 1b frankiae. Root nodules formed by introduced frankiae did not reflect the diversity of strains inoculated, with nodules generally only formed by strain ArI3 representing cluster 1a/d. All indigenous Frankia populations detected in soil were also found in A. glutinosa nodules, while A. cordata or A. rubra nodules contained different subsets of frankiae with unique abundances dependent on plant species. These results demonstrate the intrageneric differences of host plants in the selection of specific Frankia populations in soils for root nodule formation.
Collapse
Affiliation(s)
- Spandana Vemulapally
- Texas State University, Department of Biology, 601 University Dr., San Marcos, TX 78666, USA
| | - Trina Guerra
- Texas State University, Department of Biology, 601 University Dr., San Marcos, TX 78666, USA
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Dr., San Marcos, TX 78666, USA
| |
Collapse
|
4
|
Ghodhbane-Gtari F, D’Angelo T, Gueddou A, Ghazouani S, Gtari M, Tisa LS. Alone Yet Not Alone: Frankia Lives Under the Same Roof With Other Bacteria in Actinorhizal Nodules. Front Microbiol 2021; 12:749760. [PMID: 34925263 PMCID: PMC8674757 DOI: 10.3389/fmicb.2021.749760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/08/2021] [Indexed: 02/01/2023] Open
Abstract
Actinorhizal plants host mutualistic symbionts of the nitrogen-fixing actinobacterial genus Frankia within nodule structures formed on their roots. Several plant-growth-promoting bacteria have also been isolated from actinorhizal root nodules, but little is known about them. We were interested investigating the in planta microbial community composition of actinorhizal root nodules using culture-independent techniques. To address this knowledge gap, 16S rRNA gene amplicon and shotgun metagenomic sequencing was performed on DNA from the nodules of Casuarina glauca. DNA was extracted from C. glauca nodules collected in three different sampling sites in Tunisia, along a gradient of aridity ranging from humid to arid. Sequencing libraries were prepared using Illumina NextEra technology and the Illumina HiSeq 2500 platform. Genome bins extracted from the metagenome were taxonomically and functionally profiled. Community structure based off preliminary 16S rRNA gene amplicon data was analyzed via the QIIME pipeline. Reconstructed genomes were comprised of members of Frankia, Micromonospora, Bacillus, Paenibacillus, Phyllobacterium, and Afipia. Frankia dominated the nodule community at the humid sampling site, while the absolute and relative prevalence of Frankia decreased at the semi-arid and arid sampling locations. Actinorhizal plants harbor similar non-Frankia plant-growth-promoting-bacteria as legumes and other plants. The data suggests that the prevalence of Frankia in the nodule community is influenced by environmental factors, with being less abundant under more arid environments.
Collapse
Affiliation(s)
- Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- Institut Supérieur de Biotechnologie de Sidi Thabet, Université de la Manouba, Sidi Thabet, Tunisia
- Unité de Bactériologie Moléculaire et Génomique, Centre Urbain Nord, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| | - Timothy D’Angelo
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Abdellatif Gueddou
- Unité de Bactériologie Moléculaire et Génomique, Centre Urbain Nord, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| | - Sabrine Ghazouani
- Unité de Bactériologie Moléculaire et Génomique, Centre Urbain Nord, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| | - Maher Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- Unité de Bactériologie Moléculaire et Génomique, Centre Urbain Nord, Institut National des Sciences Appliquées et de Technologie, Université de Carthage, Tunis, Tunisia
| | - Louis S. Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
5
|
Ochetophila-infective Frankia colonization patterns of volcanic ash in Patagonia. Symbiosis 2021. [DOI: 10.1007/s13199-021-00820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Contiguous Genome Sequence of Frankia sp. Strain ArI3, Isolated from Root Nodules of Alnus rubra Bong. Microbiol Resour Announc 2021; 10:e0080021. [PMID: 34709056 PMCID: PMC8552674 DOI: 10.1128/mra.00800-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We report the genome sequence of Frankia sp. strain ArI3, recovered as a single contig from one run of the Oxford Nanopore Technologies (ONT) MinION instrument. The genome has a G+C content of 72%, is 7,541,222 bp long, and contains 5,427 predicted protein-coding genes.
