1
|
Olaru I, Stefanache A, Gutu C, Lungu II, Mihai C, Grierosu C, Calin G, Marcu C, Ciuhodaru T. Combating Bacterial Resistance by Polymers and Antibiotic Composites. Polymers (Basel) 2024; 16:3247. [PMID: 39683992 DOI: 10.3390/polym16233247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
(1) Background: Since the discovery of antibiotics in the first half of the 20th century, humans have abused this privilege, giving rise to antibiotic-resistant pathogens. Recent research has brought to light the use of antimicrobial peptides in polymers, hydrogels, and nanoparticles (NPs) as a newer and safer alternative to traditional antibiotics. (2) Methods: This review article is a synthesis of the scientific works published in the last 15 years, focusing on the synthesis of polymers with proven antimicrobial properties. (3) Results: After a critical review of the literature was made, information and data about the synthesis and antimicrobial activity of antibacterial polymers and NPs functionalized with antibiotics were extracted. Fluorinated surfactants such as the Quaterfluo® series presented significant antimicrobial effects and could be modulated to contain thioesters to boost this characteristic. Biopolymers like chitosan and starch were also doped with iodine and used as iodophors to deliver iodine atoms directly to pathogens, as well as being antimicrobial on their own. Quaternary phosphonium salts are known for their increased antimicrobial activity compared to ammonium-containing polymers and are more thermally stable. (4) Conclusions: In summary, polymers and polymeric NPs seem like future alternatives to traditional antibiotics. Future research is needed to determine functional doses for clinical use and their toxicity.
Collapse
Affiliation(s)
- Iulia Olaru
- Faculty of Medicine and Pharmacy, University "Dunarea de Jos", 47 Domneasca Str., 800008 Galati, Romania
| | - Alina Stefanache
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Gutu
- Faculty of Medicine and Pharmacy, University "Dunarea de Jos", 47 Domneasca Str., 800008 Galati, Romania
| | - Ionut Iulian Lungu
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cozmin Mihai
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 11 Pacurari Street, 700115 Iasi, Romania
| | - Carmen Grierosu
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 11 Pacurari Street, 700115 Iasi, Romania
| | - Gabriela Calin
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 11 Pacurari Street, 700115 Iasi, Romania
| | - Constantin Marcu
- Faculty of Medicine and Pharmacy, University "Dunarea de Jos", 47 Domneasca Str., 800008 Galati, Romania
| | - Tudor Ciuhodaru
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 11 Pacurari Street, 700115 Iasi, Romania
| |
Collapse
|
2
|
George NL, Bennett EC, Orlando BJ. Guarding the walls: the multifaceted roles of Bce modules in cell envelope stress sensing and antimicrobial resistance. J Bacteriol 2024; 206:e0012324. [PMID: 38869304 PMCID: PMC11270860 DOI: 10.1128/jb.00123-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Bacteria have developed diverse strategies for defending their cell envelopes from external threats. In Firmicutes, one widespread strategy is to use Bce modules-membrane protein complexes that unite a peptide-detoxifying ABC transporter with a stress response coordinating two-component system. These modules provide specific, front-line defense for a wide variety of antimicrobial peptides and small molecule antibiotics as well as coordinate responses for heat, acid, and oxidative stress. Because of these abilities, Bce modules play important roles in virulence and the development of antibiotic resistance in a variety of pathogens, including Staphylococcus, Streptococcus, and Enterococcus species. Despite their importance, Bce modules are still poorly understood, with scattered functional data in only a small number of species. In this review, we will discuss Bce module structure in light of recent cryo-electron microscopy structures of the B. subtilis BceABRS module and explore the common threads and variations-on-a-theme in Bce module mechanisms across species. We also highlight the many remaining questions about Bce module function. Understanding these multifunctional membrane complexes will enhance our understanding of bacterial stress sensing and may point toward new therapeutic targets for highly resistant pathogens.
