1
|
Porewater Geochemical Assessment of Seismic Indications for Gas Hydrate Presence and Absence: Mahia Slope, East of New Zealand’s North Island. ENERGIES 2022. [DOI: 10.3390/en15031233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We compare sediment vertical methane flux off the Mahia Peninsula, on the Hikurangi Margin, east of New Zealand’s North Island, with a combination of geochemical, multichannel seismic and sub-bottom profiler data. Stable carbon isotope data provided an overview of methane contributions to shallow sediment carbon pools. Methane varied considerably in concentration and vertical flux across stations in close proximities. At two Mahia transects, methane profiles correlated well with integrated seismic and TOPAS data for predicting vertical methane migration rates from deep to shallow sediment. However, at our “control site”, where no seismic blanking or indications of vertical gas migration were observed, geochemical data were similar to the two Mahia transect lines. This apparent mismatch between seismic and geochemistry data suggests a potential to underestimate gas hydrate volumes based on standard seismic data interpretations. To accurately assess global gas hydrate deposits, multiple approaches for initial assessment, e.g., seismic data interpretation, heatflow profiling and controlled-source electromagnetics, should be compared to geochemical sediment and porewater profiles. A more thorough data matrix will provide better accuracy in gas hydrate volume for modeling climate change and potential available energy content.
Collapse
|
2
|
Cui H, Su X, Chen F, Holland M, Yang S, Liang J, Su P, Dong H, Hou W. Microbial diversity of two cold seep systems in gas hydrate-bearing sediments in the South China Sea. MARINE ENVIRONMENTAL RESEARCH 2019; 144:230-239. [PMID: 30732863 DOI: 10.1016/j.marenvres.2019.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/29/2018] [Accepted: 01/14/2019] [Indexed: 05/05/2023]
Abstract
Cold seep is a unique habitat for microorganisms in deep marine sediments, and microbial communities and biogeochemical processes are still poorly understood, especially in relation to hydrate-bearing geo-systems. In this study, two cold seep systems were sampled and microbial diversity was studied at Site GMGS2-08 in the northern part of the South China Sea (SCS) during the GMGS2 gas hydrate expedition. The current cold seep system was composed of a sulfate methane transition zone (SMTZ) and an upper gas hydrate zone (UGHZ). The buried cold seep system was composed of an authigenic carbonate zone (ACZ) and a lower gas hydrate zone (LGHZ). These drill core samples provided an excellent opportunity for analyzing the microbial abundance and diversity based on quantitative polymerase chain reaction (qPCR) and high-throughput 16S rRNA gene sequencing. Compared to previous studies, the high relative abundance of ANME-1b, a clade of anaerobic methanotrophic archaea (ANME), may perform anaerobic oxidation of methane (AOM) in collaboration with ANME-2c and Desulfobacteraceae in the SMTZ, and the high relative abundances of Hadesarchaea, ANME-1b archaea and Aerophobetes bacteria were found in the gas hydrate zone (GHZ) at Site GMGS2-08. ANME-1b, detected in the GHZ, might mainly mediate the AOM process, and the process might occur in a wide depth range within the LGHZ. Moreover, bacterial communities were significantly different between the GHZ and non-GHZ sediments. In the ACZ, archaeal communities were different between the two samples from the upper and the lower layers, while bacterial communities shared similarities. Overall, this new record of cold seep microbial diversity at Site GMGS2-08 showed the complexity of the interaction between biogeochemical reactions and environmental conditions.
Collapse
Affiliation(s)
- Hongpeng Cui
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Xin Su
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.
| | - Fang Chen
- Guangzhou Marine Geological Survey, Guangzhou, 510075, China
| | | | - Shengxiong Yang
- Guangzhou Marine Geological Survey, Guangzhou, 510075, China
| | - Jinqiang Liang
- Guangzhou Marine Geological Survey, Guangzhou, 510075, China.
