1
|
Guiza Beltran D, Wan T, Zhang L. WhiB-like proteins: Diversity of structure, function and mechanism. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119787. [PMID: 38879133 PMCID: PMC11365794 DOI: 10.1016/j.bbamcr.2024.119787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The WhiB-Like (Wbl) proteins are a large family of iron-sulfur (Fe-S) cluster-containing transcription factors exclusively found in the phylum Actinobacteria, including the notable genera like Mycobacteria, Streptomycetes and Corynebacteria. These proteins play pivotal roles in diverse biological processes, such as cell development, redox stress response and antibiotic resistance. Members of the Wbl family exhibit remarkable diversity in their sequences, structures and functions, attracting great attention since their first discovery. This review highlights the most recent breakthroughs in understanding the structural and mechanistic aspects of Wbl-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Daisy Guiza Beltran
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | - Tao Wan
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | - LiMei Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA; Redox Biology Center, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA.
| |
Collapse
|
2
|
Li Y, Guo Y, Niu F, Gao H, Wang Q, Xu M. Regulation of oxidative stress response and antioxidant modification in Corynebacterium glutamicum. World J Microbiol Biotechnol 2024; 40:267. [PMID: 39004689 DOI: 10.1007/s11274-024-04066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
As an efficient and safe industrial bacterium, Corynebacterium glutamicum has extensive application in amino acid production. However, it often faces oxidative stress induced by reactive oxygen species (ROS), leading to diminished production efficiency. To enhance the robustness of C. glutamicum, numerous studies have focused on elucidating its regulatory mechanisms under various stress conditions such as heat, acid, and sulfur stress. However, a comprehensive review of its defense mechanisms against oxidative stress is needed. This review offers an in-depth overview of the mechanisms C. glutamicum employs to manage oxidative stress. It covers both enzymatic and non-enzymatic systems, including antioxidant enzymes, regulatory protein families, sigma factors involved in transcription, and physiological redox reduction pathways. This review provides insights for advancing research on the antioxidant mechanisms of C. glutamicum and sheds light on its potential applications in industrial production.
Collapse
Affiliation(s)
- Yueshu Li
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yuanyi Guo
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fangyuan Niu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hui Gao
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Qing Wang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Park JC, Jeong H, Kim Y, Lee HS. Trehalose biosynthetic gene otsB of Corynebacterium glutamicum is regulated by whcE in response to oxidative stress. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35040429 DOI: 10.1099/mic.0.001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene whcE of Corynebacterium glutamicum plays a positive role in oxidative stress responses and the WhcE protein interacts with SpiE. By utilizing 2D-PAGE analysis, we identified the otsB gene to be under the control of whcE. The transcription of otsB, encoding trehalose 6-phosphatase, was stimulated by oxidative stress, and whcE and spiE were involved in diamide-mediated transcriptional stimulation. The ΔotsB strain was created and found to be sensitive to the thiol-specific oxidant diamide, suggesting a role of the gene in stress responses. Genes located upstream of otsB, such as NCgl2534 and otsA, formed an operon and purified WhcE was able to bind to the promoter region of the operon (PNCgl2534), but the binding was only possible in the presence of the oxidant diamide. In addition, the transcriptional activation of PNCgl2534 by WhcE was demonstrated in in vivo assays and the transcription was stimulated in cells exposed to the oxidant diamide. These findings indicate that WhcE is a transcriptional activator, and otsB, which is involved in trehalose biosynthesis, has a role in oxidative stress responses in C. glutamicum.
Collapse
Affiliation(s)
- Jung Chul Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 390-711, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| |
Collapse
|
4
|
Jeong H, Lee JH, Kim Y, Lee HS. Thiol-specific oxidant diamide downregulates whiA gene of Corynebacterium glutamicum, thereby suppressing cell division and metabolism. Res Microbiol 2020; 171:331-340. [PMID: 32750493 DOI: 10.1016/j.resmic.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022]
Abstract
The whiA (NCgl1527) gene from Corynebacterium glutamicum plays a crucial role during cell growth, and WhiA is recognized as the transcription factor for genes involved in cell division. In this study, we assessed the regulatory role of the gene in cell physiology. Transcription of the gene was specifically downregulated by the thiol-specific oxidant, diamide, and by heat stress. Cells exposed to diamide showed decreased transcription of genes involved in cell division and these effects were more profound in ΔwhiA cells. In addition, the ΔwhiA cells showed sensitivity to thiol-specific oxidants, DNA-damaging agents, and high temperature. Further, downregulation of sigH (NCgl0733), the central regulator in stress responses, along with master regulatory genes in cell metabolism, was observed in the ΔwhiA strain. Moreover, the amount of cAMP in the ΔwhiA cells in the early stationary phase was only at 30% level of that for the wild-type strain. Collectively, our data indicate that the role of whiA is to downregulate genes associated with cell division in response to heat or thiol-specific oxidative stress, and may suggest a role for the gene in downshifting cell metabolism by downregulating global regulatory genes when growth condition is not optimal for cells.
