1
|
Williamson AJ, Lloyd JR, Boothman C, Law GTW, Shaw S, Small JS, Vettese GF, Williams HA, Morris K. Biogeochemical Cycling of 99Tc in Alkaline Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15862-15872. [PMID: 34825817 DOI: 10.1021/acs.est.1c04416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
99Tc will be present in significant quantities in radioactive wastes including intermediate-level waste (ILW). The internationally favored concept for disposing of higher activity radioactive wastes including ILW is via deep geological disposal in an underground engineered facility located ∼200-1000 m deep. Typically, in the deep geological disposal environment, the subsurface will be saturated, cement will be used extensively as an engineering material, and iron will be ubiquitous. This means that understanding Tc biogeochemistry in high pH, cementitious environments is important to underpin safety case development. Here, alkaline sediment microcosms (pH 10) were incubated under anoxic conditions under "no added Fe(III)" and "with added Fe(III)" conditions (added as ferrihydrite) at three Tc concentrations (10-11, 10-6, and 10-4 mol L-1). In the 10-6 mol L-1 Tc experiments with no added Fe(III), ∼35% Tc(VII) removal occurred during bioreduction. Solvent extraction of the residual solution phase indicated that ∼75% of Tc was present as Tc(IV), potentially as colloids. In both biologically active and sterile control experiments with added Fe(III), Fe(II) formed during bioreduction and >90% Tc was removed from the solution, most likely due to abiotic reduction mediated by Fe(II). X-ray absorption spectroscopy (XAS) showed that in bioreduced sediments, Tc was present as hydrous TcO2-like phases, with some evidence for an Fe association. When reduced sediments with added Fe(III) were air oxidized, there was a significant loss of Fe(II) over 1 month (∼50%), yet this was coupled to only modest Tc remobilization (∼25%). Here, XAS analysis suggested that with air oxidation, partial incorporation of Tc(IV) into newly forming Fe oxyhydr(oxide) minerals may be occurring. These data suggest that in Fe-rich, alkaline environments, biologically mediated processes may limit Tc mobility.
Collapse
Affiliation(s)
- Adam J Williamson
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
- CENBG-Équipe Radioactivité et Environnement, UMR 5797, CNRS-IN2P3/Université de Bordeaux, 19 chemin du Solarium, CS 10120, 33175 Gradignan, France
| | - Jonathan R Lloyd
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Christopher Boothman
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Gareth T W Law
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00014, Finland
| | - Samuel Shaw
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Joe S Small
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
- National Nuclear Laboratory, Risley, Warrington, Cheshire WA3 6AE, U.K
| | - Gianni F Vettese
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00014, Finland
| | - Heather A Williams
- Department of Nuclear Medicine, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, U.K
| | - Katherine Morris
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
2
|
Ray AE, Connon SA, Neal AL, Fujita Y, Cummings DE, Ingram JC, Magnuson TS. Metal Transformation by a Novel Pelosinus Isolate From a Subsurface Environment. Front Microbiol 2018; 9:1689. [PMID: 30174652 PMCID: PMC6107796 DOI: 10.3389/fmicb.2018.01689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/06/2018] [Indexed: 01/11/2023] Open
Abstract
The capability of microorganisms to alter metal speciation offers potential for the development of new strategies for immobilization of toxic metals in the environment. A metal-reducing microbe, "Pelosinus lilae" strain UFO1, was isolated under strictly anaerobic conditions from an Fe(III)-reducing enrichment established with uncontaminated soil from the Department of Energy Oak Ridge Field Research Center, Tennessee. "P. lilae" UFO1 is a rod-shaped, spore-forming, and Gram-variable anaerobe with a fermentative metabolism. It is capable of reducing the humic acid analog anthraquinone-2,6-disulfonate (AQDS) using a variety of fermentable substrates and H2. Reduction of Fe(III)-nitrilotriacetic acid occurred in the presence of lactate as carbon and electron donor. Ferrihydrite was not reduced in the absence of AQDS. Nearly complete reduction of 1, 3, and 5 ppm Cr(VI) occurred within 24 h in suspensions containing 108 cells mL-1 when provided with 10 mM lactate; when 1 mM AQDS was added, 3 and 5 ppm Cr(VI) were reduced to 0.1 ppm within 2 h. Strain UFO1 is a novel species within the bacterial genus Pelosinus, having 98.16% 16S rRNA gene sequence similarity with the most closely related described species, Pelosinus fermentans R7T. The G+C content of the genomic DNA was 38 mol%, and DNA-DNA hybridization of "P. lilae" UFO1 against P. fermentans R7T indicated an average 16.8% DNA-DNA similarity. The unique phylogenetic, physiologic, and metal-transforming characteristics of "P. lilae" UFO1 reveal it is a novel isolate of the described genus Pelosinus.
