1
|
Kolhe N, Damle E, Pradhan A, Zinjarde S. A comprehensive assessment of Yarrowia lipolytica and its interactions with metals: Current updates and future prospective. Biotechnol Adv 2022; 59:107967. [PMID: 35489656 DOI: 10.1016/j.biotechadv.2022.107967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
The non-conventional yeast Yarrowia lipolytica has been popular as a model system for understanding biological processes such as dimorphism and lipid accumulation. The organism can efficiently utilize hydrophobic substrates (hydrocarbons and triglycerides) thereby rendering it relevant in bioremediation of oil polluted environments. The current review focuses on the interactions of this fungus with metal pollutants and its potential application in bioremediation of metal contaminated locales. This fungus is intrinsically equipped with a variety of physiological and biochemical features that enable it to tide over stress conditions induced by the presence of metals. Production of enzymes such as phosphatases, reductases and superoxide dismutases are worth a special mention. In the presence of metals, levels of inherently produced metal binding proteins (metallothioneins) and the pigment melanin are seen to be elevated. Morphological alterations with respect to biofilm formation and dimorphic transition from yeast to mycelial form are also induced by certain metals. The biomass of Y. lipolytica is inherently important as a biosorbent and cell surface modification, process optimization or whole cell immobilization techniques have aided in improving this capability. In the presence of metals such as mercury, cadmium, copper and uranium, the culture forms nanoparticulate deposits. In addition, on account of its intrinsic reductive ability, Y. lipolytica is being exploited for synthesizing nanoparticles of gold, silver, cadmium and selenium with applications as antimicrobial compounds, location agents for bioimaging and as feed supplements. This versatile organism thus has great potential in interacting with various metals and addressing problems related to their pollutant status.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Eeshan Damle
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Aditya Pradhan
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Smita Zinjarde
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
2
|
Cogo AJD, Façanha AR, da Silva Teixeira LR, de Souza SB, da Rocha JG, Figueira FF, Eutrópio FJ, Bertolazi AA, de Rezende CE, Krohling CA, Okorokov LA, Cruz C, Ramos AC, Okorokova-Façanha AL. Plasma membrane H + pump at a crossroads of acidic and iron stresses in yeast-to-hypha transition. Metallomics 2020; 12:2174-2185. [PMID: 33320152 DOI: 10.1039/d0mt00179a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron is an essential nutrient but is toxic in excess mainly under acidic conditions. Yeasts have emerged as low cost, highly efficient soil inoculants for the decontamination of metal-polluted areas, harnessing an increasing understanding of their metal tolerance mechanisms. Here, we investigated the effects of extracellular iron and acid pH stress on the dimorphism of Yarrowia lipolytica. Its growth was unaffected by 1 or 2 mM FeSO4, while a strong cellular iron accumulation was detected. However, the iron treatments decreased the hyphal length and number, mainly at 2 mM FeSO4 and pH 4.5. Inward cell membrane H+ fluxes were found at pH 4.5 and 6.0 correlated with a pH increase at the cell surface and a conspicuous yeast-to-hypha transition activity. Conversely, a remarkable H+ efflux was detected at pH 3.0, related to the extracellular microenvironment acidification and inhibition of yeast-to-hypha transition. Iron treatments intensified H+ influxes at pH 4.5 and 6.0 and inhibited H+ efflux at pH 3.0. Moreover, iron treatments inhibited the expression and activities of the plasma membrane H+-ATPase, with the H+ transport inhibited to a greater extent than the ATP hydrolysis, suggesting an iron-induced uncoupling of the pump. Our data indicate that Y. lipolytica adaptations to high iron and acidic environments occur at the expense of remodelling the yeast morphogenesis through a cellular pH modulation by H+-ATPases and H+ coupled transporters, highlighting the capacity of this non-conventional yeast to accumulate high amounts of iron and its potential application for bioremediation.