Collapse
|
7
|
Carlos-Shanley C, Guerra T, Hahn D. Draft genomes of non-nitrogen-fixing Frankia strains. J Genomics 2021; 9:68-75. [PMID: 34703504 PMCID: PMC8542509 DOI: 10.7150/jgen.65429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, we describe the genomes of two novel candidate species of non-nitrogen fixing Frankia that were isolated from the root nodules of Coriaria nepalensis and Alnus glutinosa, genospecies CN and Ag, respectively. Comparative genomic analyses revealed that both genospecies lack genes essential for nitrogen-fixation and possess genes involved in the degradation of plant cell walls. Additionally, we found distinct biosynthetic gene clusters in each genospecies. The availability of these genomes will contribute to the study of the taxonomy and evolution of actinorhizal symbioses.
Collapse
Affiliation(s)
- Camila Carlos-Shanley
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Trina Guerra
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
8
|
Frankia Diversity in Host Plant Root Nodules Is Independent of Abundance or Relative Diversity of Frankia Populations in Corresponding Rhizosphere Soils. Appl Environ Microbiol 2018; 84:AEM.02248-17. [PMID: 29247058 DOI: 10.1128/aem.02248-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022] Open
Abstract
Actinorhizal plants form nitrogen-fixing root nodules in symbiosis with soil-dwelling actinobacteria within the genus Frankia, and specific Frankia taxonomic clusters nodulate plants in corresponding host infection groups. In same-soil microcosms, we observed that some host species were nodulated (Alnus glutinosa, Alnus cordata, Shepherdia argentea, Casuarina equisetifolia) while others were not (Alnus viridis, Hippophaë rhamnoides). Nodule populations were represented by eight different sequences of nifH gene fragments. Two of these sequences characterized frankiae in S. argentea nodules, and three others characterized frankiae in A. glutinosa nodules. Frankiae in A. cordata nodules were represented by five sequences, one of which was also found in nodules from A. glutinosa and C. equisetifolia, while another was detected in nodules from A. glutinosa Quantitative PCR assays showed that vegetation generally increased the abundance of frankiae in soil, independently of the target gene (i.e., nifH or the 23S rRNA gene). Targeted Illumina sequencing of Frankia-specific nifH gene fragments detected 24 unique sequences from rhizosphere soils, 4 of which were also found in nodules, while the remaining 4 sequences in nodules were not found in soils. Seven of the 24 sequences from soils represented >90% of the reads obtained in most samples; the 2 most abundant sequences from soils were not found in root nodules, and only 2 of the sequences from soils were detected in nodules. These results demonstrate large differences between detectable Frankia populations in soil and those in root nodules, suggesting that root nodule formation is not a function of the abundance or relative diversity of specific Frankia populations in soils.IMPORTANCE The nitrogen-fixing actinobacterium Frankia forms root nodules on actinorhizal plants, with members of specific Frankia taxonomic clusters nodulating plants in corresponding host infection groups. We assessed Frankia diversity in root nodules of different host plant species, and we related specific populations to the abundance and relative distribution of indigenous frankiae in rhizosphere soils. Large differences were observed between detectable Frankia populations in soil and those in root nodules, suggesting that root nodule formation is not a function of the abundance or relative diversity of specific Frankia populations in soils but rather results from plants potentially selecting frankiae from the soil for root nodule formation. These data also highlight the necessity of using a combination of different assessment tools so as to adequately address methodological constraints that could produce contradictory data sets.