Collapse
Affiliation(s)
- Allison E. Ray
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- Idaho National Laboratory, Idaho Falls, ID, United States
| | - Stephanie A. Connon
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- California Institute of Technology, Pasadena, CA, United States
| | - Andrew L. Neal
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - Yoshiko Fujita
- Idaho National Laboratory, Idaho Falls, ID, United States
| | - David E. Cummings
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Jani C. Ingram
- Idaho National Laboratory, Idaho Falls, ID, United States
| | - Timothy S. Magnuson
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| |
Collapse
|
3
|
Mets T, Lippus M, Schryer D, Liiv A, Kasari V, Paier A, Maiväli Ü, Remme J, Tenson T, Kaldalu N. Toxins MazF and MqsR cleave Escherichia coli rRNA precursors at multiple sites. RNA Biol 2016; 14:124-135. [PMID: 27858580 DOI: 10.1080/15476286.2016.1259784] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The endoribonuclease toxins of the E. coli toxin-antitoxin systems arrest bacterial growth and protein synthesis by targeting cellular mRNAs. As an exception, E. coli MazF was reported to cleave also 16S rRNA at a single site and separate an anti-Shine-Dalgarno sequence-containing RNA fragment from the ribosome. We noticed extensive rRNA fragmentation in response to induction of the toxins MazF and MqsR, which suggested that these toxins can cleave rRNA at multiple sites. We adapted differential RNA-sequencing to map the toxin-cleaved 5'- and 3'-ends. Our results show that the MazF and MqsR cleavage sites are located within structured rRNA regions and, therefore, are not accessible in assembled ribosomes. Most of the rRNA fragments are located in the aberrant ribosomal subunits that accumulate in response to toxin induction and contain unprocessed rRNA precursors. We did not detect MazF- or MqsR-cleaved rRNA in stationary phase bacteria and in assembled ribosomes. Thus, we conclude that MazF and MqsR cleave rRNA precursors before the ribosomes are assembled and potentially facilitate the decay of surplus rRNA transcripts during stress.
Collapse
Affiliation(s)
- Toomas Mets
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - Markus Lippus
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - David Schryer
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - Aivar Liiv
- b Institute of Molecular and Cell Biology, University of Tartu , Tartu , Estonia
| | - Villu Kasari
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - Anton Paier
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - Ülo Maiväli
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - Jaanus Remme
- b Institute of Molecular and Cell Biology, University of Tartu , Tartu , Estonia
| | - Tanel Tenson
- a Institute of Technology, University of Tartu , Tartu , Estonia
| | - Niilo Kaldalu
- a Institute of Technology, University of Tartu , Tartu , Estonia
| |
Collapse
|
4
|
Berlendis S, Ranchou-Peyruse M, Fardeau ML, Lascourrèges JF, Joseph M, Ollivier B, Aüllo T, Dequidt D, Magot M, Ranchou-Peyruse A. Desulfotomaculum aquiferis sp. nov. and Desulfotomaculum profundi sp. nov., isolated from a deep natural gas storage aquifer. Int J Syst Evol Microbiol 2016; 66:4329-4338. [PMID: 27473224 DOI: 10.1099/ijsem.0.001352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two novel strictly anaerobic bacteria, strains Bs105T and Bs107T, were isolated from a deep aquifer-derived hydrocarbonoclastic community. The cells were rod-shaped, not motile and had terminal spores. Phylogenetic affiliation and physiological properties revealed that these isolates belong to two novel species of the genus Desulfotomaculum. Optimal growth temperatures for strains Bs105T and Bs107T were 42 and 45 °C, respectively. The estimated G+C content of the genomic DNA was 42.9 and 48.7 mol%. For both strains, the major cellular fatty acid was palmitate (C16 : 0). Specific carbon fatty acid signatures of Gram-positive bacteria (iso-C17 : 0) and sulfate-reducing bacteria (C17 : 0cyc) were also detected. An insertion was revealed in one of the two 16S rRNA gene copies harboured by strain Bs107T. Similar insertions have previously been highlighted among moderately thermophilic species of the genus Desulfotomaculum. Both strains shared the ability to oxidize aromatic acids (Bs105T: hydroquinone, acetophenone, para-toluic acid, 2-phenylethanol, trans-cinnamic acid, 4-hydroxybenzaldehyde, benzyl alcohol, benzoic acid 4-hydroxybutyl ester; Bs107T: ortho-toluic acid, benzoic acid 4-hydroxybutyl ester). The names Desulfotomaculum aquiferis sp. nov. and Desulfotomaculum profundi sp. nov. are proposed for the type strains Bs105T (=DSM 24088T=JCM 31386T) and Bs107T (=DSM 24093T=JCM 31387T).
