1
|
Murashevych B, Maslak H, Girenko D, Abraimova O, Netronina O, Shvets V. The effect of hypochlorous acid inhalation on the activity of antioxidant system enzymes in rats of different ages. Free Radic Res 2024; 58:441-457. [PMID: 39073910 DOI: 10.1080/10715762.2024.2386688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Hypochlorous acid HOCl is an effective disinfectant with a broad spectrum and high rate of microbicidal action. Its use for air treatment can be an effective tool for the prevention and therapy of infectious diseases. In this work, the in vivo study was conducted on 110 Wistar Han rats (12 and 72 weeks old) on the effect of a single inhalation of air containing gaseous HOCl on the activity of antioxidant system enzymes. For this, a special installation was designed to uniformly maintain the concentration of HOCl in the air and regulate it over a wide range. Inhalation exposure was carried out for 4 h at total chlorine concentrations in the air of approximately 2.0 mg/m3 and 5.0 mg/m3, after which the animals were observed for 14 days. The effect of inhalation on the antioxidant system activity varied significantly in animals of different ages. Catalase activity in young rats increased approximately 2-fold on days 1-2 after inhalation, regardless of the HOCl concentration, while in old animals a sharp dose-dependent decrease was initially observed. The glutathione peroxidase activity in animals of both ages increased upon inhalation of air with 5.0 mg/m3 HOCl, and in old animals this was more pronounced; when the HOCl concentration decreased to 2.0 mg/m3, this indicator increased slightly in old rats and remained virtually unchanged in young ones. The glutathione reductase activity when exposed to 2.0 mg/m3 HOCl did not change for both age groups, and with increasing HOCl concentration it increased by 1.5-2.0 times in all animals.
Collapse
Affiliation(s)
- Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Hanna Maslak
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Dmitry Girenko
- Department of Physical Chemistry, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Olha Abraimova
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Olha Netronina
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Volodymyr Shvets
- Department of Biochemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| |
Collapse
|
2
|
Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E. Zymography Methods to Simultaneously Analyze Superoxide Dismutase and Catalase Activities: Novel Application for Yeast Species Identification. Methods Mol Biol 2017; 1626:189-198. [PMID: 28608211 DOI: 10.1007/978-1-4939-7111-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We provide an optimized protocol for a double staining technique to analyze superoxide dismutase enzymatic isoforms Cu-Zn SOD (Sod1) and Mn-SOD (Sod2) and catalase in the same polyacrylamide gel. The use of NaCN, which specifically inhibits yeast Sod1 isoform, allows the analysis of Sod2 isoform while the use of H2O2 allows the analysis of catalase. The identification of a different zymography profiling of SOD and catalase isoforms in different yeast species allowed us to propose this technique as a novel yeast identification and classification strategy.
Collapse
Affiliation(s)
- Esther Gamero-Sandemetrio
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Avda Agustín Escardino, 7, Paterna, 46980, Valencia, Spain
| | - Rocío Gómez-Pastor
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Avda Agustín Escardino, 7, Paterna, 46980, Valencia, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat de València, Avda Dr Moliner, 50, Burjasot, 46100, Valencia, Spain
| | - Emilia Matallana
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Avda Agustín Escardino, 7, Paterna, 46980, Valencia, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat de València, Avda Dr Moliner, 50, Burjasot, 46100, Valencia, Spain.