Collapse
|
9
|
Samant S, Huo T, Dawson JO, Hahn D. Abundance and Relative Distribution of Frankia Host Infection Groups Under Actinorhizal Alnus glutinosa and Non-actinorhizal Betula nigra Trees. MICROBIAL ECOLOGY 2016; 71:473-481. [PMID: 26143359 DOI: 10.1007/s00248-015-0643-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Quantitative polymerase chain reaction (qPCR) was used to assess the abundance and relative distribution of host infection groups of the root-nodule forming, nitrogen-fixing actinomycete Frankia in four soils with similar physicochemical characteristics, two of which were vegetated with a host plant, Alnus glutinosa, and two with a non-host plant, Betula nigra. Analyses of DAPI-stained cells at three locations, i.e., at a distance of less than 1 m (near stem), 2.5 m (middle crown), and 3-5 m (crown edge) from the stems of both tree species revealed no statistically significant differences in abundance. Frankiae generally accounted for 0.01 to 0.04 % of these cells, with values between 4 and 36 × 10(5) cells (g soil)(-1). In three out of four soils, abundance of frankiae was significantly higher at locations "near stem" and/or "middle crown" compared to "crown edge," while numbers at these locations were not different in the fourth soil. Frankiae of the Alnus host infection group were dominant in all samples accounting for about 75 % and more of the cells, with no obvious differences with distance to stem. In three of the soils, all of these cells were represented by strain Ag45/Mut15. In the fourth soil that was vegetated with older A. glutinosa trees, about half of these cells belonged to a different subgroup represented by strain ArI3. In all soils, the remaining cells belonged to the Elaeagnus host infection group represented by strain EAN1pec. Casuarina-infective frankiae were not found. Abundance and relative distribution of Frankia host infection groups were similar in soils under the host plant A. glutinosa and the non-host plant B. nigra. Results did thus not reveal any specific effects of plant species on soil Frankia populations.
Collapse
Affiliation(s)
- Suvidha Samant
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Tian Huo
- College of Agriculture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1201 South Dorner Drive, Urbana, IL, 61801, USA
| | - Jeffrey O Dawson
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1201 South Dorner Drive, Urbana, IL, 61801, USA
| | - Dittmar Hahn
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| |
Collapse
|
10
|
Samant SS, Dawson JO, Hahn D. Growth responses of indigenous Frankia populations to edaphic factors in actinorhizal rhizospheres. Syst Appl Microbiol 2015; 38:501-5. [PMID: 26283319 DOI: 10.1016/j.syapm.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/31/2022]
Abstract
Quantitative PCR (qPCR) was used to follow population dynamics of indigenous Frankia populations in bulk soil, in leaf-litter-amended soil and in the rhizosphere of Alnus glutinosa or Casuarina equisetifolia at 2 matric potentials representing dry and wet conditions in soil microcosms. Analyses revealed between 10- and 100-fold increases of Frankia populations within the incubation period of 12 weeks independent of treatment. Numbers were generally higher under dry conditions and in the rhizosphere, with that of C. equisetifolia supporting highest abundance. Frankiae detected at any time and treatment belonged to either subgroup I of the Alnus host infection group or the Elaeagnus host infection group, with those of the Elaeagnus host infection group largely representing the genus in all samples under wet conditions, and in bulk and leaf litter amended soil under dry conditions. Subgroup I of the Alnus host infection group was most prominent in the rhizosphere of both plant species where it represented up to 95% of the genus with higher percentages in that of C. equisetifolia.
Collapse
Affiliation(s)
- Suvidha S Samant
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Jeffrey O Dawson
- University of Illinois at Urbana-Champaign, Department of Natural Resources and Environmental Sciences, 1201 South Dorner Drive, Urbana, IL 61801, USA
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA.
| |
Collapse
|
11
|
Bouizgarne B, Ait Ben Aouamar A. Diversity of Plant Associated Actinobacteria. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2014. [DOI: 10.1007/978-3-319-05936-5_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Samant S, Amann RI, Hahn D. Evaluation of the 23S rRNA gene as target for qPCR based quantification of Frankia in soils. Syst Appl Microbiol 2013; 37:229-34. [PMID: 24315016 DOI: 10.1016/j.syapm.2013.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/08/2013] [Indexed: 12/30/2022]
Abstract
The 23S rRNA gene was evaluated as target for the development of Sybr Green-based quantitative PCR (qPCR) for the analysis of nitrogen-fixing members of the genus Frankia or subgroups of these in soil. A qPCR with a primer combination targeting all nitrogen-fixing frankiae (clusters 1, 2 and 3) resulted in numbers similar to those obtained with a previously developed qPCR using nifH gene sequences, both with respect to introduced and indigenous Frankia populations. Primer combinations more specifically targeting three subgroups of the Alnus host infection group (cluster 1) or members of the Elaeagnus host infection group (cluster 3) were specific for introduced strains of the target group, with numbers corresponding to those obtained by quantification of nitrogen-fixing frankiae with both the 23S rRNA and nifH genes as target. Method verification on indigenous Frankia populations in soils, i.e. in depth profiles from four sites at an Alnus glutinosa stand, revealed declining numbers in the depth profiles, with similar abundance of all nitrogen-fixing frankiae independent of 23S rRNA or nifH gene targets, and corresponding numbers of one group of frankiae of the Alnus host infection only, with no detections of frankiae representing the Elaeagnus, Casuarina, or a second subgroup of the Alnus host infection groups.
