1
|
Du G, Zheng K, Sun C, Sun M, Pan J, Meng D, Guan W, Zhao H. The relationship mammalian p38 with human health and its homolog Hog1 in response to environmental stresses in Saccharomyces cerevisiae. Front Cell Dev Biol 2025; 13:1522294. [PMID: 40129568 PMCID: PMC11931143 DOI: 10.3389/fcell.2025.1522294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
The mammalian p38 MAPK pathway plays a vital role in transducing extracellular environmental stresses into numerous intracellular biological processes. The p38 MAPK have been linked to a variety of cellular processes including inflammation, cell cycle, apoptosis, development and tumorigenesis in specific cell types. The p38 MAPK pathway has been implicated in the development of many human diseases and become a target for treatment of cancer. Although MAPK p38 pathway has been extensively studied, many questions still await clarification. More comprehensive understanding of the MAPK p38 pathway will provide new possibilities for the treatment of human diseases. Hog1 in S. cerevisiae is the conserved homolog of p38 in mammalian cells and the HOG MAPK signaling pathway in S. cerevisiae has been extensively studied. The deep understanding of HOG MAPK signaling pathway will help provide clues for clarifying the p38 signaling pathway, thereby furthering our understanding of the relationship between p38 and disease. In this review, we elaborate the functions of p38 and the relationship between p38 and human disease. while also analyzing how Hog1 regulates cellular processes in response to environmental stresses. 1, p38 in response to various stresses in mammalian cells.2, The functions of mammalian p38 in human health.3, Hog1 as conserved homolog of p38 in response to environmental stresses in Saccharomyces cerevisiae. 1, p38 in response to various stresses in mammalian cells. 2, The functions of mammalian p38 in human health. 3, Hog1 as conserved homolog of p38 in response to environmental stresses in S. cerevisiae.
Collapse
Affiliation(s)
- Gang Du
- *Correspondence: Gang Du, ; Wenqiang Guan, ; Hui Zhao,
| | | | | | | | | | | | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
2
|
Qi X, Wang Z, Lin Y, Guo Y, Dai Z, Wang Q. Elucidation and engineering mitochondrial respiratory-related genes for improving bioethanol production at high temperature in Saccharomyces cerevisiae. ENGINEERING MICROBIOLOGY 2024; 4:100108. [PMID: 39629328 PMCID: PMC11610969 DOI: 10.1016/j.engmic.2023.100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 12/07/2024]
Abstract
Industrial manufacturing of bioproducts, especially bioethanol, can benefit from high-temperature fermentation, which requires the use of thermotolerant yeast strains. Mitochondrial activity in yeast is closely related to its overall metabolism. However, the mitochondrial respiratory changes in response to adaptive thermotolerance are still poorly understood and have been rarely utilized for developing thermotolerant yeast cell factories. Here, adaptive evolution and transcriptional sequencing, as well as whole-genome-level gene knockout, were used to obtain a thermotolerant strain of Saccharomyces cerevisiae. Furthermore, thermotolerance and bioethanol production efficiency of the engineered strain were examined. Physiological evaluation showed the boosted fermentation capacity and suppressed mitochondrial respiratory activity in the thermotolerant strain. The improved fermentation produced an increased supply of adenosine triphosphate required for more active energy-consuming pathways. Transcriptome analysis revealed significant changes in the expression of the genes involved in the mitochondrial respiratory chain. Evaluation of mitochondria-associated gene knockout confirmed that ADK1, DOC1, or MET7 were the key factors for the adaptive evolution of thermotolerance in the engineered yeast strain. Intriguingly, overexpression of DOC1 with TEF1 promoter regulation led to a 10.1% increase in ethanol production at 42 °C. The relationships between thermotolerance, mitochondrial activity, and respiration were explored, and a thermotolerant yeast strain was developed by altering the expression of mitochondrial respiration-related genes. This study provides a better understanding on the physiological mechanism of adaptive evolution of thermotolerance in yeast.
Collapse
Affiliation(s)
- Xianni Qi
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhen Wang
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- College of Science & Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Yuping Lin
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yufeng Guo
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zongjie Dai
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Biosynthesis, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
3
|
Prasad K, Sasi S, Weerasinghe J, Levchenko I, Bazaka K. Enhanced Antimicrobial Activity through Synergistic Effects of Cold Atmospheric Plasma and Plant Secondary Metabolites: Opportunities and Challenges. Molecules 2023; 28:7481. [PMID: 38005203 PMCID: PMC10673009 DOI: 10.3390/molecules28227481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The emergence of antibiotic resistant microorganisms possesses a great threat to human health and the environment. Considering the exponential increase in the spread of antibiotic resistant microorganisms, it would be prudent to consider the use of alternative antimicrobial agents or therapies. Only a sustainable, sustained, determined, and coordinated international effort will provide the solutions needed for the future. Plant secondary metabolites show bactericidal and bacteriostatic activity similar to that of conventional antibiotics. However, to effectively eliminate infection, secondary metabolites may need to be activated by heat treatment or combined with other therapies. Cold atmospheric plasma therapy is yet another novel approach that has proven antimicrobial effects. In this review, we explore the physiochemical mechanisms that may give rise to the improved antimicrobial activity of secondary metabolites when combined with cold atmospheric plasma therapy.