| |
Collapse
|
3
|
Sooch BS, Kauldhar BS, Puri M. Recent insights into microbial catalases: Isolation, production and purification. Biotechnol Adv 2014; 32:1429-47. [DOI: 10.1016/j.biotechadv.2014.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 01/08/2023]
|
4
|
Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E. Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance. Appl Microbiol Biotechnol 2013; 97:4563-76. [DOI: 10.1007/s00253-012-4672-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 12/01/2022]
|
5
|
Characterization of Deinococcus radiophilus thioredoxin reductase active with both NADH and NADPH. J Microbiol 2010; 48:637-43. [PMID: 21046342 DOI: 10.1007/s12275-010-0283-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/08/2010] [Indexed: 09/29/2022]
Abstract
Thioredoxin reductase (TrxR, EC 1.6.4.5) of Deinococcus radiophilus was purified by steps of sonication, ammonium sulfate fractionation, 2'5' ADP Sepharose 4B affinity chromatography, and Sephadex G-100 gel filtration. The purified TrxR, which was active with both NADPH and NADH, gave a 368 U/mg protein of specific activity with 478-fold purification and 18% recovery from the cell-free extract. An isoelectric point of the purified enzymes was ca. 4.5. The molecular weights of the purified TrxR estimated by PAGE and gel filtration were about 63.1 and 72.2 kDa, respectively. The molecular mass of a TrxR subunit is 37 kDa. This suggests that TrxR definitely belongs to low molecular weight TrxR (L-TrxR). The Km and Vmax of TrxR for NADPH are 12.5 μM and 25 μM/min, whereas those for NADH are 30.2 μM and 192 μM/min. The Km and Vmax for 5, 5'-dithio-bis-2-nitrobenzoic acid (DTNB, a substituted substrate for thioredoxin) are 463 μM and 756 μM/min, respectively. The presence of FAD in TrxR was confirmed with the absorbance peaks at 385 and 460 nm. The purified TrxR was quite stable from pH 3 to 9, and was thermo-stable up to 70°C. TrxR activity was drastically reduced (ca. 70%) by Cu(2+), Zn(2+), Hg(2+), and Cd(2+), but moderately reduced (ca. 50%) by Ag(+). A significant inhibition of TrxR by N-ethylmaleimide suggests an occurrence of cysteine at its active sites. Amino acid sequences at the N-terminus of purified TrxR are H(2)N-Ser-Glu-Gln-Ala-Gln-Met-Tyr-Asp-Val-Ile-Ile-Val-Gly-Gly-Gly-Pro-Ala-Gly-Leu-Thr-Ala-COOH. These sequences show high similarity with TrxRs reported in Archaea, such as Methanosarcina mazei, Archaeoglobus fulgidus etc.
Collapse
|
6
|
Shukla MR, Yadav R, Desai A. Catalase and superoxide dismutase double staining zymogram technique for Deinococcus
and Kocuria
species exposed to multiple stresses. J Basic Microbiol 2009; 49:593-7. [DOI: 10.1002/jobm.200900037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Baker WS, Gray GC. A review of published reports regarding zoonotic pathogen infection in veterinarians. J Am Vet Med Assoc 2009; 234:1271-8. [PMID: 19442021 DOI: 10.2460/javma.234.10.1271] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify published reports regarding zoonotic pathogen infection among veterinarians. DESIGN Literature review. PROCEDURES The PubMed electronic database of medical literature published between 1966 and November 2007 was searched. Clinical case reports and reports of outbreak investigations were also identified through searches of the literature outside of PubMed and searches of references listed in included articles. Reports eligible for inclusion included controlled and uncontrolled studies examining seroprevalence of animal pathogens in veterinarians, serosurveys involving veterinarians, and reports of zoonotic pathogen infections causing clinical illness. RESULTS 66 relevant articles were identified. This included 44 seroepidemiologic studies (some examined > 1 pathogen), 12 case reports, 3 outbreak investigations, and 7 self-reported surveys (including 4 related to personal protective equipment use). Of the 44 seroepidemiologic studies, 37 (84%) identified an increased risk of zoonotic pathogen infection among veterinarians, and 7 (16%) identified no increased risk or a decreased risk. Surveys also documented that veterinarians often failed to use recommended personal protective equipment. CONCLUSIONS AND CLINICAL RELEVANCE Our review indicated that veterinarians had an increased risk of infection with a number of zoonotic pathogens. It also suggested that veterinarians may inadvertently serve as biological sentinels for emerging pathogens and could potentially spread zoonotic pathogens to their families, community members, and the animals for which they provide care. Professional and policy measures should be implemented to reduce the risk that veterinarians will become infected with, or transmit, zoonotic pathogens.