Collapse
Affiliation(s)
- Suvidha Samant
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | - Rudolf I Amann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA.
| |
Collapse
|
13
|
Chaia EE, Sosa MC, Raffaele E. Vertebrate faeces as sources of nodulating Frankia in Patagonia. Symbiosis 2012. [DOI: 10.1007/s13199-012-0169-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Samant S, Sha Q, Iyer A, Dhabekar P, Hahn D. Quantification of Frankia in soils using SYBR Green based qPCR. Syst Appl Microbiol 2012; 35:191-7. [PMID: 22326815 DOI: 10.1016/j.syapm.2011.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
A SYBR Green based qPCR method was developed for the quantification of clusters 1 and 3 of the actinomycete Frankia in soils. Primer nifHr158 was designed to be used as reverse primer in combination with forward primer nifHf1 specifically amplifying a 191-bp fragment of the nifH gene of these Frankia. The primer combination was tested for specificity on selected pure cultures, and by comparative sequence analyses of randomly selected clones of a clone library generated with these primers from soil DNA extracts. After adjustments of DNA extraction conditions, and the determination of extraction efficiencies used for sample normalization, copy numbers of nifH genes representing Frankia of clusters 1 and 3 were quantified in different mineral soils, resulting in cell density estimates for these Frankia of up to 10(6) cells [g soil {dry weight}](-1) depending on the soil. Despite indications that the nifH gene is not a perfect target for the quantification of Frankia, the qPCR method described here provides a new tool for the quantification and thus a more complete examination of the ecology of Frankia in soils.
Collapse
Affiliation(s)
- Suvidha Samant
- Texas State University, Department of Biology, San Marcos, TX 78666, USA
| | | | | | | | | |
Collapse
|
15
|
Hahn D, Mirza B, Benagli C, Vogel G, Tonolla M. Typing of nitrogen-fixing Frankia strains by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. Syst Appl Microbiol 2011; 34:63-8. [PMID: 21242047 DOI: 10.1016/j.syapm.2010.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 10/27/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022]
Abstract
Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) was evaluated as a technique to characterize strains of the nitrogen-fixing actinomycete Frankia. MALDI-TOF MS reliably distinguished 37 isolates within the genus Frankia and assigned them to their respective host infection groups, i.e., the Alnus/Casuarina and the Elaeagnus host infection groups. The assignment of individual strains to sub-groups within the respective host infection groups was consistent with classification based on comparative sequence analysis of nifH gene fragments, confirming the usefulness of MALDI-TOF MS as a rapid and reliable tool for the characterization of Frankia strains.