| | - Pibo Su
- Guangzhou Marine Geological Survey, Guangzhou, 510075, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; Department of Geology and Environmental Earth Science, Miami University, OH, 45056, USA
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
3
|
Microbiological Study of Yamal Lakes: A Key to Understanding the Evolution of Gas Emission Craters. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8120478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although gas emission craters (GECs) are actively investigated, the question of which landforms result from GECs remains open. The evolution of GECs includes the filling of deep hollows with atmospheric precipitation and deposits from their retreating walls, so that the final stage of gas emission crater (GEC) lake development does not differ from that of any other lakes. Microbial activity and diversity may be indicators that make it possible to distinguish GEC lakes from other exogenous lakes. This work aimed at a comparison of the activity and diversity of microbial communities in young GEC lakes and mature background lakes of Central Yamal by using a radiotracer analysis and high-throughput sequencing of the 16S rRNA genes. The radiotracer analysis revealed slow-flowing microbial processes as expected for the cold climate of the study area. GEC lakes differed from background ones by slow rates of anaerobic processes (methanogenesis, sulfate reduction) as well as by a low abundance and diversity of methanogens. Other methane cycle micro-organisms (aerobic and anaerobic methanotrophs) were similar in all studied lakes and represented by Methylobacter and ANME 2d; the rates of methane oxidation were also similar. Actinobacteria, Bacteroidetes, Betaproteobacteria, and Acidobacteria were predominant in both lake types. Thus, GEC lakes may be identified by their scarce methanogenic population.
Collapse
|
4
|
Oni OE, Schmidt F, Miyatake T, Kasten S, Witt M, Hinrichs KU, Friedrich MW. Microbial Communities and Organic Matter Composition in Surface and Subsurface Sediments of the Helgoland Mud Area, North Sea. Front Microbiol 2015; 6:1290. [PMID: 26635758 PMCID: PMC4658423 DOI: 10.3389/fmicb.2015.01290] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023] Open
Abstract
The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30-530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments.
Collapse
Affiliation(s)
- Oluwatobi E Oni
- Department of Microbial Ecophysiology, University of Bremen Bremen, Germany ; MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany ; International Max-Planck Research School for Marine Microbiology Bremen, Germany
| | - Frauke Schmidt
- MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Tetsuro Miyatake
- Department of Microbial Ecophysiology, University of Bremen Bremen, Germany
| | - Sabine Kasten
- MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany ; Department of Marine Geochemistry, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | | | - Kai-Uwe Hinrichs
- MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Michael W Friedrich
- Department of Microbial Ecophysiology, University of Bremen Bremen, Germany ; MARUM-Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| |
Collapse
|
5
|
Torres ME, Cox T, Hong WL, McManus J, Sample JC, Destrigneville C, Gan HM, Gan HY, Moreau JW. Crustal fluid and ash alteration impacts on the biosphere of Shikoku Basin sediments, Nankai Trough, Japan. GEOBIOLOGY 2015; 13:562-580. [PMID: 26081483 DOI: 10.1111/gbi.12146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 05/09/2015] [Indexed: 06/04/2023]
Abstract
We present data from sediment cores collected from IODP Site C0012 in the Shikoku Basin. Our site lies at the Nankai Trough, just prior to subduction of the 19 Ma Philippine Sea plate. Our data indicate that the sedimentary package is undergoing multiple routes of electron transport and that these differing pathways for oxidant supply generate a complex array of metabolic routes and microbial communities involved in carbon cycling. Numerical simulations matched to pore water data document that Ca(2+) and Cl(1-) are largely supplied via diffusion from a high-salinity (44.5 psu) basement fluid, which supports the presence of halophile Archean communities within the deep sedimentary package that are not observed in shallow sediments. Sulfate supply from basement supports anaerobic oxidation of methane (AOM) at a rate of ~0.2 pmol cm(-3) day(-1) at ~400 mbsf. We also note the disappearance of δ-Proteobacteria at 434 mbsf, coincident with the maximum in methane concentration, and their reappearance at 463 mbsf, coinciding with the observed deeper increase in sulfate concentration toward the basement. We did not, however, find ANME representatives in any of the samples analyzed (from 340 to 463 mbsf). The lack of ANME may be due to an overshadowing effect from the more dominant archaeal phylotypes or may indicate involvement of unknown groups of archaea in AOM (i.e., unclassified Euryarchaeota). In addition to the supply of sulfate from a basement aquifer, the deep biosphere at this site is also influenced by an elevated supply of reactive iron (up to 143 μmol g(-1)) and manganese (up to 20 μmol g(-1)). The effect of these metal oxides on the sulfur cycle is inferred from an accompanying sulfur isotope fractionation much smaller than expected from traditional sulfate-reducing pathways. The detection of the manganese- and iron-reducer γ-Proteobacteria Alteromonas at 367 mbsf is consistent with these geochemical inferences.