Collapse
Affiliation(s)
- Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea.
| | - Jae-Hyun Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea.
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk, Republic of Korea.
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
5
|
Lee JH, Jeong H, Kim Y, Lee HS. Corynebacterium glutamicum whiA plays roles in cell division, cell envelope formation, and general cell physiology. Antonie van Leeuwenhoek 2019; 113:629-641. [DOI: 10.1007/s10482-019-01370-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
|
6
|
Bush MJ. The actinobacterial WhiB-like (Wbl) family of transcription factors. Mol Microbiol 2018; 110:663-676. [PMID: 30179278 PMCID: PMC6282962 DOI: 10.1111/mmi.14117] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
Abstract
The WhiB‐like (Wbl) family of proteins are exclusively found in Actinobacteria. Wbls have been shown to play key roles in virulence and antibiotic resistance in Mycobacteria and Corynebacteria, reflecting their importance during infection by the human pathogens Mycobacterium tuberculosis, Mycobacterium leprae and Corynebacterium diphtheriae. In the antibiotic‐producing Streptomyces, several Wbls have important roles in the regulation of morphological differentiation, including WhiB, a protein that controls the initiation of sporulation septation and the founding member of the Wbl family. In recent years, genome sequencing has revealed the prevalence of Wbl paralogues in species throughout the Actinobacteria. Wbl proteins are small (generally ~80–140 residues) and each contains four invariant cysteine residues that bind an O2‐ and NO‐sensitive [4Fe–4S] cluster, raising the question as to how they can maintain distinct cellular functions within a given species. Despite their discovery over 25 years ago, the Wbl protein family has largely remained enigmatic. Here I summarise recent research in Mycobacteria, Corynebacteria and Streptomyces that sheds light on the biochemical function of Wbls as transcription factors and as potential sensors of O2 and NO. I suggest that Wbl evolution has created diversity in protein–protein interactions, [4Fe–4S] cluster‐sensitivity and the ability to bind DNA.
Collapse
Affiliation(s)
- Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
7
|
Lee DS, Kim Y, Lee HS. The whcD gene of Corynebacterium glutamicum plays roles in cell division and envelope formation. Microbiology (Reading) 2017; 163:131-143. [DOI: 10.1099/mic.0.000399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Dong-Seok Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, 65 Semyung-ro, Jecheon-si, Chungbuk 390-711, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea
| |
Collapse
|
8
|
SpiE interacts with Corynebacterium glutamicum WhcE and is involved in heat and oxidative stress responses. Appl Microbiol Biotechnol 2016; 100:4063-72. [PMID: 26996627 DOI: 10.1007/s00253-016-7440-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
Abstract
The gene whcE in Corynebacterium glutamicum positively responds to oxidative and heat stress. To search for proteins that interact with WhcE, we employed a two-hybrid system with WhcE as the bait. Sequencing analysis of the isolated clones revealed peptide sequences, one of which showed high sequence identity to a hydrophobe/amphiphile efflux-1 family transporter encoded by NCgl1497. The interaction of the NCgl1497-encoded protein with WhcE in vivo was verified using reporter gene expression by real-time quantitative PCR (RT-qPCR). The WhcE protein strongly interacted with the NCgl1497-encoded protein in the presence of oxidative and heat stress. Furthermore, purified WhcE and NCgl1497-encoded proteins interacted in vitro, especially in the presence of the oxidant diamide, and the protein-protein interaction was disrupted in the presence of the reductant dithiothreitol. In addition, the transcription of NCgl1497 was activated approximately twofold in diamide- or heat-treated cells. To elucidate the function of the NCgl497 gene, an NCgl1497-deleted mutant strain was constructed. The mutant showed decreased viability in the presence of diamide and heat stress. The mutant strain also exhibited reduced transcription of the thioredoxin reductase gene, which is known to be regulated by whcE. Based on the results, NCgl1497 was named spiE (stress protein interacting with WhcE). Collectively, our data suggest that spiE is involved in the whcE-mediated oxidative stress response pathway of C. glutamicum.