Collapse
Affiliation(s)
- Natasha L. George
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Ellen C. Bennett
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Benjamin J. Orlando
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Hamzah H, Nuryastuti T, Rahmah W, Chabib L, Syamsul ES, Lestari D, Jabbar A, Tunjung Pratiwi SU. Molecular Docking Study of the C-10 Massoia Lactone Compound as an Antimicrobial and Antibiofilm Agent against Candida tropicalis. ScientificWorldJournal 2023; 2023:6697124. [PMID: 37766863 PMCID: PMC10522437 DOI: 10.1155/2023/6697124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance is now considered a global health problem because it reduces the effectiveness of antimicrobial drugs. According to the World Health Organization (WHO), the highest mortality rate is associated with infections caused by multidrug-resistant microorganisms, with approximately 700,000 deaths worldwide each year. The aim of this study was to determine the potential of C-10 massoia lactone to inhibit the growth of fungi and C. tropicalis biofilm, and molecular docking studies were performed to determine the nature of the inhibition. The study was conducted using the microdilution method for antifungal and antibiofilm testing and designed with a molecular docking approach. Furthermore, an analysis using the scanning electron microscope (SEM) was performed to evaluate the mechanism of effect. The results obtained showed that C-10 massoia lactone can inhibit the growth of fungi by 84.21% w/v. Meanwhile, the growth of C. tropicalis biofilm in the intermediate phase was 80.23% w/v and in the mature phase was 74.23% w/v. SEM results showed that C-10 massoia lactone damaged the EPS matrix of C. tropicalis so that hyphal formation was hindered due to damage to fungal cells, resulting in a decrease in attachment, density, and lysis of C. tropicalis fungal cells. Based on molecular docking tests, C-10 massoia lactone was able to inhibit biofilm formation without affecting microbial growth, while docking C-10 massoia lactone showed a significant binding and has the potential as an antifungal agent. In conclusion, the C-10 massoia lactone compound has the potential as an antibiofilm against C. tropicalis, so it can become a new antibiofilm agent.
Collapse
Affiliation(s)
- Hasyrul Hamzah
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur 75124, Indonesia
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Titik Nuryastuti
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Farmako Street, North Sekip, Yogyakarta 55281, Indonesia
| | - Widya Rahmah
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Farmako Street, North Sekip, Yogyakarta 55281, Indonesia
| | - Lutfi Chabib
- Department of Pharmacy, Islamic University of Indonesia, Yogyakarta, Indonesia
| | - Eka Siswanto Syamsul
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Samarinda, Samarinda, East Borneo, Indonesia
| | - Dwi Lestari
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur 75124, Indonesia
| | - Asriullah Jabbar
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Department of Pharmacy, Faculty of Pharmacy, Haluoleo University, Kendari 93232, Indonesia
| | - Sylvia Utami Tunjung Pratiwi
- Indonesian Biofilm Research Collaboration Centre (IBRCC), Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia
- Faculty of Pharmacy, Universitas Gadjah Mada, North Sekip, Yogyakarta 55281, Indonesia
| |
Collapse
|
4
|
Huang S, Wu M, Li Y, Du J, Chen S, Jiang S, Huang X, Zhan L. The dlt operon contributes to the resistance to chlorhexidine in Streptococcus mutans. Int J Antimicrob Agents 2022; 59:106540. [DOI: 10.1016/j.ijantimicag.2022.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/01/2022] [Accepted: 01/19/2022] [Indexed: 11/05/2022]
|
5
|
Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front Microbiol 2020; 11:593215. [PMID: 33193264 PMCID: PMC7609970 DOI: 10.3389/fmicb.2020.593215] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
With the alarming increase of infections caused by pathogenic multidrug-resistant bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as a potential treatment for those infections, directly through their lytic effect or indirectly, due to their ability to modulate the immune system. There are still concerns regarding the use of such molecules in the treatment of infections, such as cell toxicity and host factors that lead to peptide inhibition. To overcome these limitations, different approaches like peptide modification to reduce toxicity and peptide combinations to improve therapeutic efficacy are being tested. Human defense peptides consist of an important part of the innate immune system, against a myriad of potential aggressors, which have in turn developed different ways to overcome the AMPs microbicidal activities. Since the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative species, so do the bacterial resistance arsenal. This review discusses the mechanisms exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides. Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Gram-positive bacilli, have been explored.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Barbara Milani