Collapse
Affiliation(s)
- Antônio Jesus Dorighetto Cogo
- Laboratório de Bioquímica e Fisiologia de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Freitas LBD, Fernandes DM, Maia SCM, Moniz A, Mazziero BG, Steiner F. Sources and doses of aluminum in experiments with rice in nutrient solution. ACTA ACUST UNITED AC 2019. [DOI: 10.1590/1807-1929/agriambi.v23n7p511-517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
ABSTRACT The aluminum source to produce toxicity in upland rice in nutrient solution experiments is not yet well established, althought the aluminum potassium sulfate has been utilized source to produce aluminum toxicity. However, in recent studies have used aluminum chloride. The aim of this study was to evaluate the capacity of aluminum sources and doses to produce toxicity in upland rice plants grown in nutrient solution. The experiment was arranged in a block randomized design, in a 2 x 5 factorial scheme and four repetitions. The treatments were two aluminum sources (aluminum potassium sulfate - AlK(SO4)2.12H2O and aluminum chloride - AlCl3.6H2O) and five aluminum doses in nutrient solution (0, 370, 740, 1100 and 1480 μmol L-1). The experiment was conducted in a greenhouse in Botucatu city, São Paulo state, Brazil, starting in April 2012, and was carried out for 56 days from transplanting of the seedlings. Using aluminum chloride, the rice plants show lower production of root and total dry weight, area and root volume, medium and thick root length, potassium and sulfur contents and accumulations. Using aluminum potassium sulfate, there are lower aluminum activity and availability, besides the formation of large amount of aluminum compounds non-toxic to the plants (aluminum sulfate) in the nutrient solution. The aluminum doses between 1100 to 1480 µmol L-1, corresponding to aluminum activity of 336.8 to 429.0 µmol L-1 of aluminum chloride as source, are more effective to produce aluminum toxicity in upland rice plants grown in nutrient solution.
Collapse
Affiliation(s)
| | | | | | - Arianne Moniz
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil
| | | | | |
Collapse
|
4
|
Dorighetto Cogo AJ, Dutra Ferreira KDR, Okorokov LA, Ramos AC, Façanha AR, Okorokova-Façanha AL. Spermine modulates fungal morphogenesis and activates plasma membrane H +-ATPase during yeast to hyphae transition. Biol Open 2018; 7:bio.029660. [PMID: 29361612 PMCID: PMC5861359 DOI: 10.1242/bio.029660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polyamines play a regulatory role in eukaryotic cell growth and morphogenesis. Despite many molecular advances, the underlying mechanism of action remains unclear. Here, we investigate a mechanism by which spermine affects the morphogenesis of a dimorphic fungal model of emerging relevance in plant interactions, Yarrowia lipolytica, through the recruitment of a phytohormone-like pathway involving activation of the plasma membrane P-type H+-ATPase. Morphological transition was followed microscopically, and the H+-ATPase activity was analyzed in isolated membrane vesicles. Proton flux and acidification were directly probed at living cell surfaces by a non-invasive selective ion electrode technique. Spermine and indol-3-acetic acid (IAA) induced the yeast-hypha transition, influencing the colony architecture. Spermine induced H+-ATPase activity and H+ efflux in living cells correlating with yeast-hypha dynamics. Pharmacological inhibition of spermine and IAA pathways prevented the physio-morphological responses, and indicated that spermine could act upstream of the IAA pathway. This study provides the first compelling evidence on the fungal morphogenesis and colony development as modulated by a spermine-induced acid growth mechanism analogous to that previously postulated for the multicellular growth regulation of plants. Summary: This study presents a new mechanistic model for the integrative role of the polyamine spermine and hormone auxin in the signaling of yeast-to-hypha transition, filling an important gap in fungal morphogenesis.