Collapse
Affiliation(s)
- Dittmar Hahn
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| | | | | | | | | |
Collapse
|
16
|
Pokharel A, Mirza BS, Dawson JO, Hahn D. Frankia populations in soil and root nodules of sympatrically grown Alnus taxa. MICROBIAL ECOLOGY 2011; 61:92-100. [PMID: 20838787 DOI: 10.1007/s00248-010-9726-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 07/13/2010] [Indexed: 05/29/2023]
Abstract
The genetic diversity of Frankia populations in soil and in root nodules of sympatrically grown Alnus taxa was evaluated by rep-polymerase chain reaction (PCR) and nifH gene sequence analyses. Rep-PCR analyses of uncultured Frankia populations in root nodules of 12 Alnus taxa (n=10 nodules each) growing sympatrically in the Morton Arboretum near Chicago revealed identical patterns for nodules from each Alnus taxon, including replicate trees of the same host taxon, and low diversity overall with only three profiles retrieved. One profile was retrieved from all nodules of nine taxa (Alnus incana subsp. incana, Alnus japonica, Alnus glutinosa, Alnus incana subsp. tenuifolia, Alnus incana subsp. rugosa, Alnus rhombifolia, Alnus mandshurica, Alnus maritima, and Alnus serrulata), the second was found in all nodules of two plant taxa (A. incana subsp. hirsuta and A. glutinosa var. pyramidalis), and the third was unique for all Frankia populations in nodules of A. incana subsp. rugosa var. americana. Comparative sequence analyses of nifH gene fragments in nodules representing these three profiles assigned these frankiae to different subgroups within the Alnus host infection group. None of these sequences, however, represented frankiae detectable in soil as determined by sequence analysis of 73 clones from a Frankia-specific nifH gene clone library. Additional analyses of nodule populations from selected alders growing on different soils demonstrated the presence of different Frankia populations in nodules for each soil, with populations showing identical sequences in nodules from the same soil, but differences between plant taxa. These results suggest that soil environmental conditions and host plant genotype both have a role in the selection of Frankia strains by a host plant for root nodule formation, and that this selection is not merely a function of the abundance of a Frankia strain in soil.
Collapse
Affiliation(s)
- Anita Pokharel
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | | | | | | |
Collapse
|
17
|
Are Northwestern Patagonian “mallín” wetland meadows reservoirs of Ochetophila trinervis infective Frankia? Symbiosis 2010. [DOI: 10.1007/s13199-010-0095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
|
19
|
Welsh AK, Dawson JO, Gottfried GJ, Hahn D. Diversity of Frankia populations in root nodules of geographically isolated Arizona alder trees in central Arizona (United States). Appl Environ Microbiol 2009; 75:6913-8. [PMID: 19734342 PMCID: PMC2772444 DOI: 10.1128/aem.01103-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 08/26/2009] [Indexed: 11/20/2022] Open
Abstract
The diversity of uncultured Frankia populations in root nodules of Alnus oblongifolia trees geographically isolated on mountaintops of central Arizona was analyzed by comparative sequence analyses of nifH gene fragments. Sequences were retrieved from Frankia populations in nodules of four trees from each of three mountaintops (n = 162) and their levels of diversity compared using spatial genetic clustering methods and single-nucleotide or 1, 3, or 5% sequence divergence thresholds. With the single-nucleotide threshold level, 45 different sequences with significant differences between the mountaintops were retrieved, with the southern site partitioning in a separate population from the two other sites. Some of these sequences were identical in nodules from different mountaintops and to those of strains isolated from around the world. A high level of diversity that resulted in the assignment of 14 clusters of sequences was also found on the 1% divergence level. Single-nucleotide and 1% divergence levels thus demonstrate microdiversity of frankiae in root nodules of A. oblongifolia trees and suggest a partitioning of diversity by site. At the 3 and 5% divergence levels, however, diversity was reduced to three clusters or one cluster, respectively, with no differentiation by mountaintop. Only at the 5% threshold level do all Frankia strains previously assigned to one genomic group cluster together.