Collapse
Affiliation(s)
- Sabrina Berlendis
- Université de Pau et des Pays de l'Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, Pau 64013, France.,School of Earth and Ocean Sciences, Main building, Park Place, Cardiff University, Cardiff CF10 3AT, UK
| | - Magali Ranchou-Peyruse
- Université de Pau et des Pays de l'Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, Pau 64013, France
| | - Marie-Laure Fardeau
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288 Marseille Cedex 09, France
| | | | - Manon Joseph
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288 Marseille Cedex 09, France
| | - Bernard Ollivier
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288 Marseille Cedex 09, France
| | - Thomas Aüllo
- TIGF - Transport et Infrastructures Gaz France, 40 Avenue de l'Europe, CS20522, Pau 64000, France
| | - David Dequidt
- Storengy - Geosciences Department, Bois-Colombes, France
| | - Michel Magot
- Université de Pau et des Pays de l'Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, Pau 64013, France
| | - Anthony Ranchou-Peyruse
- Université de Pau et des Pays de l'Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, Pau 64013, France
| |
Collapse
|
5
|
Complete Genome Sequence of Pelosinus fermentans JBW45, a Member of a Remarkably Competitive Group of Negativicutes in the Firmicutes Phylum. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01090-15. [PMID: 26404608 PMCID: PMC4582584 DOI: 10.1128/genomea.01090-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The genome of Pelosinus fermentans JBW45, isolated from a chromium-contaminated site in Hanford, Washington, USA, has been completed with PacBio sequencing. Nine copies of the rRNA gene operon and multiple transposase genes with identical sequences resulted in breaks in the original draft genome and may suggest genomic instability of JBW45.
Collapse
|
6
|
Complete Genome Sequence of Pelosinus sp. Strain UFO1 Assembled Using Single-Molecule Real-Time DNA Sequencing Technology. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00881-14. [PMID: 25189589 PMCID: PMC4155594 DOI: 10.1128/genomea.00881-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pelosinus species can reduce metals such as Fe(III), U(VI), and Cr(VI) and have been isolated from diverse geographical regions. Five draft genome sequences have been published. We report the complete genome sequence for Pelosinus sp. strain UFO1 using only PacBio DNA sequence data and without manual finishing.
Collapse
|
7
|
Men Y, Lee PKH, Harding KC, Alvarez-Cohen L. Characterization of four TCE-dechlorinating microbial enrichments grown with different cobalamin stress and methanogenic conditions. Appl Microbiol Biotechnol 2013; 97:6439-50. [PMID: 23640361 DOI: 10.1007/s00253-013-4896-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 11/27/2022]
Abstract
To investigate the important supportive microorganisms responsible for trichloroethene (TCE) bioremediation under specific environmental conditions and their relationship with Dehalococcoides (Dhc), four stable and robust enrichment cultures were generated using contaminated groundwater. Enrichments were maintained under four different conditions exploring two parameters: high and low TCE amendments (resulting in inhibited and uninhibited methanogenic activity, respectively) and with and without vitamin B₁₂ amendment. Lactate was supplied as the electron donor. All enrichments were capable of reductively dechlorinating TCE to vinyl chloride and ethene. The dechlorination rate and ethene generation were higher, and the proportion of electrons used for dechlorination increased when methanogenesis was inhibited. Biologically significant cobalamin biosynthesis was detected in the enrichments without B₁₂ amendment. Comparative genomics using a genus-wide microarray revealed a Dhc genome similar to that of strain 195 in all enrichments, a strain that lacks the major upstream corrin ring biosynthesis pathway. Seven other bacterial operational taxonomic units (OTUs) were detected using clone libraries. OTUs closest to Pelosinus, Dendrosporobacter, and Sporotalea (PDS) were most dominant. The Clostridium-like OTU was most affected by B₁₂ amendment and active methanogenesis. Principal component analysis revealed that active methanogenesis, rather than vitamin B₁₂ limitation, exerted a greater effect on the community structures even though methanogens did not seem to play an essential role in providing corrinoids to Dhc. In contrast, acetogenic bacteria that were abundant in the enrichments, such as PDS and Clostridium sp., may be potential corrinoid providers for Dhc.
Collapse
Affiliation(s)
- Yujie Men
- Department of Civil and Environmental Engineering, University of California, 207 O'Brien Hall, Berkeley, CA 94720-1710, USA
| | | | | | | |
Collapse
|
8
|
Draft genome sequence of Pelosinus fermentans JBW45, isolated during in situ stimulation for Cr(VI) reduction. J Bacteriol 2012; 194:5456-7. [PMID: 22965085 DOI: 10.1128/jb.01224-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pelosinus fermentans JBW45 is an anaerobic, lactate-fermenting bacterium isolated from Cr(VI)-contaminated groundwater at the Hanford Nuclear Reservation 100-H site (Washington) that was collected after stimulation with a polylactate compound. The genome sequence of this organism will provide insight into the metabolic potential of a predominant population during stimulation for metal-reducing conditions.