Collapse
Affiliation(s)
- Antônio Jesus Dorighetto Cogo
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil.,Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Keilla Dos Reis Dutra Ferreira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Lev A Okorokov
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Alessandro C Ramos
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Arnoldo R Façanha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| | - Anna L Okorokova-Façanha
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Pq. Califórnia, Campos dos Goytacazes-RJ 28013-602, Brazil
| |
Collapse
|
5
|
Zinjarde S, Apte M, Mohite P, Kumar AR. Yarrowia lipolytica and pollutants: Interactions and applications. Biotechnol Adv 2014; 32:920-33. [PMID: 24780156 DOI: 10.1016/j.biotechadv.2014.04.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/21/2014] [Accepted: 04/18/2014] [Indexed: 11/25/2022]
Abstract
Yarrowia lipolytica is a dimorphic, non-pathogenic, ascomycetous yeast species with distinctive physiological features and biochemical characteristics that are significant in environment-related matters. Strains naturally present in soils, sea water, sediments and waste waters have inherent abilities to degrade hydrocarbons such as alkanes (short and medium chain) and aromatic compounds (biphenyl and dibenzofuran). With the application of slow release fertilizers, design of immobilization techniques and development of microbial consortia, scale-up studies and in situ applications have been possible. In general, hydrocarbon uptake in this yeast is mediated by attachment to large droplets (via hydrophobic cell surfaces) or is aided by surfactants and emulsifiers. Subsequently, the internalized hydrocarbons are degraded by relevant enzymes innately present in the yeast. Some wild-type or recombinant strains also detoxify nitroaromatic (2,4,6-trinitrotoluene), halogenated (chlorinated and brominated hydrocarbons) and organophosphate (methyl parathion) compounds. The yeast can tolerate some metals and detoxify them via different biomolecules. The biomass (unmodified, in combination with sludge, magnetically-modified and in the biofilm form) has been employed in the biosorption of hexavalent chromium ions from aqueous solutions. Yeast cells have also been applied in protocols related to nanoparticle synthesis. The treatment of oily and solid wastes with this yeast reduces chemical oxygen demand or value-added products (single cell oil, single cell protein, surfactants, organic acids and polyalcohols) are obtained. On account of all these features, the microorganism has established a place for itself and is of considerable value in environment-related applications.
Collapse
Affiliation(s)
- Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India.
| | - Mugdha Apte
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India
| | - Pallavi Mohite
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India
| | - Ameeta Ravi Kumar
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India
| |
Collapse
|
6
|
Bose J, Babourina O, Shabala S, Rengel Z. Low-pH and aluminum resistance in arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots. PLANT & CELL PHYSIOLOGY 2013; 54:1093-104. [PMID: 23620479 DOI: 10.1093/pcp/pct064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Low-pH stress and Al(3+) toxicity affect root growth in acid soils. It was hypothesized that the capacity of genotypes to maintain Mg(2+) uptake in acidic environments may contribute to low-pH and Al resistance, but explicit evidence is lacking. In this work, an Al-resistant alr104 mutant and two Al-sensitive mutants (als5 and als3) of Arabidopsis thaliana were compared with the wild type (Col-0) for Mg(2+) uptake and intracellular Mg(2+) concentration under low-pH and combined low-pH/Al stresses. Magnesium accumulation in roots was measured in long-term (7 d) experiments. The Mg(2+) fluxes were measured using ion-sensitive microelectrodes at the distal elongation and the mature root zones in short-term (0-60 min) experiments. Intracellular Mg(2+) concentrations were measured in intact root cells at the distal elongation zone using magnesium-specific fluorescent dye and fluorescent lifetime imaging (FLIM) analysis. Under low-pH stress, Arabidopsis mutants als5 and alr104 maintained a higher Mg concentration in roots, and had greater Mg(2+) influx than the wild type and the als3 mutant. Under combined low-pH/Al treatment, Al-resistant genotypes (wild type and alr104) maintained a higher Mg(2+) accumulation, and had a higher Mg(2+) influx and higher intracellular Mg(2+) concentration than Al-sensitive genotypes (als3 and als5). Overall, these results show that increased Mg(2+) uptake correlates with an enhanced capacity of Arabidopsis genotypes to cope with low-pH and combined low-pH/Al stresses.
Collapse
Affiliation(s)
- Jayakumar Bose
- School of Earth and Environment, University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | |
Collapse
|
7
|
Bankar AV, Kumar AR, Zinjarde SS. Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 2009; 84:847-65. [DOI: 10.1007/s00253-009-2156-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/17/2009] [Accepted: 07/18/2009] [Indexed: 02/06/2023]
|
8
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|