Collapse
Affiliation(s)
- M E Torres
- CEOAS, Oregon State University, Corvallis, OR, USA
| | - T Cox
- School of Earth Sciences, University of Melbourne, Parkville, Vic., Australia
| | - W-L Hong
- CEOAS, Oregon State University, Corvallis, OR, USA
| | - J McManus
- CEOAS, Oregon State University, Corvallis, OR, USA
- Department of Geosciences, University of Akron, Akron, OH, USA
| | - J C Sample
- School of Earth Sciences & Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | | | - H M Gan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - H Y Gan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - J W Moreau
- School of Earth Sciences, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
6
|
Burkholderia Diffusible Signal Factor Signals to Francisella novicida To Disperse Biofilm and Increase Siderophore Production. Appl Environ Microbiol 2015; 81:7057-66. [PMID: 26231649 DOI: 10.1128/aem.02165-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/26/2015] [Indexed: 11/20/2022] Open
Abstract
In many bacteria, the ability to modulate biofilm production relies on specific signaling molecules that are either self-produced or made by neighboring microbes within the ecological niche. We analyzed the potential interspecies signaling effect of the Burkholderia diffusible signal factor (BDSF) on Francisella novicida, a model organism for Francisella tularensis, and demonstrated that BDSF both inhibits the formation and causes the dispersion of Francisella biofilm. Specificity was demonstrated for the cis versus the trans form of BDSF. Using transcriptome sequencing, quantitative reverse transcription-PCR, and activity assays, we found that BDSF altered the expression of many F. novicida genes, including genes involved in biofilm formation, such as chitinases. Using a chitinase inhibitor, the antibiofilm activity of BDSF was also shown to be chitinase dependent. In addition, BDSF caused an increase in RelA expression and increased levels of (p)ppGpp, leading to decreased biofilm production. These results support our observation that exposure of F. novicida to BDSF causes biofilm dispersal. Furthermore, BDSF upregulated the genes involved in iron acquisition (figABCD), increasing siderophore production. Thus, this study provides evidence for a potential role and mechanism of diffusible signal factor (DSF) signaling in the genus Francisella and suggests the possibility of interspecies signaling between Francisella and other bacteria. Overall, this study suggests that in response to the interspecies DSF signal, F. novicida can alter its gene expression and regulate its biofilm formation.
Collapse
|
7
|
Contribution of Vertical Methane Flux to Shallow Sediment Carbon Pools across Porangahau Ridge, New Zealand. ENERGIES 2014. [DOI: 10.3390/en7085332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Wasmund K, Algora C, Müller J, Krüger M, Lloyd KG, Reinhardt R, Adrian L. Development and application of primers for the class Dehalococcoidia (phylum Chloroflexi) enables deep insights into diversity and stratification of subgroups in the marine subsurface. Environ Microbiol 2014; 17:3540-56. [PMID: 24889097 DOI: 10.1111/1462-2920.12510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 05/11/2014] [Indexed: 11/28/2022]
Abstract
Bacteria of the class Dehalococcoidia (DEH) (phylum Chloroflexi) are widely distributed in the marine subsurface and are especially prevalent in deep marine sediments. Nevertheless, little is known about the specific distributions of DEH subgroups at different sites and depths. This study therefore specifically examined the distributions of DEH through depths of various marine sediment cores by quantitative PCR and pyrosequencing using newly designed DEH 16S rRNA gene targeting primers. Quantification of DEH showed populations may establish in shallow sediments (i.e. upper centimetres), although as low relative proportions of total Bacteria, yet often became more prevalent in deeper sediments. Pyrosequencing revealed pronounced diversity co-exists within single biogeochemical zones, and that clear and sometimes abrupt shifts in relative proportions of DEH subgroups occur with depth. These shifts indicate varying metabolic properties exist among DEH subgroups. The distributional changes in DEH subgroups with depth may be related to a combination of biogeochemical factors including the availability of electron acceptors such as sulfate, the composition of organic matter and depositional regimes. Collectively, the results suggest DEH exhibit wider metabolic and genomic diversity than previously recognized, and this contributes to their widespread occurrence in the marine subsurface.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, D-04318, Germany.,Division of Microbial Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Camelia Algora