Collapse
|
9
|
Genomic and physiological characterization of the chromate-reducing, aquifer-derived Firmicute Pelosinus sp. strain HCF1. Appl Environ Microbiol 2012; 79:63-73. [PMID: 23064329 DOI: 10.1128/aem.02496-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pelosinus spp. are fermentative firmicutes that were recently reported to be prominent members of microbial communities at contaminated subsurface sites in multiple locations. Here we report metabolic characteristics and their putative genetic basis in Pelosinus sp. strain HCF1, an isolate that predominated anaerobic, Cr(VI)-reducing columns constructed with aquifer sediment. Strain HCF1 ferments lactate to propionate and acetate (the methylmalonyl-coenzyme A [CoA] pathway was identified in the genome), and its genome encodes two [NiFe]- and four [FeFe]-hydrogenases for H(2) cycling. The reduction of Cr(VI) and Fe(III) may be catalyzed by a flavoprotein with 42 to 51% sequence identity to both ChrR and FerB. This bacterium has unexpected capabilities and gene content associated with reduction of nitrogen oxides, including dissimilatory reduction of nitrate to ammonium (two copies of NrfH and NrfA were identified along with NarGHI) and a nitric oxide reductase (NorCB). In this strain, either H(2) or lactate can act as a sole electron donor for nitrate, Cr(VI), and Fe(III) reduction. Transcriptional studies demonstrated differential expression of hydrogenases and nitrate and nitrite reductases. Overall, the unexpected metabolic capabilities and gene content reported here broaden our perspective on what biogeochemical and ecological roles this species might play as a prominent member of microbial communities in subsurface environments.
Collapse
|
10
|
Moe WM, Stebbing RE, Rao JU, Bowman KS, Nobre MF, da Costa MS, Rainey FA. Pelosinus
defluvii sp. nov., isolated from chlorinated solvent-contaminated groundwater, emended description of the genus
Pelosinus
and transfer of
Sporotalea propionica
to Pelosinus
propionicus comb. nov. Int J Syst Evol Microbiol 2012; 62:1369-1376. [DOI: 10.1099/ijs.0.033753-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two anaerobic bacterial strains, designated SHI-1T and SHI-2, were isolated from chlorinated solvent-contaminated groundwater. They were found to be identical in phenotypic properties and shared high (98.5–99.8 %) pairwise 16S rRNA gene sequence similarity. Multiple 16S rRNA genes were found to be present in the isolates as well as
Pelosinus fermentans
DSM 17108T and
Sporotalea propionica
DSM 13327T. Strains SHI-1T and SHI-2 could be differentiated from their closest phylogenetic relatives,
P. fermentans
DSM 17108T and
S. propionica
DSM 13327T, on the basis of their phenotypic and phylogenetic properties. The isolates were Gram-negative, spore-forming, motile rods with peritrichous flagella. Growth occurred at 10–42 °C and pH 5.5–8.5. Fermentative growth was observed on Casamino acids, fructose, fumarate, glucose, glycerol, pyruvate and yeast extract. The major organic acids produced from glucose and glycerol fermentation were propionate and acetate. The major organic acids produced from fermentation of fumarate were propionate, acetate and succinate. The major cellular fatty acids were summed feature 4 (consisting of C15 : 1ω8c and/or C15 : 2), summed feature 8 (consisting of C17 : 1ω8c and/or C17 : 2) and C14 : 0 dimethyl aldehyde. The polar lipids comprised aminophospholipids, including phosphatidylethanolamine and phosphatidylserine, and an unknown phospholipid. The genomic DNA G+C content was 39.2 mol%. We propose that strains SHI-1T and SHI-2 are assigned to a novel species of the genus
Pelosinus
, with the name Pelosinus
defluvii sp. nov. (type strain SHI-1T = NRRL Y-59407T = LMG 25549T). The description of the genus
Pelosinus
is emended. We also propose the transfer of
S. propionica
to the genus
Pelosinus
as Pelosinus
propionicus comb. nov. (type strain TmPN3T = DSM 13327T = ATCC BAA-626T), on the basis of phylogenetic, chemotaxonomic and phenotypic properties.
Collapse
Affiliation(s)
- William M. Moe
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Rachael E. Stebbing
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jyoti U. Rao
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kimberly S. Bowman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - M. Fernanda Nobre
- Department of Life Sciences, University of Coimbra, 3001-401 Coimbra, Portugal
| | - Milton S. da Costa
- Department of Life Sciences, University of Coimbra, 3001-401 Coimbra, Portugal
| | - Fred A. Rainey
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|