Collapse
Affiliation(s)
- Karthika Prasad
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Syamlal Sasi
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Janith Weerasinghe
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Igor Levchenko
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, Singapore 637616, Singapore
| | - Kateryna Bazaka
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| |
Collapse
|
4
|
Eigenfeld M, Wittmann L, Kerpes R, Schwaminger S, Becker T. Quantification methods of determining brewer's and pharmaceutical yeast cell viability: accuracy and impact of nanoparticles. Anal Bioanal Chem 2023; 415:3201-3213. [PMID: 37083758 PMCID: PMC10287788 DOI: 10.1007/s00216-023-04676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
For industrial processes, a fast, precise, and reliable method of determining the physiological state of yeast cells, especially viability, is essential. However, an increasing number of processes use magnetic nanoparticles (MNPs) for yeast cell manipulation, but their impact on yeast cell viability and the assay itself is unclear. This study tested the viability of Saccharomyces pastorianus ssp. carlsbergensis and Pichia pastoris by comparing traditional colourimetric, high-throughput, and growth assays with membrane fluidity. Results showed that methylene blue staining is only reliable for S. pastorianus cells with good viability, being erroneous in low viability (R2 = 0.945; [Formula: see text] = 5.78%). In comparison, the fluorescence microscopy-based assay of S. pastorianus demonstrated a coefficient of determination of R2 = 0.991 at [Formula: see text] ([Formula: see text] = 2.50%) and flow cytometric viability determination using carboxyfluorescein diacetate (CFDA), enabling high-throughput analysis of representative cell numbers; R2 = 0.972 ([Formula: see text]; [Formula: see text] = 3.89%). Membrane fluidity resulted in a non-linear relationship with the viability of the yeast cells ([Formula: see text]). We also determined similar results using P. pastoris yeast. In addition, we demonstrated that MNPs affected methylene blue staining by overestimating viability. The random forest model has been shown to be a precise method for classifying nanoparticles and yeast cells and viability differentiation in flow cytometry by using CFDA. Moreover, CFDA and membrane fluidity revealed precise results for both yeasts, also in the presence of nanoparticles, enabling fast and reliable determination of viability in many experiments using MNPs for yeast cell manipulation or separation.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Leonie Wittmann
- Chair of Bioseparation Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstr. 15, 85748 Garching, Germany
| | - Roland Kerpes
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Sebastian Schwaminger
- Chair of Bioseparation Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstr. 15, 85748 Garching, Germany
- Division of Medicinal Chemistry, Medical University of Graz, Otto-Loewi Research Center, Neue Stiftingtalstr. 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Thomas Becker
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| |
Collapse
|
5
|
Ianutsevich EA, Danilova OA, Antropova AB, Tereshina VM. Acquired thermotolerance, membrane lipids and osmolytes profiles of xerohalophilic fungus Aspergillus penicillioides under heat shock. Fungal Biol 2023; 127:909-917. [PMID: 36906381 DOI: 10.1016/j.funbio.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/23/2023]
Abstract
Xerophilic fungi accumulate a large amount of glycerol in the cytosol to counterbalance the external osmotic pressure. But during heat shock (HS) majority of fungi accumulate a thermoprotective osmolyte trehalose. Since glycerol and trehalose are synthesized in the cell from the same precursor (glucose), we hypothesised that, under heat shock conditions, xerophiles growing in media with high concentrations of glycerol may acquire greater thermotolerance than those grown in media with high concentrations of NaCl. Therefore, the composition of membrane lipids and osmolytes of the fungus Aspergillus penicillioides, growing in 2 different media under HS conditions was studied and the acquired thermotolerance was assessed. It was found that in the salt-containing medium an increase in the proportion of phosphatidic acids against a decrease in the proportion of phosphatidylethanolamines is observed in the composition of membrane lipids, and the level of glycerol in the cytosol decreases 6-fold, while in the medium with glycerol, changes in the composition of membrane lipids are insignificant and the level of glycerol is reduced by no more than 30%. In the mycelium trehalose level have increased in both media, but did not exceed 1% of dry weight. However, after exposure to HS the fungus acquires greater thermotolerance in the medium with glycerol than in the medium with salt. The data obtained indicate the interrelation between changes in the composition of osmolytes and membrane lipids in the adaptive response to HS, as well as the synergistic effect of glycerol and trehalose.
Collapse
Affiliation(s)
- Elena A Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, 119071, Moscow, Russian Federation.
| | - Olga A Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, 119071, Moscow, Russian Federation.
| | - Anna B Antropova
- Federal State Budgetary Scientific Institution «I. Mechnikov Research Institute of Vaccines and Sera», 5А, Malyy Kazennyy Pereulok, 105064, Moscow, Russian Federation.
| | - Vera M Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave, 119071, Moscow, Russian Federation.
| |
Collapse
|
6
|
Aggregation of Irisin and its Prevention by Trehalose: A Biophysical Approach. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
7
|
Engineering thermotolerant Yarrowia lipolytica for sustainable biosynthesis of mannitol and fructooligosaccharides. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Response and regulatory mechanisms of heat resistance in pathogenic fungi. Appl Microbiol Biotechnol 2022; 106:5415-5431. [PMID: 35941254 PMCID: PMC9360699 DOI: 10.1007/s00253-022-12119-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Abstract Both the increasing environmental temperature in nature and the defensive body temperature response to pathogenic fungi during mammalian infection cause heat stress during the fungal existence, reproduction, and pathogenic infection. To adapt and respond to the changing environment, fungi initiate a series of actions through a perfect thermal response system, conservative signaling pathways, corresponding transcriptional regulatory system, corresponding physiological and biochemical processes, and phenotypic changes. However, until now, accurate response and regulatory mechanisms have remained a challenge. Additionally, at present, the latest research progress on the heat resistance mechanism of pathogenic fungi has not been summarized. In this review, recent research investigating temperature sensing, transcriptional regulation, and physiological, biochemical, and morphological responses of fungi in response to heat stress is discussed. Moreover, the specificity thermal adaptation mechanism of pathogenic fungi in vivo is highlighted. These data will provide valuable knowledge to further understand the fungal heat adaptation and response mechanism, especially in pathogenic heat-resistant fungi. Key points • Mechanisms of fungal perception of heat pressure are reviewed. • The regulatory mechanism of fungal resistance to heat stress is discussed. • The thermal adaptation mechanism of pathogenic fungi in the human body is highlighted.
Collapse
|
9
|
Jin X, Zhou M, Chen S, Li D, Cao X, Liu B. Effects of pH alterations on stress- and aging-induced protein phase separation. Cell Mol Life Sci 2022; 79:380. [PMID: 35750966 PMCID: PMC9232405 DOI: 10.1007/s00018-022-04393-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 01/18/2023]
Abstract
Upon stress challenges, proteins/RNAs undergo liquid–liquid phase separation (LLPS) to fine-tune cell physiology and metabolism to help cells adapt to adverse environments. The formation of LLPS has been recently linked with intracellular pH, and maintaining proper intracellular pH homeostasis is known to be essential for the survival of organisms. However, organisms are constantly exposed to diverse stresses, which are accompanied by alterations in the intracellular pH. Aging processes and human diseases are also intimately linked with intracellular pH alterations. In this review, we summarize stress-, aging-, and cancer-associated pH changes together with the mechanisms by which cells regulate cytosolic pH homeostasis. How critical cell components undergo LLPS in response to pH alterations is also discussed, along with the functional roles of intracellular pH fluctuation in the regulation of LLPS. Further studies investigating the interplay of pH with other stressors in LLPS regulation and identifying protein responses to different pH levels will provide an in-depth understanding of the mechanisms underlying pH-driven LLPS in cell adaptation. Moreover, deciphering aging and disease-associated pH changes that influence LLPS condensate formation could lead to a deeper understanding of the functional roles of biomolecular condensates in aging and aging-related diseases.
Collapse
Affiliation(s)
- Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Min Zhou
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuxin Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China. .,Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90, Goteborg, Sweden. .,Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Medicinaregatan 9C, 413 90, Goteborg, Sweden.
