1
|
Simó-Cabrera L, García-Chumillas S, Benitez-Benitez SJ, Cánovas V, Monzó F, Pire C, Martínez-Espinosa RM. Production of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) by Haloferax mediterranei Using Candy Industry Waste as Raw Materials. Bioengineering (Basel) 2024; 11:870. [PMID: 39329612 PMCID: PMC11429114 DOI: 10.3390/bioengineering11090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The haloarchaeon Haloferax mediterranei synthesizes poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) under unfavorable nutritional conditions without the addition of any precursor to the culture, which is an advantage compared to other microbial counterparts able to synthesize polyhydroxyalkanoates (PHA). PHBV is a biodegradable polymer showing physiochemical properties of biotechnological and biomedical interest and can be used as an alternative to plastics made from chemical synthesis (which are not environmentally friendly). The versatile metabolism of H. mediterranei makes the use of waste as a carbon source for cellular growth and PHA synthesis possible. In this work, cellular growth and the production and characterization of PHBV using two different types of confectionery waste were analyzed and compared with cellular growth and PHBV synthesis in a standard culture media with glucose of analytical grade as a carbon source. The PHBV granules produced were analyzed by TEM and the biopolymer was isolated and characterized by GC-MS, FTIR NMR, and DSC. The results reveal that H. mediterranei can use these two residues (R1 and R2) for pure PHBV production, achieving 0.256 and 0.983 g PHBV/L, respectively, which are among the highest yields so far described using for the first-time waste from the candy industry. Thus, a circular economy-based process has been designed to optimize the upscaling of PHBV production by using haloarchaea as cell factories and valorizing confectionery waste.
Collapse
Affiliation(s)
- Lorena Simó-Cabrera
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Salvador García-Chumillas
- Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
- Cetec Biotechnology, Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Sergio J Benitez-Benitez
- Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Verónica Cánovas
- Cetec Biotechnology, Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Fuensanta Monzó
- Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Carmen Pire
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
2
|
Eltarahony M, Zaki S, Kheiralla Z, Abd-El-Haleem D. NAP enzyme recruitment in simultaneous bioremediation and nanoparticles synthesis. ACTA ACUST UNITED AC 2018; 18:e00257. [PMID: 29876306 PMCID: PMC5989592 DOI: 10.1016/j.btre.2018.e00257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022]
Abstract
This study employed the immobilized strain MMT and its NAP enzyme in concurrent denitrification and NPs synthesis. The properties of crude NAP enzyme were assessed at different ranges of pH and temperatures and also its stability at 4 °C and 30 °C was studied. The effect of several types of additives were evaluated at concentration rang (1 mM, 2.5 mM, 5 mM and 10 mM). Concurrently, the immobilized MMT cells completely removed NO3− upon 8th day with AgNPs synthesis ranging from 23.26 to 58.14. Immobilized NAP exhibited lower efficiency with 28.6% of NO3 elimination and large aggregated AgNPs ranging from 94.44 nm to 172.22 nm.
The periplasmic nitrate reductase enzyme (NAP) has become attractive catalyst, whose exploitation has emerged as one of the indispensable strategies toward environmentally benign applications. To achieve them efficiently and overcome the sensitivity of NAP in harsh environmental circumstances, the immobilization for denitrifying bacteria and NAP enzyme for simultaneous bioremediation and bionanoparticles synthesis was studied. NAP catalyzed NO3− reduction at Vmax of 0.811 μM/min and Km of 14.02 mM. Concurrently, the immobilized MMT cells completely removed NO3- upon 192 h with AgNPs synthesis ranging from 23.26 to 58.14 nm as indicated by SEM. Wherase, immobilized NAP exhibited lower efficiency with 28.6% of NO3− elimination within 288 h and large aggregated AgNPs ranging from 94.44 nm to 172.22 nm. To the best of author knowledge, the immobilization for denitrifying bacteria and NAP enzyme for simultaneous bioremediation and bionanoparticles synthesis was not studied before.
Collapse
Affiliation(s)
- Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, 21934 Borgelarab, Alexandria, Egypt
| | - Sahar Zaki
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, 21934 Borgelarab, Alexandria, Egypt
| | - Zeinab Kheiralla
- Botany Department, College of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Desouky Abd-El-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, 21934 Borgelarab, Alexandria, Egypt
| |
Collapse
|
3
|
Alcántara-Hernández RJ, Valenzuela-Encinas C, Zavala-Díaz de la Serna FJ, Rodriguez-Revilla J, Dendooven L, Marsch R. Haloarchaeal assimilatory nitrate-reducing communities from a saline alkaline soil. FEMS Microbiol Lett 2009; 298:56-66. [PMID: 19659727 DOI: 10.1111/j.1574-6968.2009.01710.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Assimilatory nitrate reduction (ANR) is a pathway wherein NO(3)(-) is reduced to NH(4)(+), an N species that can be incorporated into the biomass. There is little information about the ANR genes in Archaea and most of the known information has been obtained from cultivable species. In this study, the diversity of the haloarchaeal assimilatory nitrate-reducing community was studied in an extreme saline alkaline soil of the former lake Texcoco (Mexico). Genes coding for the assimilatory nitrate reductase (narB) and the assimilatory nitrite reductase (nirA) were used as functional markers. Primers to amplify and detect partial narB and nirA were designed. The analysis of these amplicons by cloning and sequencing showed that the deduced protein fragments shared >45% identity with other NarB and NirA proteins from Euryarchaeota and <38% identity with other nitrate reductases from Bacteria and Crenarchaeota. Furthermore, these clone sequences were clustered within the class Halobacteria with strong support values in both constructed dendrograms, confirming that desired PCR products were obtained. The metabolic capacity to assimilate nitrate by these haloarchaea seems to be important given that at pH 10 and higher, NH(4)(+) is mostly converted to toxic and volatile NH(3), and NO(3)(-) becomes the preferable N source.
Collapse
|
4
|
MartÃnez-Espinosa RM, Richardson DJ, Butt JN, Bonete MJ. Spectopotentiometric properties and salt-dependent thermotolerance of a [2Feâ2S] ferredoxin-involved nitrate assimilation inHaloferax mediterranei. FEMS Microbiol Lett 2007; 277:50-5. [DOI: 10.1111/j.1574-6968.2007.00942.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Martínez-Espinosa RM, Esclapez J, Bautista V, Bonete MJ. An octameric prokaryotic glutamine synthetase from the haloarchaeonHaloferax mediterranei. FEMS Microbiol Lett 2006; 264:110-6. [PMID: 17020556 DOI: 10.1111/j.1574-6968.2006.00434.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The glutamine synthetase (EC 6.3.1.2) from the haloarchaeon Haloferax mediterranei has been purified and characterized in order to understand the ammonium assimilation in haloarchaea. Based on sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel-filtration chromatography, the enzyme consists of eight subunits of 51.7 kDa, suggesting that this enzyme belongs to the glutamine synthetase type II. The purified enzyme has been characterized with respect to its optimum temperature (45 degrees C) and pH value (8.0). The optimal NaCl or KCl concentrations for the reaction were 0.5 and 0.25 M, respectively. The effect of l-methionine-d, l-sulphoximine and different divalent metal ions has also been tested. The glutamine synthetase presented here is unusual; it shows the typical characteristic of eukaryotic and soil bacteria glutamine synthetases.
Collapse
|