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, D-04318, Germany
| | - Josefine Müller
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, D-04318, Germany
| | - Martin Krüger
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Karen G Lloyd
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Lorenz Adrian
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, D-04318, Germany
| |
Collapse
|
9
|
Microbial communities of deep-sea methane seeps at Hikurangi continental margin (New Zealand). PLoS One 2013; 8:e72627. [PMID: 24098632 PMCID: PMC3787109 DOI: 10.1371/journal.pone.0072627] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/11/2013] [Indexed: 01/31/2023] Open
Abstract
The methane-emitting cold seeps of Hikurangi margin (New Zealand) are among the few deep-sea chemosynthetic ecosystems of the Southern Hemisphere known to date. Here we compared the biogeochemistry and microbial communities of a variety of Hikurangi cold seep ecosystems. These included highly reduced seep habitats dominated by bacterial mats, partially oxidized habitats populated by heterotrophic ampharetid polychaetes and deeply oxidized habitats dominated by chemosynthetic frenulate tubeworms. The ampharetid habitats were characterized by a thick oxic sediment layer that hosted a diverse and biomass-rich community of aerobic methanotrophic Gammaproteobacteria. These bacteria consumed up to 25% of the emanating methane and clustered within three deep-branching groups named Marine Methylotrophic Group (MMG) 1-3. MMG1 and MMG2 methylotrophs belong to the order Methylococcales, whereas MMG3 methylotrophs are related to the Methylophaga. Organisms of the groups MMG1 and MMG3 are close relatives of chemosynthetic endosymbionts of marine invertebrates. The anoxic sediment layers of all investigated seeps were dominated by anaerobic methanotrophic archaea (ANME) of the ANME-2 clade and sulfate-reducing Deltaproteobacteria. Microbial community analysis using Automated Ribosomal Intergenic Spacer Analysis (ARISA) showed that the different seep habitats hosted distinct microbial communities, which were strongly influenced by the seep-associated fauna and the geographic location. Despite outstanding features of Hikurangi seep communities, the organisms responsible for key ecosystem functions were similar to those found at seeps worldwide. This suggests that similar types of biogeochemical settings select for similar community composition regardless of geographic distance. Because ampharetid polychaetes are widespread at cold seeps the role of aerobic methanotrophy may have been underestimated in seafloor methane budgets.
Collapse
|
10
|
Abstract
Prokaryote communities were investigated on the seasonally stratified Alaska Beaufort Shelf (ABS). Water and sediment directly underlying water with origin in the Arctic, Pacific or Atlantic oceans were analyzed by pyrosequencing and length heterogeneity-PCR in conjunction with physicochemical and geographic distance data to determine what features structure ABS microbiomes. Distinct bacterial communities were evident in all water masses. Alphaproteobacteria explained similarity in Arctic surface water and Pacific derived water. Deltaproteobacteria were abundant in Atlantic origin water and drove similarity among samples. Most archaeal sequences in water were related to unclassified marine Euryarchaeota. Sediment communities influenced by Pacific and Atlantic water were distinct from each other and pelagic communities. Firmicutes and Chloroflexi were abundant in sediment, although their distribution varied in Atlantic and Pacific influenced sites. Thermoprotei dominated archaea in Pacific influenced sediments and Methanomicrobia dominated in methane-containing Atlantic influenced sediments. Length heterogeneity-PCR data from this study were analyzed with data from methane-containing sediments in other regions. Pacific influenced ABS sediments clustered with Pacific sites from New Zealand and Chilean coastal margins. Atlantic influenced ABS sediments formed another distinct cluster. Density and salinity were significant structuring features on pelagic communities. Porosity co-varied with benthic community structure across sites and methane did not. This study indicates that the origin of water overlying sediments shapes benthic communities locally and globally and that hydrography exerts greater influence on microbial community structure than the availability of methane.
Collapse
|