| |
Collapse
|
10
|
Zhu XJ, Zhang SN, Watanabe K, Kawakami K, Kubota N, Takagi E, Tanahashi M, Wen XJ, Kubota K. Diverse Heat Tolerance of the Yeast Symbionts of Platycerus Stag Beetles in Japan. Front Microbiol 2022; 12:793592. [PMID: 35069489 PMCID: PMC8776712 DOI: 10.3389/fmicb.2021.793592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
The genus Platycerus (Coleoptera: Lucanidae) is a small stag beetle group, which is adapted to cool-temperate deciduous broad-leaved forests in East Asia. Ten Platycerus species in Japan form a monophyletic clade endemic to Japan and inhabit species-specific climatic zones. They are reported to have co-evolutionary associations with their yeast symbionts of the genus Sheffersomyces based on host cytochrome oxidase subunit I (COI) and yeast intergenic spacer (IGS) phylogenies. Here we examined the heat tolerances of the yeast colonies isolated from the mycangia of 37 females belonging ten Japanese Platycerus species. The upper limits of growth and survival temperatures of each colony were decided by cultivating it at ten temperature levels between 17.5 and 40°C. Although both temperatures varied during 25.0–31.25°C, the maximum survival temperatures (MSTs) were a little higher than the maximum growth temperatures (MGTs) in 16 colonies. Pearson’s correlations between these temperatures and environmental factors (elevation and 19 bioclimatic variables from Worldclim database) of host beetle collection sites were calculated. These temperatures were significantly correlated with elevation negatively, the maximum temperature of the warmest month (Bio5) positively, and some precipitative variables, especially in the warm season (Bio12, 13, 16, 18) negatively. Sympatric Platycerus kawadai and Platycerus albisomni share the same lineage of yeast symbionts that exhibit the same heat tolerance, but the elevational lower range limit of P. kawadai is higher than that of P. albisomni. Based on the field survey in their sympatric site, the maximum temperature of host wood of P. kawadai larvae is higher about 2–3°C than that of P. albisomni larvae in the summer, which may restrict the elevational range of P. kawadai to higher area. In conclusion, it is suggested that the heat tolerance of yeast symbionts restricts the habitat range of their host Platycerus species or/and that the environmental condition that host Platycerus species prefers affect the heat tolerance of its yeast symbionts.
Collapse
Affiliation(s)
- Xue-Jiao Zhu
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Guandong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Sheng-Nan Zhang
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kana Watanabe
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kako Kawakami
- Laboratory of Forest Zoology, Course of Applied Life Sciences, Faculty of Agriculture, The University of Tokyo, Tokyo, Japan
| | | | - Etsuro Takagi
- Laboratory of Forest Zoology, Course of Applied Life Sciences, Faculty of Agriculture, The University of Tokyo, Tokyo, Japan.,Department of Tourism Science, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Masahiko Tanahashi
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Xiu-Jun Wen
- Guandong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Kôhei Kubota
- Laboratory of Forest Zoology, Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Thermotolerance and Adaptation to Climate Change. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Lipids and Trehalose Actively Cooperate in Heat Stress Management of Schizosaccharomyces pombe. Int J Mol Sci 2021; 22:ijms222413272. [PMID: 34948069 PMCID: PMC8707580 DOI: 10.3390/ijms222413272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 01/22/2023] Open
Abstract
Homeostatic maintenance of the physicochemical properties of cellular membranes is essential for life. In yeast, trehalose accumulation and lipid remodeling enable rapid adaptation to perturbations, but their crosstalk was not investigated. Here we report about the first in-depth, mass spectrometry-based lipidomic analysis on heat-stressed Schizosaccharomyces pombe mutants which are unable to synthesize (tps1Δ) or degrade (ntp1Δ) trehalose. Our experiments provide data about the role of trehalose as a membrane protectant in heat stress. We show that under conditions of trehalose deficiency, heat stress induced a comprehensive, distinctively high-degree lipidome reshaping in which structural, signaling and storage lipids acted in concert. In the absence of trehalose, membrane lipid remodeling was more pronounced and increased with increasing stress dose. It could be characterized by decreasing unsaturation and increasing acyl chain length, and required de novo synthesis of stearic acid (18:0) and very long-chain fatty acids to serve membrane rigidification. In addition, we detected enhanced and sustained signaling lipid generation to ensure transient cell cycle arrest as well as more intense triglyceride synthesis to accommodate membrane lipid-derived oleic acid (18:1) and newly synthesized but unused fatty acids. We also demonstrate that these changes were able to partially substitute for the missing role of trehalose and conferred measurable stress tolerance to fission yeast cells.
Collapse
|
13
|
Godinho CP, Costa R, Sá‐Correia I. The ABC transporter Pdr18 is required for yeast thermotolerance due to its role in ergosterol transport and plasma membrane properties. Environ Microbiol 2021; 23:69-80. [PMID: 32985771 PMCID: PMC7891575 DOI: 10.1111/1462-2920.15253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Among the mechanisms by which yeast overcomes multiple stresses is the expression of genes encoding ATP-binding cassette (ABC) transporters required for resistance to a wide range of toxic compounds. These substrates may include weak acids, alcohols, agricultural pesticides, polyamines, metal cations, as in the case of Pdr18. This pleotropic drug resistance transporter was previously proposed to transport ergosterol at the plasma membrane (PM) level contributing to the maintenance of PM lipid organization and reduced diffusional permeation induced by lipophilic compounds. The present work reports a novel phenotype associated with the putative drug/xenobiotic-efflux-pump transporter Pdr18: the resistance to heat shock and to long-term growth at supra-optimal temperatures. Cultivation at 40°C was demonstrated to lead to higher PM permeabilization of a pdr18Δ cell population with the PDR18 gene deleted compared with the parental strain population, as indicated by flow cytometry analysis of propidium iodide stained cells. Cells of pdr18Δ grown at 40°C also exhibited increased transcription levels from genes of the ergosterol biosynthetic pathway, compared with parental cells. However, this adaptive response at 40°C was not enough to maintain PM physiological ergosterol levels in the population lacking the Pdr18 transporter and free ergosterol precursors accumulate in the deletion mutant cells.
Collapse
Affiliation(s)
- Cláudia P. Godinho
- iBB ‐ Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
| | - Rute Costa
- iBB ‐ Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
- Department of BioengineeringInstituto Superior Técnico, Universidade de LisboaLisbonPortugal
| | - Isabel Sá‐Correia
- iBB ‐ Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
- Department of BioengineeringInstituto Superior Técnico, Universidade de LisboaLisbonPortugal
| |
Collapse
|
14
|
Fedoseeva EV, Danilova OA, Ianutsevich EA, Terekhova VA, Tereshina VM. Micromycete Lipids and Stress. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Abu Bakar N, Karsani SA, Alias SA. Fungal survival under temperature stress: a proteomic perspective. PeerJ 2020; 8:e10423. [PMID: 33362961 PMCID: PMC7747687 DOI: 10.7717/peerj.10423] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Increases in knowledge of climate change generally, and its impact on agricultural industries specifically, have led to a greater research effort aimed at improving understanding of the role of fungi in various fields. Fungi play a key role in soil ecosystems as the primary agent of decomposition, recycling of organic nutrients. Fungi also include important pathogens of plants, insects, bacteria, domestic animals and humans, thus highlighting their importance in many contexts. Temperature directly affects fungal growth and protein dynamics, which ultimately will cascade through to affect crop performance. To study changes in the global protein complement of fungi, proteomic approaches have been used to examine links between temperature stress and fungal proteomic profiles. SURVEY METHODOLOGY AND OBJECTIVES A traditional rather than a systematic review approach was taken to focus on fungal responses to temperature stress elucidated using proteomic approaches. The effects of temperature stress on fungal metabolic pathways and, in particular, heat shock proteins (HSPs) are discussed. The objective of this review is to provide an overview of the effects of temperature stress on fungal proteomes. CONCLUDING REMARKS Elucidating fungal proteomic response under temperature stress is useful in the context of increasing understanding of fungal sensitivity and resilience to the challenges posed by contemporary climate change processes. Although useful, a more thorough work is needed such as combining data from multiple -omics platforms in order to develop deeper understanding of the factor influencing and controlling cell physiology. This information can be beneficial to identify potential biomarkers for monitoring environmental changes in soil, including the agricultural ecosystems vital to human society and economy.