Collapse
Affiliation(s)
- Whitney S Baker
- Center for Emerging Infectious Diseases, Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52241, USA
| | | |
Collapse
|
8
|
Raymond Oluoch K, Welander U, Raymond Oluoch K, Welander U, Margareta Andersson M, Jakim Mulaa F, Mattiasson B, Hatti-Kaul R. Hydrogen peroxide degradation by immobilized cells of alkaliphilicBacillus halodurans. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420600662669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Iso-superoxide dismutase in Deinococcus grandis, a UV resistant bacterium. J Microbiol 2009; 47:172-7. [PMID: 19412601 DOI: 10.1007/s12275-008-0221-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 02/09/2009] [Indexed: 10/20/2022]
Abstract
Deinococcus grandis possesses two types of superoxide dismutase (SOD, E. C. 1.15.1.1.) that show distinct electrophoretic behavior, one that migrates slowly and the other that migrates rapidly (SOD-1 and SOD-2, respectively). In this study, SOD-1 was uniformly and abundantly detected, regardless of growth phase, whereas SOD-2 was not detected during early growth, but was detectable from the exponential growth phase. In addition, a substantial increase in SOD-2 was observed in cells that were treated with potassium superoxide or UV, which suggests that SOD-2 is an inducible protein produced in response to stressful environments. Insensitivity of SOD-1 to both H(2)O(2) and cyanide treatment suggests that SOD-1 is MnSOD. However, SOD-2 would be FeSOD, since it lost activity in response to H(2)O(2) treatment, but not to cyanide. Localization studies of D. grandis iso-SODs in sucrose-shocked cells suggest that SOD-1 is a membrane-associated enzyme, whereas SOD-2 is a cytosolic enzyme. In conclusion, SOD-1 seems to be an essential constitutive enzyme for viability and SOD-2 appears to be an inducible enzyme that is probably critical for survival upon UV irradiation and oxidative stress.
Collapse
|
10
|
Kalyani DC, Telke AA, Govindwar SP, Jadhav JP. Biodegradation and detoxification of reactive textile dye by isolated Pseudomonas sp. SUK1. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2009; 81:298-307. [PMID: 19378659 DOI: 10.2175/106143008x357147] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An isolated bacterium from a textile disposal site, Pseudomonas sp. SUK1, has the ability to decolorize the reactive textile dyes and methyl orange. This bacterium showed the potential to decolorize the textile dye Reactive Blue 59 at a high concentration (5 g/L(-1)), which is frequently used in the textile industry of Solapur, India. Induction in the activities of lignin peroxidase, azoreductase, and dichlorophenol indophenol reductase was observed during the decolorization of Methyl Orange and Reactive Blue 59. Methyl Orange (as model azo dye) was used to understand the mechanism of biodegradation by Pseudomonas sp. SUK1. The final product was identified as 1,4-benzenediamine, N, N-dimethyl by gas chromatography-mass spectroscopy. Microbial and phytotoxicity studies revealed the nontoxic nature of the products of Reactive Blue 59.
Collapse
Affiliation(s)
- Dayanad C Kalyani
- Department of Biochemistry, Shivaji University, Kolhapur-416004, India
| | | | | | | |
Collapse
|
11
|
Makarova KS, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Lapidus A, Copeland A, Kim E, Land M, Mavromatis K, Pitluck S, Richardson PM, Detter C, Brettin T, Saunders E, Lai B, Ravel B, Kemner KM, Wolf YI, Sorokin A, Gerasimova AV, Gelfand MS, Fredrickson JK, Koonin EV, Daly MJ. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS One 2007; 2:e955. [PMID: 17895995 PMCID: PMC1978522 DOI: 10.1371/journal.pone.0000955] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 09/04/2007] [Indexed: 11/19/2022] Open
Abstract
Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (KM); (MD)
| | - Marina V. Omelchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elena K. Gaidamakova
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - Vera Y. Matrosova
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - Alexander Vasilenko
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - Min Zhai
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
| | - Alla Lapidus
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Alex Copeland
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Edwin Kim
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Miriam Land
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Konstantinos Mavromatis
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Samuel Pitluck
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Paul M. Richardson
- US Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America
| | - Chris Detter
- US Department of Energy, Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Thomas Brettin
- US Department of Energy, Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Elizabeth Saunders
- US Department of Energy, Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Barry Lai
- Environmental Research Division and Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Bruce Ravel
- Environmental Research Division and Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Kenneth M. Kemner
- Environmental Research Division and Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander Sorokin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anna V. Gerasimova
- Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - Mikhail S. Gelfand
- Institute for Information Transmission Problems of RAS, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - James K. Fredrickson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael J. Daly
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail: (KM); (MD)
| |
Collapse
|
12
|
Richards JR, Elston TH, Ford RB, Gaskell RM, Hartmann K, Hurley KF, Lappin MR, Levy JK, Rodan I, Scherk M, Schultz RD, Sparkes AH. The 2006 American Association of Feline Practitioners Feline Vaccine Advisory Panel Report. J Am Vet Med Assoc 2006; 229:1405-41. [PMID: 17078805 DOI: 10.2460/javma.229.9.1405] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccination is a medical procedure, and the decision to vaccinate should be based on a risk-based assessment for each cat and each vaccine.