Collapse
Affiliation(s)
- Allana K. Welsh
- Texas State University, Department of Biology, 601 University Drive, San Marcos, Texas 78666, University of Illinois at Urbana-Champaign, Department of Natural Resources and Environmental Sciences, 1201 South Dorner Drive, Urbana, Illinois 61801, USDA Forest Service, Rocky Mountain Research Station, Tonto National Forest, 2324 E. McDowell Road, Phoenix, Arizona 85006
| | - Jeffrey O. Dawson
- Texas State University, Department of Biology, 601 University Drive, San Marcos, Texas 78666, University of Illinois at Urbana-Champaign, Department of Natural Resources and Environmental Sciences, 1201 South Dorner Drive, Urbana, Illinois 61801, USDA Forest Service, Rocky Mountain Research Station, Tonto National Forest, 2324 E. McDowell Road, Phoenix, Arizona 85006
| | - Gerald J. Gottfried
- Texas State University, Department of Biology, 601 University Drive, San Marcos, Texas 78666, University of Illinois at Urbana-Champaign, Department of Natural Resources and Environmental Sciences, 1201 South Dorner Drive, Urbana, Illinois 61801, USDA Forest Service, Rocky Mountain Research Station, Tonto National Forest, 2324 E. McDowell Road, Phoenix, Arizona 85006
| | - Dittmar Hahn
- Texas State University, Department of Biology, 601 University Drive, San Marcos, Texas 78666, University of Illinois at Urbana-Champaign, Department of Natural Resources and Environmental Sciences, 1201 South Dorner Drive, Urbana, Illinois 61801, USDA Forest Service, Rocky Mountain Research Station, Tonto National Forest, 2324 E. McDowell Road, Phoenix, Arizona 85006
| |
Collapse
|
20
|
Weber MM, French CL, Barnes MB, Siegele DA, McLean RJC. A previously uncharacterized gene, yjfO (bsmA), influences Escherichia coli biofilm formation and stress response. MICROBIOLOGY-SGM 2009; 156:139-147. [PMID: 19833773 DOI: 10.1099/mic.0.031468-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria growing as surface-adherent biofilms are better able to withstand chemical and physical stresses than their unattached, planktonic counterparts. Using transcriptional profiling and quantitative PCR, we observed a previously uncharacterized gene, yjfO to be upregulated during Escherichia coli MG1655 biofilm growth in a chemostat on serine-limited defined medium. A yjfO mutant, developed through targeted-insertion mutagenesis, and a yjfO-complemented strain, were obtained for further characterization. While bacterial surface colonization levels (c.f.u. cm(-2)) were similar in all three strains, the mutant strain exhibited reduced microcolony formation when observed in flow cells, and greatly enhanced flagellar motility on soft (0.3 %) agar. Complementation of yjfO restored microcolony formation and flagellar motility to wild-type levels. Cell surface hydrophobicity and twitching motility were unaffected by the presence or absence of yjfO. In contrast to the parent strain, biofilms from the mutant strain were less able to resist acid and peroxide stresses. yjfO had no significant effect on E. coli biofilm susceptibility to alkali or heat stress. Planktonic cultures from all three strains showed similar responses to these stresses. Regardless of the presence of yjfO, planktonic E. coli withstood alkali stress better than biofilm populations. Complementation of yjfO restored viability following exposure to peroxide stress, but did not restore acid resistance. Based on its influence on biofilm maturation and stress response, and effects on motility, we propose renaming the uncharacterized gene, yjfO, as bsmA (biofilm stress and motility).
Collapse
Affiliation(s)
- Mary M Weber
- Department of Biology, Texas State University-San Marcos, 601 University Drive, San Marcos, TX 78666, USA
| | - Christa L French
- Department of Biology, Texas State University-San Marcos, 601 University Drive, San Marcos, TX 78666, USA
| | - Mary B Barnes
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433-8915, USA
| | - Deborah A Siegele
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Robert J C McLean
- Department of Biology, Texas State University-San Marcos, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
21
|
Mirza BS, Welsh A, Rieder JP, Paschke MW, Hahn D. Diversity of frankiae in soils from five continents. Syst Appl Microbiol 2009; 32:558-70. [PMID: 19692194 DOI: 10.1016/j.syapm.2009.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 07/26/2009] [Accepted: 07/27/2009] [Indexed: 11/17/2022]
Abstract
Clone libraries of nifH gene fragments specific for the nitrogen-fixing actinomycete Frankia were generated from six soils obtained from five continents using a nested PCR. Comparative sequence analyses of all libraries (n=247 clones) using 96 to 97% similarity thresholds revealed the presence of three and four clusters of frankiae representing the Elaeagnus and the Alnus host infection groups, respectively. Diversity of frankiae was represented by fewer clusters (i.e., up to four in total) within individual libraries, with one cluster generally harboring the vast majority of sequences. Meta-analysis including sequences previously published for cultures (n=48) and for uncultured frankiae in root nodules of Morella pensylvanica formed in bioassays with the respective soils (n=121) revealed a higher overall diversity with four and six clusters of frankiae representing the Elaeagnus and the Alnus host infection groups, respectively, and displayed large differences in cluster assignments between sequences retrieved from clone libraries and those obtained from nodules, with assignments to the same cluster only rarely encountered for individual soils. These results demonstrate large differences between detectable Frankia populations in soil and those in root nodules indicating the inadequacy of bioassays for the analysis of frankiae in soil and the role of plants in the selection of frankiae from soil for root nodule formation.