Collapse
|
9
|
Hong EJ, Kim P, Kim ES, Kim Y, Lee HS. Involvement of the osrR gene in the hydrogen peroxide-mediated stress response of Corynebacterium glutamicum. Res Microbiol 2015; 167:20-8. [PMID: 26433092 DOI: 10.1016/j.resmic.2015.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/30/2015] [Accepted: 09/22/2015] [Indexed: 01/19/2023]
Abstract
A transcriptional profile of the H2O2-adapted Corynebacterium glutamicum HA strain reveals a list of upregulated regulatory genes. Among them, we selected ORF NCgl2298, designated osrR and analyzed its role in H2O2 adaptation. The osrR-deleted (ΔosrR) mutant had defective growth in minimal medium, which was even more pronounced in an osrR deletion mutant of an HA strain. The ΔosrR strain displayed increased sensitivity to H2O2. In addition to H2O2 sensitivity, the ΔosrR strain was found to be temperature-sensitive at 37 °C. 2D-PAGE analysis of the ΔosrR mutant found that MetE and several other proteins involved in redox metabolism were affected by the mutation. Accordingly, the NADPH/NADP(+) ratio of the ΔosrR strain (0.85) was much lower than that of the wild-type strain (2.01). In contrast, the NADH/NAD(+) ratio of the mutant (0.54) was considerably higher than that of the wild-type (0.21). Based on these findings, we propose that H2O2-detoxifying metabolic systems, excluding those involving catalase, are present in C. glutamicum and are regulated, in part, by osrR.
Collapse
Affiliation(s)
- Eun-Ji Hong
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea.
| | - Pil Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi 420-743, Republic of Korea.
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea.
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, 65 Semyeong-ro, Jecheon-si, Chungbuk 390-711, Republic of Korea.
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea.
| |
Collapse
|
10
|
Involvement of the NADH oxidase-encoding noxA gene in oxidative stress responses in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2014; 99:1363-74. [DOI: 10.1007/s00253-014-6327-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 01/26/2023]
|
11
|
Corynebacterium glutamicum sdhA encoding succinate dehydrogenase subunit A plays a role in cysR-mediated sulfur metabolism. Appl Microbiol Biotechnol 2014; 98:6751-9. [DOI: 10.1007/s00253-014-5823-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
|
12
|
Chandra G, Chater KF. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol Rev 2014; 38:345-79. [PMID: 24164321 PMCID: PMC4255298 DOI: 10.1111/1574-6976.12047] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022] Open
Abstract
To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes.
Collapse
|
13
|
Hong EJ, Park JS, Kim Y, Lee HS. Role of Corynebacterium glutamicum sprA encoding a serine protease in glxR-mediated global gene regulation. PLoS One 2014; 9:e93587. [PMID: 24691519 PMCID: PMC3972247 DOI: 10.1371/journal.pone.0093587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/05/2014] [Indexed: 11/19/2022] Open
Abstract
The global regulator glxR of Corynebacterium glutamicum is involved in many cellular activities. Considering its role, the GlxR protein likely interacts with other proteins to obtain, maintain, and control its activity. To isolate proteins interacting with GlxR, we used a two-hybrid system with GlxR as the bait. Subsequently, the partner, a subtilisin-like serine protease, was isolated from a C. glutamicum genomic library. Unlike glxR, which showed constitutive expression, the expression of sprA, encoding a serine protease, was maximal in the log phase. Purified His6-SprA protein underwent self-proteolysis and proteolyzed purified GlxR. The proteolytic action of SprA on GlxR was not observed in the presence of cyclic adenosine monophosphate, which modulates GlxR activity. The C. glutamicum sprA deletion mutant (ΔsprA) and sprA-overexpressing (P180-sprA) strains showed reduced growth. The activity of isocitrate dehydrogenase (a tricarboxylic acid cycle enzyme) in these strains decreased to 30–50% of that in the wild-type strain. In the P180-sprA strain, proteins involved in diverse cellular functions such as energy and carbon metabolism (NCgl2809), nitrogen metabolism (NCgl0049), methylation reactions (NCgl0719), and peptidoglycan biosynthesis (NCgl1267), as well as stress, starvation, and survival (NCgl0938) were affected and showed decreased transcription. Taken together, these data suggest that SprA, as a serine protease, performs a novel regulatory role not only in glxR-mediated gene expression but also in other areas of cell physiology. In addition, the tight control of SprA and GlxR availability may indicate their importance in global gene regulation.