Collapse
Affiliation(s)
- James R Richards
- Cornell Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Misra HS, Khairnar NP, Kota S, Shrivastava S, Joshi VP, Apte SK. An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance. Mol Microbiol 2006; 59:1308-16. [PMID: 16430702 DOI: 10.1111/j.1365-2958.2005.05005.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deinococcus radiodurans R1 recovering from acute dose of gamma radiation shows a biphasic mechanism of DNA double-strand break repair. The possible involvement of microsequence homology-dependent, or non-homologous end joining type mechanisms during initial period followed by RecA-dependent homologous recombination pathways has been suggested for the reconstruction of complete genomes in this microbe. We have exploited the known roles of exonuclease I in DNA recombination to elucidate the nature of recombination involved in DNA double-strand break repair during post-irradiation recovery of D. radiodurans. Transgenic Deinococcus cells expressing exonuclease I functions of Escherichia coli showed significant reduction in gamma radiation radioresistance, while the resistance to far-UV and hydrogen peroxide remained unaffected. The overexpression of E. coli exonuclease I in Deinococcus inhibited DNA double-strand break repair. Such cells exhibited normal post-irradiation expression kinetics of RecA, PprA and single-stranded DNA-binding proteins but lacked the divalent cation manganese [(Mn(II)]-dependent protection from gamma radiation. The results strongly suggest that 3' (rho) 5' single-stranded DNA ends constitute an important component in recombination pathway involved in DNA double-strand break repair and that absence of sbcB from deinococcal genome may significantly aid its extreme radioresistance phenotype.
Collapse
Affiliation(s)
- Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai- 400 085, India.
| | | | | | | | | | | |
Collapse
|
14
|
Kota S, Misra HS. PprA: A protein implicated in radioresistance of Deinococcus radiodurans stimulates catalase activity in Escherichia coli. Appl Microbiol Biotechnol 2006; 72:790-6. [PMID: 16586106 DOI: 10.1007/s00253-006-0340-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/15/2006] [Accepted: 01/15/2006] [Indexed: 11/27/2022]
Abstract
PprA: a pleiotropic protein promoting DNA repair, role in radiation resistance of Deinococcus radiodurans was demonstrated. In this study, the effect of radiation and oxidative stress on transgenic Escherichia coli expressing pprA has been studied. The pprA gene from D. radiodurans KR1 was cloned and expressed in E. coli. Transgenic E. coli cells expressing PprA showed twofold to threefold higher tolerance to hydrogen peroxide as compared to control. The 2.8-fold in vivo stimulation of catalase activity largely contributed by KatE was observed as compared to nonrecombinant control. Furthermore, the purified PprA could stimulate the E. coli catalase activity by 1.7-fold in solution. The effect of PprA on catalase activity observed both in vivo and in vitro was reverted to normal levels in the presence of PprA antibodies. The results suggest that enhanced oxidative stress tolerance in E. coli expressing PprA was due to the PprA stimulation of catalase activity, perhaps through the interaction of these proteins.