Collapse
Affiliation(s)
- Nurlizah Abu Bakar
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Ram L, Mittal C, Harsolia RS, Yadav JK. Trehalose Inhibits the Heat-Induced Formation of the Amyloid-Like Structure of Soluble Proteins Isolated from Human Cataract Lens. Protein J 2020; 39:509-518. [PMID: 33037983 DOI: 10.1007/s10930-020-09919-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
The age-dependent loss of solubility and aggregation of crystallins constitute the pathological hallmarks of cataract. Several biochemical and biophysical factors are responsible for the reduction of crystallins' solubility and formation of irreversible protein aggregates, which display amyloid-like characteristics. The present study reports the heat-induced aggregation of soluble proteins isolated from human cataract lenses and the formation of amyloid-like structures. Exposure of protein at 55 °C for 4 h resulted in extensive (≈ 60%) protein aggregation. The heat-induced protein aggregates displayed substantial (≈ 20 nm) redshift in the wavelength of maximum absorption (λmax) of Congo red (CR) and increase in Thioflavin T (ThT) fluorescence emission intensity, indicating the presence of amyloid-like structures in the heat-induced protein aggregates. Subsequently, the addition of trehalose resulted in substantial inhibition of heat-induced aggregation and the formation of amyloid-like structure. The ability of trehalose to inhibit the heat-induced aggregation was found to be linearly dependent upon its concentration used. The optimum effect was observed in the presence of 30-40% (w/v) trehalose where the aggregated was found to be reduced from 60 to 30%. The present study demonstrated the ability to trehalose to inhibit the protein aggregation and interfere with the formation of amyloid-like structures.
Collapse
Affiliation(s)
- Lakshman Ram
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Chandrika Mittal
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Ram Swaroop Harsolia
- Department of Ophthalmology, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
17
|
Ianutsevich EA, Danilova OA, Tereshina VM. Combinatorial Action of Different Stress Factors on the Composition of Membrane Lipids and Osmolytes of Aspergillus niger. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720040153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
18
|
Eslamizad M, Albrecht D, Kuhla B. The effect of chronic, mild heat stress on metabolic changes of nutrition and adaptations in rumen papillae of lactating dairy cows. J Dairy Sci 2020; 103:8601-8614. [PMID: 32600758 DOI: 10.3168/jds.2020-18417] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 12/25/2022]
Abstract
Global warming and accompanying high ambient temperatures reduce feed intake of dairy cows and shift the blood flow from the core of the body to the periphery. As a result, hypoxia may occur in the digestive tract accompanied by disruption of the intestinal barrier, local endotoxemia and inflammation, and altered nutrient absorption. However, whether the barrier of the rumen, like the intestine, is affected by ambient heat has not been studied so far. Lactating Holstein dairy cows were subjected to heat stress at 28°C (temperature-humidity index = 76; n = 5) with ad libitum feed intake or to thermoneutral conditions at 15°C (temperature-humidity index = 60; n = 5) and pair-feeding to heat-stressed animals for a total of 4 d. Gas exchange and feed intake behavior were measured in a respiration chamber, and rumen epithelia were taken after slaughter. Heat stress significantly reduced meal size and whole-body fat oxidation but increased meal frequency and carbohydrate oxidation. The mRNA expression of toll-like receptor 4 (TLR4) and tight junction proteins and the phosphorylation of TLR4 downstream targets (interleukin-1 receptor-associated kinase 4, stress-activated protein kinase, p38 mitogen-activated protein kinase, and nuclear factor k-B) in the rumen epithelium were not affected by heat. The proteomics approach revealed increased expression of rumen epithelium proteins involved in the AMP-activated protein kinase (AMPK) and insulin signaling pathways in heat-stressed cows. Also, proteins involved in chaperone-mediated folding of proteins were upregulated, whereas those involved in antioxidant defense system were downregulated. Further, we found evidence for increased carbohydrate phosphorylation accompanied with an increased flux of carbohydrates through the hexosamine biosynthetic pathway, providing substrates for protein glycosylation. In conclusion, the mild heat stress did not induce barrier dysfunction or inflammatory responses in the rumen epithelium of dairy cows, probably because of adaptations in feed intake behavior and defense mechanisms at the tissue level.
Collapse
Affiliation(s)
- Mehdi Eslamizad
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Felix-Hausdorff-Straße 8, 17487 Greifswald, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
19
|
Moghadam NN, Sidhu K, Summanen PAM, Ketola T, Kronholm I. Quantitative genetics of temperature performance curves of Neurospora crassa. Evolution 2020; 74:1772-1787. [PMID: 32432345 DOI: 10.1111/evo.14016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/06/2020] [Indexed: 01/17/2023]
Abstract
Earth's temperature is increasing due to anthropogenic CO 2 emissions; and organisms need either to adapt to higher temperatures, migrate into colder areas, or face extinction. Temperature affects nearly all aspects of an organism's physiology via its influence on metabolic rate and protein structure, therefore genetic adaptation to increased temperature may be much harder to achieve compared to other abiotic stresses. There is still much to be learned about the evolutionary potential for adaptation to higher temperatures, therefore we studied the quantitative genetics of growth rates in different temperatures that make up the thermal performance curve of the fungal model system Neurospora crassa. We studied the amount of genetic variation for thermal performance curves and examined possible genetic constraints by estimating the G-matrix. We observed a substantial amount of genetic variation for growth in different temperatures, and most genetic variation was for performance curve elevation. Contrary to common theoretical assumptions, we did not find strong evidence for genetic trade-offs for growth between hotter and colder temperatures. We also simulated short-term evolution of thermal performance curves of N. crassa, and suggest that they can have versatile responses to selection.
Collapse
Affiliation(s)
- Neda N Moghadam
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Karendeep Sidhu
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Pauliina A M Summanen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Tarmo Ketola
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Ilkka Kronholm
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
20
|
Brown AJP, Larcombe DE, Pradhan A. Thoughts on the evolution of Core Environmental Responses in yeasts. Fungal Biol 2020; 124:475-481. [PMID: 32389310 PMCID: PMC7232023 DOI: 10.1016/j.funbio.2020.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/18/2022]
Abstract
The model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, display Core Environmental Responses (CERs) that include the induction of a core set of stress genes in response to diverse environmental stresses. CERs underlie the phenomenon of stress cross-protection, whereby exposure to one type of stress can provide protection against subsequent exposure to a second type of stress. CERs have probably arisen through the accumulation, over evolutionary time, of protective anticipatory responses (“adaptive prediction”). CERs have been observed in other evolutionarily divergent fungi but, interestingly, not in the pathogenic yeast, Candida albicans. We argue that this is because we have not looked in the right place. In response to specific host inputs, C. albicans does activate anticipatory responses that protect it against impending attack from the immune system. Therefore, we suggest that C. albicans has evolved a CER that reflects the environmental challenges it faces in host niches. We review Core Environmental Responses (CERs) in domesticated and pathogenic yeasts. CERs probably evolved through the accumulation of protective anticipatory responses. Evolutionarily diverse yeasts display CERs, but the pathogen, Candida albicans, does not. C. albicans has evolved an alternative CER that protects against immune clearance. This has implications for the investigation of CERs in other fungi.