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marianna Ribeiro Carvalho
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Natanael Nepomuceno
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Natalha Tedeschi Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
6
|
Potential Risk of Spreading Resistance Genes within Extracellular-DNA-Dependent Biofilms of Streptococcus mutans in Response to Cell Envelope Stress Induced by Sub-MICs of Bacitracin. Appl Environ Microbiol 2020; 86:AEM.00770-20. [PMID: 32532873 DOI: 10.1128/aem.00770-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Antibiotics are used to treat or prevent some types of bacterial infection. The inappropriate use of antibiotics unnecessarily promotes antibiotic resistance and increases resistant bacteria, and controlling these bacteria is difficult. While the emergence of drug-resistant bacteria is a serious problem, the behavior of drug-resistant bacteria is not fully understood. In this study, we investigated the behavior of Streptococcus mutans, a major etiological agent of dental caries that is resistant to bacitracin, which is a cell wall-targeting antibiotic, and focused on biofilm formation in the presence of bacitracin. S. mutans UA159 most strongly induced extracellular DNA (eDNA)-dependent biofilm formation in the presence of bacitracin at 1/8× MIC. The ΔmbrC and ΔmbrD mutant strains, which lack bacitracin resistance, also formed biofilms in the presence of bacitracin at 1/2× MIC. This difference between the wild type and the mutants was caused by the induction of atlA expression in the mid-log phase. We also revealed that certain rgp genes involved in the synthesis of rhamnose-glucose polysaccharide related to cell wall synthesis were downregulated by bacitracin. In addition, glucosyltransferase-I was also involved in eDNA-dependent biofilm formation. The biofilm led to increased transformation efficiencies and promoted horizontal gene transfer. Biofilms were also induced by ampicillin and vancomycin, antibiotics targeting cell wall synthesis, suggesting that cell envelope stress triggers biofilm formation. Therefore, the expression of the atlA and rgp genes is regulated by S. mutans, which forms eDNA-dependent biofilms, promoting horizontal gene transfer in response to cell envelope stress induced by sub-MICs of antibiotics.IMPORTANCE Antibiotics have been reported to induce biofilm formation in many bacteria at subinhibitory concentrations. Accordingly, it is conceivable that the MIC against drug-sensitive bacteria may promote biofilm formation of resistant bacteria. Since drug-resistant bacteria have spread, it is important to understand the behavior of resistant bacteria. Streptococcus mutans is bacitracin resistant, and the 1/8× MIC of bacitracin, which is a cell wall-targeted antibiotic, induced eDNA-dependent biofilm formation. The ΔmbrC and ΔmbrD strains, which are not resistant to bacitracin, also formed biofilms in the presence of bacitracin at 1/2× MIC, and biofilms of both the wild type and mutants promoted horizontal gene transfer. Another cell wall-targeted antibiotic, vancomycin, showed effects on biofilms and gene transfer similar to those of bacitracin. Thus, treatment with cell wall-targeted antibiotics may promote the spread of drug-resistant genes in biofilms. Therefore, the behavior of resistant bacteria in the presence of antibiotics at sub-MICs should be investigated when using antibiotics.
Collapse
|
7
|
Ahmad A, Majaz S, Nouroz F. Two-component systems regulate ABC transporters in antimicrobial peptide production, immunity and resistance. Microbiology (Reading) 2020; 166:4-20. [DOI: 10.1099/mic.0.000823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria offer resistance to a broad range of antibiotics by activating their export channels of ATP-binding cassette transporters. These transporters perform a central role in vital processes of self-immunity, antibiotic transport and resistance. The majority of ATP-binding cassette transporters are capable of detecting the presence of antibiotics in an external vicinity and are tightly regulated by two-component systems. The presence of an extracellular loop and an adjacent location of both the transporter and two-component system offers serious assistance to induce a quick and specific response against antibiotics. Both systems have demonstrated their ability of sensing such agents, however, the exact mechanism is not yet fully established. This review highlighted the three key functions of antibiotic resistance, transport and self-immunity of ATP-binding cassette transporters and an adjacent two-component regulatory system.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Sidra Majaz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| |
Collapse
|
8
|