Collapse
Affiliation(s)
- Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | |
Collapse
|
15
|
Godocíková J, Bohácová V, Zámocký M, Polek B. Production of catalases by Comamonas spp. and resistance to oxidative stress. Folia Microbiol (Praha) 2005; 50:113-8. [PMID: 16110914 DOI: 10.1007/bf02931458] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bacterial isolates Comamonas terrigena N3H (from soil contaminated with crude oil) and C. testosteroni (isolated from the sludge of a wastewater treatment plant), exhibit much higher total catalase activity than the same species from laboratory collection cultures. Electrophoretic resolution of catalases revealed only one corresponding band in cell-free extracts of both C. testosteroni cultures. Isolates of C. terrigena N3H exhibited catalase-1 and catalase-2 activity, whereas in the collection culture C. terrigena ATCC 8461 only catalase-1 was detected. The environmental isolates exhibited much higher resistance to exogenous H2O2 (20, 40 mmol/L) than collection cultures, mainly in the middle and late exponential growth phases. The stepwise H2O2-adapted culture of C. terrigena N3H, which was more resistant to oxidative stress than the original isolate, exhibited an increase of catalase and peroxidase activity represented by catalase-1. Pretreatment of cells with 0.5 mmol/L H2O2 followed by an application of the oxidative agent in toxic concentrations (up to 40 mmol/L) increased the rate of cell survival in the original isolate, but not in the H2O2-adapted variant. The protection of bacteria caused by such pretreatment corresponded with stimulation of catalase activity in pretreated culture.
Collapse
Affiliation(s)
- J Godocíková
- Institute of Molecular Biology, Centre of Excellence, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
16
|
Yan G, Hua Z, Li Y, Liu D, Chen J. Enhanced catalase synthesis by a novel combined system of photocatalytic reactor and fermentor. Biotechnol Lett 2005; 27:683-7. [PMID: 16049734 DOI: 10.1007/s10529-005-4685-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 03/21/2005] [Indexed: 11/29/2022]
Abstract
A novel combined system of a photocatalytic reactor, with UV and titanium dioxide as photocatalyst, and a fermentor with Bacillus sp. F26 as catalase producer was developed. Production of catalase was enhanced by 14% to 18.5 U ml-1 without affecting cell growth.
Collapse
Affiliation(s)
- Guoliang Yan
- Key Laboratory of Industrial Biotechnology, Ministry of Education , Southern Yangtze University, Wuxi, 214036, P.R. China
| | | | | | | | | |
Collapse
|
17
|
Zámocký M, Godocíková J, Gasperík J, Koller F, Polek B. Expression, purification, and sequence analysis of catalase-1 from the soil bacterium Comamonas terrigena N3H. Protein Expr Purif 2004; 36:115-23. [PMID: 15177292 DOI: 10.1016/j.pep.2004.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 03/02/2004] [Indexed: 11/26/2022]
Abstract
Catalases are essential components of the cellular equipment to cope with oxidative stress. We have purified and characterize herein the most abundant heme-containing catalase-1 from the soil bacterium Comamonas terrigena N3H. This oxidative stress-induced enzyme was isolated from exponential phase cells grown in the presence of peroxyacetic acid. We have used consecutive steps of hydrophobic, molecular sieve, and ion exchange chromatography to achieve a high state of purity for this metalloenzyme. The purified sample of catalase exhibited a specific catalytic activity of 55,900 U/mg, allosteric behavior in peroxidic reaction, a broad pH optimum, and a rather atypical electronic spectrum. The sample of highest purity was subjected to mass spectrometry analysis. The molecular weight of the subunit of this homodimeric protein was determined as 55,417 Da. The Qq-TOF mass analysis method allowed us to sequence short tryptic fragments of this catalase. Five such fragments with a total length of 57 amino acids together with several enzymatic properties allowed the classification of this hydroperoxidase as belonging to clade III of monofunctional catalases. The highest sequence similarity is with the catalase from Vibrio fischeri. The presented results imply the significance of this inducible enzyme in the prevention of toxic effects of oxidative stress for bacterial cells.