Collapse
Affiliation(s)
- Alistair J P Brown
- MRC Centre for Medical Mycology, University of Exeter, Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Daniel E Larcombe
- MRC Centre for Medical Mycology, University of Exeter, Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Arnab Pradhan
- MRC Centre for Medical Mycology, University of Exeter, Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
21
|
Hoang Nguyen Tran P, Ko JK, Gong G, Um Y, Lee SM. Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:12. [PMID: 31993090 PMCID: PMC6975041 DOI: 10.1186/s13068-019-1641-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/19/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lignocellulosic biorefinery offers economical and sustainable production of fuels and chemicals. Saccharomyces cerevisiae, a promising industrial host for biorefinery, has been intensively developed to expand its product profile. However, the sequential and slow conversion of xylose into target products remains one of the main challenges for realizing efficient industrial lignocellulosic biorefinery. RESULTS In this study, we developed a powerful mixed-sugar co-fermenting strain of S. cerevisiae, XUSEA, with improved xylose conversion capacity during simultaneous glucose/xylose co-fermentation. To reinforce xylose catabolism, the overexpression target in the pentose phosphate pathway was selected using a DNA assembler method and overexpressed increasing xylose consumption and ethanol production by twofold. The performance of the newly engineered strain with improved xylose catabolism was further boosted by elevating fermentation temperature and thus significantly reduced the co-fermentation time by half. Through combined efforts of reinforcing the pathway of xylose catabolism and elevating the fermentation temperature, XUSEA achieved simultaneous co-fermentation of lignocellulosic hydrolysates, composed of 39.6 g L-1 glucose and 23.1 g L-1 xylose, within 24 h producing 30.1 g L-1 ethanol with a yield of 0.48 g g-1. CONCLUSIONS Owing to its superior co-fermentation performance and ability for further engineering, XUSEA has potential as a platform in a lignocellulosic biorefinery toward realizing a more economical and sustainable process for large-scale bioethanol production.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen Tran
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
- Green School, Korea University, Seoul, 02841 Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
- Green School, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
22
|
Lehnen M, Ebert BE, Blank LM. Elevated temperatures do not trigger a conserved metabolic network response among thermotolerant yeasts. BMC Microbiol 2019; 19:100. [PMID: 31101012 PMCID: PMC6525440 DOI: 10.1186/s12866-019-1453-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Thermotolerance is a highly desirable trait of microbial cell factories and has been the focus of extensive research. Yeast usually tolerate only a narrow temperature range and just two species, Kluyveromyces marxianus and Ogataea polymorpha have been described to grow at reasonable rates above 40 °C. However, the complex mechanisms of thermotolerance in yeast impede its full comprehension and the rare physiological data at elevated temperatures has so far not been matched with corresponding metabolic analyses. RESULTS To elaborate on the metabolic network response to increased fermentation temperatures of up to 49 °C, comprehensive physiological datasets of several Kluyveromyces and Ogataea strains were generated and used for 13C-metabolic flux analyses. While the maximum growth temperature was very similar in all investigated strains, the metabolic network response to elevated temperatures was not conserved among the different species. In fact, metabolic flux distributions were remarkably irresponsive to increasing temperatures in O. polymorpha, while the K. marxianus strains exhibited extensive flux rerouting at elevated temperatures. CONCLUSIONS While a clear mechanism of thermotolerance is not deducible from the fluxome level alone, the generated data can be valued as a knowledge repository for using temperature to modulate the metabolic activity towards engineering goals.
Collapse
Affiliation(s)
- Mathias Lehnen
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | - Birgitta E. Ebert
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| |
Collapse
|
23
|
Ianutsevich EA, Tereshina VM. Combinatorial impact of osmotic and heat shocks on the composition of membrane lipids and osmolytes in Aspergillus niger. MICROBIOLOGY-SGM 2019; 165:554-562. [PMID: 30932807 DOI: 10.1099/mic.0.000796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The combinatorial action of osmotic (OS) and heat (HS) shocks on the composition of soluble cytosol carbohydrates and membrane lipids was studied. For the first time it was demonstrated that the combinatorial effect of these shocks led to the non-additive response - an increase in the trehalose level, characteristic for HS, but at the same time suppression of glycerol production, uncharacteristic of the OS response. In addition, combinatorial action resulted in a new effect - increase in the mannitol level, which was not typical for the individual HS or OS responses. On the contrary, a general pattern of change was observed in the composition of membrane lipids in response to both individual HS and OS, and their combinations, which was a twofold increase in the proportion of phosphatidic acids. At the same time, the mechanism of alteration in the degree of unsaturation of membrane phospholipids was not involved in adaptation. The response to combinatorial shocks includes the accumulation of trehalose and mannitol, and increase in the proportion of phosphatidic acids in membrane lipids.
Collapse
Affiliation(s)
- Elena A Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Vera M Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
Kronholm I, Ketola T. Effects of acclimation time and epigenetic mechanisms on growth of Neurospora in fluctuating environments. Heredity (Edinb) 2018; 121:327-341. [PMID: 30143790 PMCID: PMC6133946 DOI: 10.1038/s41437-018-0138-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023] Open
Abstract
Reaction norms or tolerance curves have often been used to predict how organisms deal with fluctuating environments. A potential drawback is that reaction norms measured in different constant environments may not capture all aspects of organismal responses to fluctuating environments. We examined growth of the filamentous fungus Neurospora crassa in fluctuating temperatures and tested if growth in fluctuating temperatures can be explained simply by the growth in different constant temperatures or if more complex models are needed. In addition, as previous studies on fluctuating environments have revealed that past temperatures that organisms have experienced can affect their response to current temperature, we tested the roles of different epigenetic mechanisms in response to fluctuating environments using different mutants. We found that growth of Neurospora can be predicted in fluctuating temperatures to some extent if acclimation times are taken into account in the model. Interestingly, while fluctuating environments have been linked with epigenetic responses, we found only some evidence of involvement of epigenetic mechanisms on tolerating fluctuating temperatures. Mutants which lacked H3K4 or H3K36 methylation had slightly impaired response to temperature fluctuations, in addition the H3K4 methylation mutant and a mutant in the RNA interference pathway had altered acclimation times.
Collapse
Affiliation(s)
- Ilkka Kronholm
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, FI-40014, Jyväskylä, Finland.
| | - Tarmo Ketola
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| |
Collapse
|
25
|
Recek N, Zhou R, Zhou R, Te'o VSJ, Speight RE, Mozetič M, Vesel A, Cvelbar U, Bazaka K, Ostrikov KK. Improved fermentation efficiency of S. cerevisiae by changing glycolytic metabolic pathways with plasma agitation. Sci Rep 2018; 8:8252. [PMID: 29844402 PMCID: PMC5974074 DOI: 10.1038/s41598-018-26227-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
Production of ethanol by the yeast Saccharomyces cerevisiae is a process of global importance. In these processes, productivities and yields are pushed to their maximum possible values leading to cellular stress. Transient and lasting enhancements in tolerance and performance have been obtained by genetic engineering, forced evolution, and exposure to moderate levels of chemical and/or physical stimuli, yet the drawbacks of these methods include cost, and multi-step, complex and lengthy treatment protocols. Here, plasma agitation is shown to rapidly induce desirable phenotypic changes in S. cerevisiae after a single treatment, resulting in improved conversion of glucose to ethanol. With a complex environment rich in energetic electrons, highly-reactive chemical species, photons, and gas flow effects, plasma treatment simultaneously mimics exposure to multiple environmental stressors. A single treatment of up to 10 minutes performed using an atmospheric pressure plasma jet was sufficient to induce changes in cell membrane structure, and increased hexokinase 2 activity and secondary metabolite production. These results suggest that plasma treatment is a promising strategy that can contribute to improving metabolic activity in industrial microbial strains, and thus the practicality and economics of industrial fermentations.