Dzhavakhiya VV, Glagoleva EV, Savelyeva VV, Statsyuk NV, Kartashov MI, Voinova TM, Sergeeva AV. New bacitracin-resistant nisin-producing strain of Lactococcus lactis and its physiological characterization. AIMS Microbiol 2018; 4:608-621. [PMID: 31294237 PMCID: PMC6613330 DOI: 10.3934/microbiol.2018.4.608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/25/2018] [Indexed: 11/18/2022] Open
Abstract
Nisin A belonging to the class I bacteriocins and produced by Lactococcus lactis subsp. lactis is widely used in many countries as highly efficient and safe preservative preventing growth of undesirable bacteria in food products. Though this compound is efficient at very low concentrations, reduction of its manufacturing cost is still relevant problem. An increased nisin A production requires improved resistance of its producer to nisin. According to some studies, mechanisms of microbial resistance to nisin A and bacitracin have a similar basis, and the same transporters are used to export these antibiotics from cells. To obtain strains with improved growth rate and nisin A productivity, selection of spontaneous bacitracin-resistant L. lactis mutants followed by examination of their stability as well as physiological and fermentation characteristics was carried out. Spontaneous mutants were obtained by culturing of L. lactis VKPM B-2092 strain on selective bacitracin-containing agar medium. The obtained bacitracin-resistant strain FL-75 was characterized by accelerated growth rate, doubled biomass accumulation, and improved nisin A resistance. The nisin A productivity of FL-75 exceeded that of the parental strain by 25% reaching 8902 U/mL after 14-h cultivation. In addition, FL-75 was characterized by the improved resistance to oxidative stress that has never been reported earlier for bacitracin-resistant microorganisms. Based on the performed characterization of FL-75, we can consider it as a new independent strain promising for the industrial production of food and feed biopreservatives. Comparison of published data and the obtained results allowed us to suppose that the bacitracin resistance mutation in FL-75 is determined rather by an increased expression of a gene homologous to the bcrC gene of Bacillus sp. than by the activation of multidrug resistance mechanisms. The revealed resistance of FL-75 to bacitracin and oxidative stress can be regulated by a common transcription factor activating in response to various environmental stresses.
Collapse
Affiliation(s)
- Vakhtang V Dzhavakhiya
- Laboratory of Biotechnology of Physiologically Active Compounds, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 117312, Russia
| | - Elena V Glagoleva
- Laboratory of Biotechnology of Physiologically Active Compounds, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 117312, Russia
| | - Veronika V Savelyeva
- Laboratory of Biotechnology of Physiologically Active Compounds, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 117312, Russia
| | - Natalia V Statsyuk
- Department of Molecular Biology, All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow region 143050, Russia
| | - Maksim I Kartashov
- Department of Molecular Biology, All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow region 143050, Russia
| | - Tatiana M Voinova
- Department of Molecular Biology, All-Russian Research Institute of Phytopathology, Bolshie Vyazemy, Moscow region 143050, Russia
| | | |
Collapse
|
9
|
Vitamin D Compounds Are Bactericidal against Streptococcus mutans and Target the Bacitracin-Associated Efflux System. Antimicrob Agents Chemother 2017; 62:AAC.01675-17. [PMID: 29061743 DOI: 10.1128/aac.01675-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/07/2017] [Indexed: 12/14/2022] Open
Abstract
Vitamin D analogs were identified as compounds that induced lysis of planktonic cultures of Streptococcus mutans in a high-throughput screen of FDA-approved drugs. Previous studies have demonstrated that certain derivatives of vitamin D possess lytic activity against other bacteria, though the mechanism has not yet been established. Through the use of a combinatorial approach, the vitamin D derivative doxercalciferol was shown to act synergistically with bacitracin, a polypeptide-type drug that is known to interfere with cell wall synthesis, suggesting that doxercalciferol may act in a bacitracin-related pathway. Innate resistance to bacitracin is attributed to efflux by a conserved ABC-type transporter, which in S. mutans is encoded by the mbrABCD operon. S. mutans possesses two characterized mechanisms of resistance to bacitracin, the ABC transporter, S. mutans bacitracin resistance (Mbr) cassette, consisting of MbrABCD, and the rhamnose-glucose polysaccharide (Rgp) system, RgpABCDEFGHI. Loss of function of the transporter in ΔmbrA and ΔmbrD mutants exacerbated the effect of the combination of doxercalciferol and bacitracin. Despite conservation of a transporter homologous to mbrABCD, the combination of doxercalciferol and bacitracin appeared to be synergistic only in streptococcal species. We conclude that vitamin D derivatives possess lytic activity against S. mutans and act through a mechanism dependent on the bacitracin resistance mechanism of MbrABCD.