Collapse
Affiliation(s)
- Marcel Zámocký
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551, Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
18
|
Yun YS, Lee YN. Purification and some properties of superoxide dismutase from Deinococcus radiophilus, the UV-resistant bacterium. Extremophiles 2004; 8:237-42. [PMID: 15106001 DOI: 10.1007/s00792-004-0383-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 02/10/2004] [Indexed: 10/26/2022]
Abstract
The superoxide dismutase (SOD, EC 1.15.1.1) of Deinococcus radiophilus, a bacterium extraordinarily resistant to UV, ionizing radiations, and oxidative stress, was purified 1,920-fold with a 58% recovery yield from the cell-free extract of stationary cells by steps of ammonium sulfate fractionation and Superdex G-75 gel-filtration chromatography. A specific activity of the purified enzyme preparation was ca. 31,300 U mg(-1) protein. D. radiophilus SOD is Mn/FeSOD, judging by metal analysis and its insensitivity to cyanide and a partial sensitivity to H2O2. The molecular weights of the purified enzyme estimated by gel chromatography and polyacrylamide gel electrophoresis are 51.5+/-1 and 47.1+/-5 kDa, respectively. The SOD seems to be a homodimeric protein with a molecular mass of 26 +/- 0.5 kDa per monomer. The purified native SOD showed very acidic pI of ca. 3.8. The enzyme was stable at pH 5.0-11.0, but quite unstable below pH 5.0. SOD was thermostable up to 40 degrees C, but a linear reduction in activity above 50 degrees C. Inhibition of the purified SOD activity by beta-naphthoquinone-4-sulfonic acid, rho-diazobenzene sulfonic acid, and iodine suggests that lysine, histidine, and tyrosine residues are important for the enzyme activity. The N-terminal peptide sequence of D. radiophilus Mn/FeSOD (MAFELPQLPYAYDALEPHIDA(> D) is strikingly similar to those of D. radiodurans MnSOD and Aerobacter aerogenes FeSOD.
Collapse
Affiliation(s)
- Young Sun Yun
- Division of Life Sciences and Research Institute for Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 361-763, Korea
| | | |
Collapse
|
19
|
Khairnar NP, Misra HS, Apte SK. Pyrroloquinoline-quinone synthesized in Escherichia coli by pyrroloquinoline-quinone synthase of Deinococcus radiodurans plays a role beyond mineral phosphate solubilization. Biochem Biophys Res Commun 2004; 312:303-8. [PMID: 14637137 DOI: 10.1016/j.bbrc.2003.10.121] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deinococcus radiodurans, an extremely radioresistant bacterium, synthesizes coenzyme pyrroloquinoline-quinone (PQQ) but exhibits a negative phenotype for mineral phosphate solubilization. Gene for the putative PQQ synthesizing protein was PCR amplified and cloned from Deinococcus, sequenced, and expressed in Escherichia coli, under an inducible E. coli promoter. The transgenic E. coli expressed PQQ synthase protein of 42kDa and complemented the mineral phosphate solubilization phenotype of E. coli, suggesting the synthesis of an active protein. The cells expressing high levels of this protein showed increased protection against photodynamically produced reactive oxygen species. The effect could be attributed to the upregulation of antioxidant enzymes such as catalase and superoxide dismutase by PQQ in transgenic E. coli through an unknown mechanism. The study elucidates a hitherto unknown possible function of PQQ in bacteria.
Collapse
Affiliation(s)
- Nivedita P Khairnar
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | |
Collapse
|
20
|
Yun YS, Lee YN. Production of superoxide dismutase by Deinococcus radiophilus. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:282-7. [PMID: 12787483 DOI: 10.5483/bmbrep.2003.36.3.282] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The production of superoxide dismutase (SOD) varied in Deinococcus radiophilus, the UV resistant bacterium, depending upon different phases of growth, UV irradiation, and superoxide treatment. A gradual increase in total SOD activity occurred up to the stationary phases. The electrophoretic resolution of the SOD in cell extracts of D. radiophilus at each growth phase revealed the occurrence of MnSOD throughout the growth phases. The SOD profiles of D. radiophilus at the exponential phase received oxidative stress by the potassium superoxide treatment or UV irradiation also revealed the occurrence of a single SOD. However, these treatments caused an increase in SOD activity. The data strongly suggest that D. radiophilus has only one species of SOD as a constitutive enzyme, which seems to be a membrane-associated protein.
Collapse
Affiliation(s)
- Young Sun Yun
- Division of Life Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea
| | | |
Collapse
|