Collapse
Affiliation(s)
- Nina Recek
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia.,Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, SI-1000, Slovenia
| | - Renwu Zhou
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Rusen Zhou
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | | | - Robert E Speight
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Miran Mozetič
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, SI-1000, Slovenia
| | - Alenka Vesel
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, SI-1000, Slovenia
| | - Uros Cvelbar
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Ljubljana, SI-1000, Slovenia
| | - Kateryna Bazaka
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia. .,CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organisation, P. O. Box 218, Lindfield, NSW 2070, Australia.
| | - Kostya Ken Ostrikov
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia. .,CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organisation, P. O. Box 218, Lindfield, NSW 2070, Australia.
| |
Collapse
|
26
|
|
27
|
Bondarenko SA, Ianutsevich EA, Danilova OA, Grum-Grzhimaylo AA, Kotlova ER, Kamzolkina OV, Bilanenko EN, Tereshina VM. Membrane lipids and soluble sugars dynamics of the alkaliphilic fungus Sodiomyces tronii in response to ambient pH. Extremophiles 2017; 21:743-754. [PMID: 28478604 DOI: 10.1007/s00792-017-0940-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/29/2017] [Indexed: 12/31/2022]
Abstract
Alkaliphily, the ability of an organism to thrive optimally at high ambient pH, has been well-documented in several lineages: archaea, bacteria and fungi. The molecular mechanics of such adaptation has been extensively addressed in alkaliphilic bacteria and alkalitolerant fungi. In this study, we consider an additional property that may have enabled fungi to prosper at alkaline pH: altered contents of membrane lipids and cytoprotectant molecules. In the alkaliphilic Sodiomyces tronii, we showed that at its optimal growth pH 9.2, the fungus accumulates abundant cytosolic trehalose (4-10% dry weight) and phosphatidic acids in the membrane lipids, properties not normally observed in neutrophilic species. At a very high pH 10.2, the major carbohydrate, glucose, was rapidly substituted by mannitol and arabitol. Conversely, lowering the pH to 5.4-7.0 had major implications both on the content of carbohydrates and membrane lipids. It was shown that trehalose dominated at pH 5.4. Fractions of sphingolipids and sterols of plasma membranes rapidly elevated possibly indicating the formation of membrane structures called rafts. Overall, our results reveals complex dynamics of the contents of membrane lipids and cytoplasmic sugars in alkaliphilic S. tronii, suggesting their adaptive functionality against pH stress.
Collapse
Affiliation(s)
- Sofiya A Bondarenko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russian Federation.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena A Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russian Federation
| | - Olga A Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russian Federation
| | - Alexey A Grum-Grzhimaylo
- Laboratory of Genetics, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Ekaterina R Kotlova
- Komarov Botanical Institute Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Olga V Kamzolkina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena N Bilanenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vera M Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russian Federation.
| |
Collapse
|
28
|
Guan N, Li J, Shin HD, Du G, Chen J, Liu L. Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol 2017; 101:3991-4008. [PMID: 28409384 DOI: 10.1007/s00253-017-8264-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Environmental stresses are usually active during the process of microbial fermentation and have significant influence on microbial physiology. Microorganisms have developed a series of strategies to resist environmental stresses. For instance, they maintain the integrity and fluidity of cell membranes by modulating their structure and composition, and the permeability and activities of transporters are adjusted to control nutrient transport and ion exchange. Certain transcription factors are activated to enhance gene expression, and specific signal transduction pathways are induced to adapt to environmental changes. Besides, microbial cells also have well-established repair mechanisms that protect their macromolecules against damages inflicted by environmental stresses. Oxidative, hyperosmotic, thermal, acid, and organic solvent stresses are significant in microbial fermentation. In this review, we summarize the modus operandi by which these stresses act on cellular components, as well as the corresponding resistance mechanisms developed by microorganisms. Then, we discuss the applications of these stress resistance mechanisms on the production of industrially important chemicals. Finally, we prospect the application of systems biology and synthetic biology in the identification of resistant mechanisms and improvement of metabolic robustness of microorganisms in environmental stresses.
Collapse
Affiliation(s)
- Ningzi Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
29
|
Mejía-Barajas JA, Martínez-Mora JA, Salgado-Garciglia R, Noriega-Cisneros R, Ortiz-Avila O, Cortés-Rojo C, Saavedra-Molina A. Electron transport chain in a thermotolerant yeast. J Bioenerg Biomembr 2017; 49:195-203. [PMID: 28181110 DOI: 10.1007/s10863-017-9696-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Yeasts capable of growing and surviving at high temperatures are regarded as thermotolerant. For appropriate functioning of cellular processes and cell survival, the maintenance of an optimal redox state is critical of reducing and oxidizing species. We studied mitochondrial functions of the thermotolerant Kluyveromyces marxianus SLP1 and the mesophilic OFF1 yeasts, through the evaluation of its mitochondrial membrane potential (ΔΨm), ATPase activity, electron transport chain (ETC) activities, alternative oxidase activity, lipid peroxidation. Mitochondrial membrane potential and the cytoplasmic free Ca2+ ions (Ca2+ cyt) increased in the SLP1 yeast when exposed to high temperature, compared with the mesophilic yeast OFF1. ATPase activity in the mesophilic yeast diminished 80% when exposed to 40° while the thermotolerant SLP1 showed no change, despite an increase in the mitochondrial lipid peroxidation. The SLP1 thermotolerant yeast exposed to high temperature showed a diminution of 33% of the oxygen consumption in state 4. The uncoupled state 3 of oxygen consumption did not change in the mesophilic yeast when it had an increase of temperature, whereas in the thermotolerant SLP1 yeast resulted in an increase of 2.5 times when yeast were grown at 30o, while a decrease of 51% was observed when it was exposed to high temperature. The activities of the ETC complexes were diminished in the SLP1 when exposed to high temperature, but also it was distinguished an alternative oxidase activity. Our results suggest that the mitochondria state, particularly ETC state, is an important characteristic of the thermotolerance of the SLP1 yeast strain.