Collapse
|
10
|
Tamura H, Yamada A, Kato H. Identification of A2059G 23S rRNA and G439A rplC gene mutations in Streptococcus criceti strain OMZ 61, a strain resistant to azithromycin, josamycin and clindamycin. Genes Genet Syst 2015; 90:259-67. [PMID: 26725523 DOI: 10.1266/ggs.15-00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Streptococcus criceti is a cariogenic organism that belongs to the mutans streptococci. Of the four S. criceti strains, strain OMZ 61 has been identified as being resistant to erythromycin. Antimicrobial susceptibility testing showed that strain OMZ 61 is also resistant to azithromycin, josamycin and clindamycin but susceptible to tetracycline and tiamulin. DNA hybridization analysis of the 23S rRNA genes revealed that the hybridization patterns in strain OMZ 61 differed from those in the other three strains. We further analyzed the nucleotide sequences of a ribosomal RNA operon, the rrnD operon, and the rpsJ-rpsQ region including rplC and rplD genes for ribosomal proteins L3 and L4, respectively, in the four strains studied. Nucleotide sequence analysis indicated that strain OMZ 61 contains an A-to-G substitution at nucleotide position 2059, equivalent to Escherichia coli numbering 2058, in a 23S rRNA gene (rrlD) and a G-to-A substitution at nucleotide position 439 in the rplC gene, suggesting an amino acid residue change at position 147 from valine to isoleucine, whereas no mutation in the rplD gene was found. DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism analysis showed that most or all of the 23S rRNA genes in strain OMZ 61 contain the A2059G mutation. These findings suggest that the resistance to erythromycin, azithromycin, josamycin and clindamycin in strain OMZ 61 is conferred by alterations in 23S rRNA and/or ribosomal protein L3. This is the first description of mutations in the 23S rRNA and rplC genes in mutans streptococci.
Collapse
Affiliation(s)
- Haruki Tamura
- Division of Bioregulatory Pharmacology, Department of Pharmacology, Iwate Medical University
| | | | | |
Collapse
|
11
|
Thevenard B, Besset C, Choinard S, Fourcassié P, Boyaval P, Monnet V, Rul F. Response of S. thermophilus LMD-9 to bacitracin: involvement of a BceRS/AB-like module and of the rhamnose-glucose polysaccharide synthesis pathway. Int J Food Microbiol 2014; 177:89-97. [PMID: 24607862 DOI: 10.1016/j.ijfoodmicro.2014.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 02/03/2014] [Accepted: 02/15/2014] [Indexed: 11/30/2022]
Abstract
Streptococcus thermophilus is a lactic acid bacterium of major importance to the dairy industry as it is found in numerous cheeses and is one of the two bacterial species involved in the fermentation of yogurt. Bacterial two-component signal transduction systems (TCSs) play important roles in the process of bacterial environmental adaptation. S. thermophilus LMD-9 possesses eight such TCS systems; however, their functions have thus far been only poorly investigated. Here, we focused on two of the TCSs in LMD-9, TCS06 and TCS07, whose encoding genes are located close to each other on the chromosome, and are associated with those of ABC transporters. TCS06 homologs are frequently found in Lactobacillales, but their function has not yet been determined, while TCS07 and its upstream potential ABC transporter are homologous to the BceRS/AB system, which is involved in bacitracin resistance in Bacillus and Streptococcus species. To investigate the function(s) of TCS06 and TCS07, we constructed and characterized deletion mutants and performed transcriptional analysis in the presence and absence of bacitracin. We show here that both TCS06 and TCS07 regulate the genes in their close vicinity, in particular those encoding ABC transporters. We propose that the response of S. thermophilus to bacitracin includes i) a bacitracin export system, regulated by TCS07 and constituting a BceRS/AB-like detoxification module, and ii) the modification of cell-envelope properties via modulation of rhamnose-glucose polysaccharide synthesis, at least partially regulated by TCS06.