Collapse
Affiliation(s)
- Babur S Mirza
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666, USA
| | | | | | | | | |
Collapse
|
22
|
Mirza BS, Welsh A, Hahn D. Growth of Frankia strains in leaf litter-amended soil and the rhizosphere of a nonactinorhizal plant. FEMS Microbiol Ecol 2009; 70:132-41. [PMID: 19678845 DOI: 10.1111/j.1574-6941.2009.00746.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The ability of Frankia strains to grow in the rhizosphere of a nonactinorhizal plant, Betula pendula, in surrounding bulk soil and in soil amended with leaf litter was analyzed 6 weeks after inoculation of pure cultures by in situ hybridization. Growth responses were related to taxonomic position as determined by comparative sequence analysis of nifH gene fragments and of an actinomycetes-specific insertion in Domain III of the 23S rRNA gene. Phylogenetic analyses confirmed the basic classification of Frankia strains by host infection groups, and allowed a further differentiation of Frankia clusters within the Alnus host infection group. Except for Casuarina-infective Frankia strains, all other strains of the Alnus and the Elaeagnus host infection groups displayed growth in the rhizosphere of B. pendula, and none of them grew in the surrounding bulk soil that was characterized by a very low organic matter content. Only a small number of strains that all belonged to a distinct phylogenetic cluster within the Alnus host infection group grew in soil amended with ground leaf litter from B. pendula. These results demonstrate that saprotrophic growth of frankiae is a common trait for most members of the genus, and the supporting factors for growth (i.e. carbon utilization capabilities) varied with the host infection group and the phylogenetic affiliation of the strains.
Collapse
Affiliation(s)
- Babur S Mirza
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | | | | |
Collapse
|
23
|
Abstract
Plant growth and development are significantly influenced by the presence and activity of microorganisms. To date, the best-studied plant-interacting microbes are Gram-negative bacteria, but many representatives of both the high and low G+C Gram-positives have excellent biocontrol, plant growth-promoting and bioremediation activities. Moreover, actinorhizal symbioses largely contribute to the global biological nitrogen fixation and many Gram-positive bacteria promote other types of symbioses in tripartite interactions. Finally, several prominent and devastating phytopathogens are Gram-positive. We summarize the present knowledge of the beneficial and detrimental interactions of Gram-positive bacteria with plants to underline the importance of this particular group of bacteria.
Collapse
Affiliation(s)
- Isolde Francis
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), B-9052 Gent, Belgium
| | | | | |
Collapse
|
24
|
Diversity of frankiae in root nodules of Morella pensylvanica grown in soils from five continents. Syst Appl Microbiol 2009; 32:201-10. [PMID: 19243909 DOI: 10.1016/j.syapm.2009.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bioassays with Morella pensylvanica as capture plant and comparative sequence analyses of nifH gene fragments of Frankia populations in nodules formed were used to investigate the diversity of Frankia in soils over a broad geographic range, i.e., from sites in five continents (Africa, Europe, Asia, North America, and South America). Phylogenetic analyses of 522-bp nifH gene fragments of 100 uncultured frankiae from root nodules of M. pensylvanica and of 58 Frankia strains resulted in a clear differentiation between frankiae of the Elaeagnus and the Alnus host infection groups, with sequences from each group found in all soils and the assignment of all sequences to four and five clusters within these groups, respectively. All clusters were formed or dominated by frankiae obtained from one or two soils with single sequences occasionally present from frankiae of other soils. Variation within a cluster was generally low for sequences representing frankiae in nodules induced by the same soil, but large between sequences of frankiae originating from different soils. Three clusters, one within the Elaeagnus and two within the Alnus host infection groups, were represented entirely by uncultured frankiae with no sequences from cultured relatives available. These results demonstrate large differences in nodule-forming frankiae in five soils from a broad geographic range, but low diversity of nodule-forming Frankia populations within any of these soils.
Collapse
|