Collapse
Affiliation(s)
- Jorge A Mejía-Barajas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - José A Martínez-Mora
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Rafael Salgado-Garciglia
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Ruth Noriega-Cisneros
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Omar Ortiz-Avila
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
30
|
|
31
|
Heat shock response of thermophilic fungi: membrane lipids and soluble carbohydrates under elevated temperatures. Microbiology (Reading) 2016; 162:989-999. [DOI: 10.1099/mic.0.000279] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
32
|
Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30 °C. Sci Rep 2016; 6:27003. [PMID: 27229477 PMCID: PMC4882594 DOI: 10.1038/srep27003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/12/2016] [Indexed: 11/10/2022] Open
Abstract
Exposure to long-term environmental changes across >100s of generations results in adapted phenotypes, but little is known about how metabolic and transcriptional responses are optimized in these processes. Here, we show that thermotolerant yeast strains selected by adaptive laboratory evolution to grow at increased temperature, activated a constitutive heat stress response when grown at the optimal ancestral temperature, and that this is associated with a reduced growth rate. This preventive response was perfected by additional transcriptional changes activated when the cultivation temperature is increased. Remarkably, the sum of global transcriptional changes activated in the thermotolerant strains when transferred from the optimal to the high temperature, corresponded, in magnitude and direction, to the global changes observed in the ancestral strain exposed to the same transition. This demonstrates robustness of the yeast transcriptional program when exposed to heat, and that the thermotolerant strains streamlined their path to rapidly and optimally reach post-stress transcriptional and metabolic levels. Thus, long-term adaptation to heat improved yeasts ability to rapidly adapt to increased temperatures, but this also causes a trade-off in the growth rate at the optimal ancestral temperature.
Collapse
|
33
|
Choudhary J, Singh S, Nain L. Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.02.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Sharafi G, Khosravi AR, Vahedi G, Yahyaraeyat R, Abbasi T. A comparative study of the timecourse of the expression of the thermo‑inducible HSP70 gene in clinical and environmental isolates of Aspergillus fumigatus. Mol Med Rep 2016; 13:4513-21. [PMID: 27035559 DOI: 10.3892/mmr.2016.5058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
Abstract
The internal environment within animals or humans provides different conditions to invading saprophytic fungal pathogens, requiring the differential regulation of genes in comparison to environmental conditions. Understanding the mechanisms by which pathogens regulate genes within the host may be key in determining pathogen behavior within the host and may additionally facilitate further investigation into novel therapeutic agents. The heat shock protein (HSP)70 gene and its associated proteins have been frequently reported to be among the most highly expressed and dominant proteins present within various locations at physiological temperatures. The present study examined relative gene expression levels of the HSP70 gene in Aspergillus fumigatus isolates from both clinical and environmental origins, at a range of temperature points (20, 30, 37 and 42˚C) over five days, using reverse transcription‑quantitative polymerase chain reaction, comparing with a standard A. fumigatus strain incubated at 25˚C. The results indicated a differential gene expression pattern for the environmental and clinical isolates. During the five days, the HSP70 expression levels in the clinical samples were higher than in the environmental samples. However, the difference in the expression levels between the two groups at 42˚C was reduced. The mean HSP70 expression level over the five incubation days demonstrated a gradual and continual increasing trend by temperature elevation in both groups at 30, 37 and 42˚C, however, at 20˚C both groups demonstrated reduced expression. The temperature shift from 20 to 42˚C resulted in HSP70 induction and up to a 10‑ and 8.6‑fold change in HSP70 expression levels on the fifth day of incubation in the clinical and environmental groups, respectively. In conclusion, incubation at 37 and 42˚C resulted in the highest expression levels in both experimental groups, with these temperature points important for the induction of HSP70 expression in A. fumigatus.
Collapse
Affiliation(s)
- Golnaz Sharafi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Ali Reza Khosravi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Ghasem Vahedi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Ramak Yahyaraeyat
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963111, Iran
| | - Teimur Abbasi
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| |
Collapse
|
35
|
|
36
|
Ethanol Production from Sweet Sorghum Juice at High Temperatures Using a Newly Isolated Thermotolerant Yeast Saccharomyces cerevisiae DBKKU Y-53. ENERGIES 2016. [DOI: 10.3390/en9040253] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Azevedo MM, Guimarães-Soares L, Pascoal C, Cássio F. Copper and zinc affect the activity of plasma membrane H+-ATPase and thiol content in aquatic fungi. MICROBIOLOGY-SGM 2016; 162:740-747. [PMID: 26916755 DOI: 10.1099/mic.0.000262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aquatic hyphomycetes are the major microbial decomposers of plant litter in streams. We selected three aquatic hyphomycete species with different abilities to tolerate, adsorb and accumulate copper and zinc, and we investigated the effects of these metals on H+-ATPase activity as well as on the levels of thiol (SH)-containing compounds. Before metal exposure, the species isolated from a metal-polluted stream (Heliscus submersus and Flagellospora curta) had higher levels of thiol compounds than the species isolated from a clean stream (Varicosporium elodeae). However, V. elodeae rapidly increased the levels of thiols after metal exposure, emphasizing the importance of these compounds in fungal survival under metal stress. The highest amounts of metals adsorbed to fungal mycelia were found in the most tolerant species to each metal, i.e. in H. submersus exposed to copper and in V. elodeae exposed to zinc. Short-term (10 min) exposure to copper completely inhibited the activity of H+-ATPase of H. submersus and V. elodeae, whilst zinc only led to a similar effect on H. submersus. However, at longer exposure times (8 days) the most metal-tolerant species exhibited increased H+-ATPase activities, suggesting that the plasma membrane proton pump may be involved in the acclimation of aquatic hyphomycetes to metals.
Collapse
Affiliation(s)
- M M Azevedo
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho,Campus of Gualtar, 4710-057 Braga,Portugal.,Department of Microbiology, Faculty of Medicine, University of Porto,4200-319 Porto,Portugal.,Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto,4200-319 Porto,Portugal
| | - L Guimarães-Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho,Campus of Gualtar, 4710-057 Braga,Portugal
| | - C Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho,Campus of Gualtar, 4710-057 Braga,Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho,Campus of Gualtar, 4710-057 Braga,Portugal
| | - F Cássio
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho,Campus of Gualtar, 4710-057 Braga,Portugal.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho,Campus of Gualtar, 4710-057 Braga,Portugal
| |
Collapse
|
38
|
Caspeta L, Castillo T, Nielsen J. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes. Front Bioeng Biotechnol 2015; 3:184. [PMID: 26618154 PMCID: PMC4641163 DOI: 10.3389/fbioe.2015.00184] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose.