Collapse
Affiliation(s)
- B Thevenard
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France
| | - C Besset
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France
| | - S Choinard
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France
| | - P Fourcassié
- DuPont Nutrition and Health, Danisco France, BP10, 386220 Dangé-Saint-Romain, France
| | - P Boyaval
- DuPont Nutrition and Health, Danisco France, BP10, 386220 Dangé-Saint-Romain, France
| | - V Monnet
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France
| | - F Rul
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
| |
Collapse
|
12
|
Hashizume H. [Studies for the development of novel anti-MRSA/VRE drugs]. YAKUGAKU ZASSHI 2012; 132:59-67. [PMID: 22214581 DOI: 10.1248/yakushi.132.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The widespread emergence of multidrug-resistant Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) is a high threat for human health. In the course of screening for active compounds against the above drug-resistant bacteria from microbial metabolites, we discovered three kinds of novel compounds designated tripropeptins, pargamicin, and amycolamicin. Tripropeptin C (TPPC), major component of tripropeptins, is the most promising compound because it is efficacious against MRSA and VRE both in vitro and in a mouse septicemia model, and shows no cross-resistance to available drugs including vancomycin. Studies of incorporation of radioactive macromolecular precursors and accumulation of UDP-MurNAc-pentapeptide in the cytoplasm in S. aureus Smith revealed that TPPC is a cell wall synthesis inhibitor. Antimicrobial activity of TPPC was weakened by addition of prenylpyrophosphates but not with prenylphosphates, UDP-linked sugars, or the pentapeptide of peptidoglycan. Direct interaction between TPPC and undecaprenyl pyrophosphate (C(55)-PP) was observed by mass spectrometry and thin layer chromatography, and TPPC inhibits C(55)-PP phosphatase, which plays a crucial role in peptidoglycan synthesis at an IC(50) of 0.03-0.1 µM in vitro. From the analysis of accumulation of lipid carrier-related compounds, TPPC caused accumulation of C(55)-PP in situ, leading to the accumulation of a glycine-added lipid intermediate, suggesting a distinct mode of action from that of clinically important drugs such as vancomycin, daptomycin, and bacitracin. TPPC might represent a promising novel class of antibiotic against MRSA and VRE infections.
Collapse
Affiliation(s)
- Hideki Hashizume
- Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
13
|
Tamura H, Yamada A, Kato H. Characterization of Streptococcus criceti insertion sequence IS Scr1. Genes Genet Syst 2012; 87:153-60. [DOI: 10.1266/ggs.87.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Haruki Tamura
- Division of Bioregulatory Pharmacology, Department of Pharmacology, Iwate Medical University
| | - Arisa Yamada
- Division of Bioregulatory Pharmacology, Department of Pharmacology, Iwate Medical University
| | - Hirohisa Kato
- Division of Bioregulatory Pharmacology, Department of Pharmacology, Iwate Medical University
| |
Collapse
|
14
|
Mikami Y, Suzuki N, Takahashi T, Otsuka K, Tsuda H. Bacitracin upregulates mbrAB transcription via mbrCD to confer bacitracin resistance in Streptococcus mutans. J Pharmacol Sci 2011; 117:204-7. [PMID: 22027096 PMCID: PMC7128243 DOI: 10.1254/jphs.11052sc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans is a bacterial cause of dental caries that is resistant to bacitracin. The aim of this study was to elucidate the mbrABCD-related bacitracin resistance mechanism of S. mutans. Transcriptome data demonstrated that the expression levels of 33 genes were induced more than twofold by bacitracin. Fourteen genes were selected from the upregulated genes, and defective mutants of these genes were constructed for measurement of their sensitivity to bacitracin. Among the mutants, only the mbrA- or mbrB-deficient mutants exhibited 100- to 121-fold greater sensitivity to bacitracin when compared with the wild-type strain. Moreover, knockout of the mbrC and mbrD genes abolished the bacitracin-induced mbrAB upregulation. These results suggest that both mbrC and mbrD are required for mbrAB upregulation that confers the bacitracin-resistant phenotype on S. mutans. [Supplementary Table: available only at http://dx.doi.org/10.1254/jphs.11052SC]
Collapse
Affiliation(s)
- Yoshikazu Mikami
- Department of Anatomy, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | | | | | | | | |
Collapse
|