Collapse
Affiliation(s)
- Eun-Ji Hong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
| | - Joon-Song Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
| | - Younhee Kim
- Department of Oriental Medicine, Semyung University, Checheon, Chungbuk, Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro, Sejong-si, Korea
- * E-mail:
| |
Collapse
|
14
|
Lee JY, Kim HJ, Kim ES, Kim P, Kim Y, Lee HS. Regulatory interaction of the Corynebacterium glutamicum whc genes in oxidative stress responses. J Biotechnol 2013; 168:149-54. [PMID: 23608553 DOI: 10.1016/j.jbiotec.2013.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/13/2013] [Accepted: 03/22/2013] [Indexed: 11/19/2022]
Abstract
In this study, we analyzed the regulatory interaction of the Corynebacterium glutamicum whc genes that play roles in oxidative stress responses. We found that whcE and whcA transcription was minimal in the whcB-deleted mutant (ΔwhcB). However, whcB and whcA transcription increased in the ΔwhcE mutant during the log phase, whereas their transcription decreased during the stationary phase. In addition, cells carrying the P180-whcB vector, which showed retarded growth due to uncontrolled whcB overexpression, recovered when whcA was deleted from the cells. Furthermore, introducing a ΔwhcE mutation into cells carrying the P180-whcB vector also resulted in improved growth and decreased whcA transcription during the log phase, suggesting that the action of whcB on whcA is mediated by whcE. Collectively, these findings show that, although the whc genes are paralogues, they play distinctive regulatory roles during cellular responses to oxidative stress. Notably, the whcE gene played a dual role of repressing and activating the whcB gene depending on the growth phase.
Collapse
Affiliation(s)
- Joo-Young Lee
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong-si 339-700, Republic of Korea
| | | | | | | | | | | |
Collapse
|
15
|
Park JS, Lee JY, Kim HJ, Kim ES, Kim P, Kim Y, Lee HS. The role of Corynebacterium glutamicum spiA gene in whcA-mediated oxidative stress gene regulation. FEMS Microbiol Lett 2012; 331:63-9. [DOI: 10.1111/j.1574-6968.2012.02554.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/17/2012] [Accepted: 03/18/2012] [Indexed: 11/26/2022] Open
Affiliation(s)
- Joon-Song Park
- Department of Biotechnology and Bioinformatics; Korea University; Jochiwon; Chungnam; Korea
| | - Joo-Young Lee
- Department of Biotechnology and Bioinformatics; Korea University; Jochiwon; Chungnam; Korea
| | - Hyung-Joon Kim
- CJ Research Institute of Biotechnology; CJ Cheiljedang Corporation; Seoul; Korea
| | - Eung-Soo Kim
- Department of Biological Engineering; Inha University; Incheon; Korea
| | - Pil Kim
- Department of Biotechnology; Catholic University of Korea; Bucheon; Gyeonggi; Korea
| | - Younhee Kim
- Department of Oriental Medicine; Semyung University; Checheon; Chungbuk; Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics; Korea University; Jochiwon; Chungnam; Korea
| |
Collapse
|
16
|
Koch-Koerfges A, Kabus A, Ochrombel I, Marin K, Bott M. Physiology and global gene expression of a Corynebacterium glutamicum ΔF(1)F(O)-ATP synthase mutant devoid of oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:370-80. [PMID: 22050934 DOI: 10.1016/j.bbabio.2011.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 12/22/2022]
Abstract
A mutant of Corynebacterium glutamicum ATCC 13032 with a deletion of the atpBEFHAGDC genes encoding F(1)F(O)-ATP synthase was characterized. Whereas no growth was observed with acetate as sole carbon source, the ΔF(1)F(O) mutant reached 47% of the growth rate and 65% of the biomass of the wild type during shake-flask cultivation in glucose minimal medium. Initially, the mutant strain showed a strongly increased glucose uptake rate accompanied by a high oxygen consumption rate and pyruvate secretion into the medium. When oxygen became limiting, the glucose consumption rate was reduced below that of the wild type and pyruvate was consumed again. The ΔF(1)F(O) mutant had increased levels of b- and d-type cytochromes and a significantly increased proton motive force. Transcription of genes involved in central carbon metabolism was essentially unchanged, whereas genes for cytochrome bd oxidase, pyruvate:quinone oxidoreductase, oxidative stress response, and others showed increased mRNA levels. On the other hand, genes for amino acid biosynthesis and ribosomal proteins as well as many genes involved in transport displayed decreased mRNA levels. Several of the transcriptional changes were reflected at the protein level, but there were also discrepancies between the mRNA and protein levels suggesting some kind of posttranscriptional regulation. The results prove for the first time that F(1)F(O)-ATP synthase and oxidative phosphorylation are in general not essential for growth of C. glutamicum.
Collapse
Affiliation(s)
- Abigail Koch-Koerfges
- Institut für Bio- und Geowissenschaften, Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | | | | | | | | |
Collapse
|