Collapse
Affiliation(s)
- Luis Caspeta
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Tania Castillo
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Jens Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , Gothenburg , Sweden ; Department of Biology and Biological Engineering, Chalmers University of Technology , Gothenburg , Sweden ; Novo Nordisk Foundation Center for Biosustainability , Hørsholm , Denmark
| |
Collapse
|
39
|
Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses. mBio 2015. [PMID: 26199325 PMCID: PMC4513085 DOI: 10.1128/mbio.00431-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A major challenge for the production of ethanol from biomass-derived feedstocks is to develop yeasts that can sustain growth under the variety of inhibitory conditions present in the production process, e.g., high osmolality, high ethanol titers, and/or elevated temperatures (≥40°C). Using adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40°C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses. Thermotolerant yeast strains showed horizontal displacement of their thermal reaction norms to higher temperatures. Hence, their optimal and maximum growth temperatures increased by about 3°C, whereas they showed a growth trade-off at temperatures below 34°C. Computational analysis of the physical properties of proteins showed that the lethal temperature for yeast is around 49°C, as a large fraction of the yeast proteins denature above this temperature. Our analysis also indicated that the number of functions involved in controlling the growth rate decreased in the thermotolerant strains compared with the number in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures. In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance to inhibitory conditions found in industrial ethanol production processes. Yeast thermotolerance can significantly reduce the production costs of biomass conversion to ethanol. However, little information is available about the underlying genetic changes and physiological functions required for yeast thermotolerance. We recently revealed the genetic changes of thermotolerance in thermotolerant yeast strains (TTSs) generated through adaptive laboratory evolution. Here, we examined these TTSs’ physiology and computed their proteome stability over the entire thermal niche, as well as their preadaptation to other stresses. Using this approach, we showed that TTSs exhibited evolutionary trade-offs in the ancestral thermal niche, as well as reduced numbers of growth functions and preadaptation to other stresses found in ethanol production processes. This information will be useful for rational engineering of yeast thermotolerance for the production of biofuels and chemicals.
Collapse
|
40
|
Pyatrikas DV, Fedoseeva IV, Varakina NN, Rusaleva TM, Stepanov AV, Fedyaeva AV, Borovskii GB, Rikhvanov EG. Relation between cell death progression, reactive oxygen species production and mitochondrial membrane potential in fermenting Saccharomyces cerevisiae cells under heat-shock conditions. FEMS Microbiol Lett 2015; 362:fnv082. [DOI: 10.1093/femsle/fnv082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 12/21/2022] Open
|
41
|
|
42
|
Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallström BM, Petranovic D, Nielsen J. Altered sterol composition renders yeast thermotolerant. Science 2014; 346:75-8. [DOI: 10.1126/science.1258137] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype.
Collapse
|
43
|
Affiliation(s)
- Clint Cheng
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Katy C Kao
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
44
|
Yanutsevich EA, Memorskaya AS, Groza NV, Kochkina GA, Tereshina VM. Heat shock response in the thermophilic fungus Rhizomucor miehei. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714050282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Rikhvanov EG, Fedoseeva IV, Varakina NN, Rusaleva TM, Fedyaeva AV. Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance. BIOCHEMISTRY (MOSCOW) 2014; 79:16-24. [PMID: 24512659 DOI: 10.1134/s0006297914010039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but produced no effect on ROS production. The protective effect was absent if cycloheximide was added immediately before heat exposure and the cells were incubated with the drug during the heat treatment and recovery period. The rate of ROS production and protective effect of cycloheximide on viability were significantly decreased in the case of severe (50°C) heat shock. Treatment with cycloheximide at 39°C inhibited the induction of Hsp104 synthesis and suppressed the development of induced thermotolerance to severe shock (50°C), but it had no effect on induced thermotolerance to moderate (45°C) heat shock. At the same time, Hsp104 effectively protected cells from death independently of the intensity of heat exposure. These data indicate that moderate heat shock induced programmed cell death in the yeast cells, and cycloheximide suppressed this process by inhibiting general synthesis of proteins.
Collapse
Affiliation(s)
- E G Rikhvanov
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Division of the Russian Academy of Sciences, Irkutsk, 664033, Russia.
| | | | | | | | | |
Collapse
|
46
|
Production of Kluyveromyces spp. and environmental tolerance induction against Aspergillus flavus. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-013-0726-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Brown AJP, Budge S, Kaloriti D, Tillmann A, Jacobsen MD, Yin Z, Ene IV, Bohovych I, Sandai D, Kastora S, Potrykus J, Ballou ER, Childers DS, Shahana S, Leach MD. Stress adaptation in a pathogenic fungus. ACTA ACUST UNITED AC 2014; 217:144-55. [PMID: 24353214 PMCID: PMC3867497 DOI: 10.1242/jeb.088930] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Candida albicans is a major fungal pathogen of humans. This yeast is carried by many individuals as a harmless commensal, but when immune defences are perturbed it causes mucosal infections (thrush). Additionally, when the immune system becomes severely compromised, C. albicans often causes life-threatening systemic infections. A battery of virulence factors and fitness attributes promote the pathogenicity of C. albicans. Fitness attributes include robust responses to local environmental stresses, the inactivation of which attenuates virulence. Stress signalling pathways in C. albicans include evolutionarily conserved modules. However, there has been rewiring of some stress regulatory circuitry such that the roles of a number of regulators in C. albicans have diverged relative to the benign model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This reflects the specific evolution of C. albicans as an opportunistic pathogen obligately associated with warm-blooded animals, compared with other yeasts that are found across diverse environmental niches. Our understanding of C. albicans stress signalling is based primarily on the in vitro responses of glucose-grown cells to individual stresses. However, in vivo this pathogen occupies complex and dynamic host niches characterised by alternative carbon sources and simultaneous exposure to combinations of stresses (rather than individual stresses). It has become apparent that changes in carbon source strongly influence stress resistance, and that some combinatorial stresses exert non-additive effects upon C. albicans. These effects, which are relevant to fungus–host interactions during disease progression, are mediated by multiple mechanisms that include signalling and chemical crosstalk, stress pathway interference and a biological transistor.
Collapse
Affiliation(s)
- Alistair J P Brown
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mensonides FIC, Brul S, Hellingwerf KJ, Bakker BM, Teixeira de Mattos MJ. A kinetic model of catabolic adaptation and protein reprofiling in Saccharomyces cerevisiae during temperature shifts. FEBS J 2014; 281:825-41. [PMID: 24616920 DOI: 10.1111/febs.12649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this article, we aim to find an explanation for the surprisingly thin line, with regard to temperature, between cell growth, growth arrest and ultimately loss of cell viability. To this end, we used an integrative approach including both experimental and modelling work. We measured the short- and long-term effects of increases in growth temperature from 28 °C to 37, 39, 41, 42 or 43 °C on the central metabolism of Saccharomyces cerevisiae. Based on the experimental data, we developed a kinetic mathematical model that describes the metabolic and energetic changes in growing bakers' yeast when exposed to a specific temperature upshift. The model includes the temperature dependence of core energy-conserving pathways, trehalose synthesis, protein synthesis and proteolysis. Because our model focuses on protein synthesis and degradation, the net result of which is important in determining the cell's capacity to grow, the model includes growth, i.e. glucose is consumed and biomass and adenosine nucleotide cofactors are produced. The model reproduces both the observed initial metabolic response and the subsequent relaxation into a new steady-state, compatible with the new ambient temperature. In addition, it shows that the energy consumption for proteome reprofiling may be a major determinant of heat-induced growth arrest and subsequent recovery or cell death.
Collapse
|
49
|
Tereshina VM, Memorskaya AS, Kotlova ER. Lipid metabolism in Aspergillus niger under conditions of heat shock. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713050147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Woodruff LB, Boyle NR, Gill RT. Engineering improved ethanol production in Escherichia coli with a genome-wide approach. Metab Eng 2013; 17:1-11. [DOI: 10.1016/j.ymben.2013.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/28/2012] [Accepted: 01/17/2013] [Indexed: 11/29/2022]
|