1
|
Peña-Álvarez V, Asensio V, Baragaño D, Forján R, Peláez AI, Gallego JLR. Integrated landfarming strategy for remediation of HCH-contaminated soil: Synergistic effects of bioaugmentation, organic amendments, and nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137637. [PMID: 39983642 DOI: 10.1016/j.jhazmat.2025.137637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Hexachlorocyclohexane (HCH) isomers are toxic and persistent pollutants that pose serious risks to the environment and human health. Here we tested the capacity of various nature-based solutions to degrade HCH in contaminated soils of O Porriño area (Galicia, Spain). To this end, eight microcosms were established using combinations of tailor-made biostabilized organic amendments, nanoscale zero-valent iron (nZVI), and an autochthonous microbial inoculum. Throughout a 60-day experiment, we conducted HCH quantification, leachability tests, bacterial community analysis, and soil health assessment. Our results showed that landfarming alone achieved a reduction of up to 83 % in ∑HCH concentrations, demonstrating its cost-effectiveness, facilitated by the physical disruption of HCH aggregates and the presence of HCH-degrading bacteria as Sphingobium, Mesorhizobium and Cupriavidus. Organic amendments did not improve the HCH degradation rate of landfarming, but, notably, reduced HCH leachability and improved soil properties; the combination of the inoculum with the organic amendments revealed the same positive effects but a higher HCH depletion similar to that of landfarming. Thus, the synergistic effects of organic amending and inoculum in an integrated landfarming allows a reduction of the environmental risk and a potential long-term soil restoration, while a landfarming without amendments appear as a cost-effective option but only to reduce HCH contents. These findings aim to provide valuable insights into integrated approach for HCH large-scale landfarming remediation.
Collapse
Affiliation(s)
- Verónica Peña-Álvarez
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Spain; Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Spain
| | | | - Diego Baragaño
- Instituto Geológico y Minero de España (IGME-CSIC), Oviedo, Spain
| | - Rubén Forján
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Mieres, Spain
| | - Ana Isabel Peláez
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Spain; Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Spain
| | - José Luis R Gallego
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Mieres, Spain.
| |
Collapse
|
2
|
Wang Y, Tian Y, Xu D, Cheng S, Li WW, Song H. Recent advances in synthetic biology toolkits and metabolic engineering of Ralstonia eutropha H16 for production of value-added chemicals. Biotechnol Adv 2025; 79:108516. [PMID: 39793936 DOI: 10.1016/j.biotechadv.2025.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Ralstonia eutropha H16, a facultative chemolithoautotrophic Gram-negative bacterium, demonstrates remarkable metabolic flexibility by utilizing either diverse organic substrates or CO2 as the sole carbon source, with H2 serving as the electron donor under aerobic conditions. The capacity of carbon and energy metabolism of R. eutropha H16 enabled development of synthetic biology technologies and strategies to engineer its metabolism for biosynthesis of value-added chemicals. This review firstly outlines the development of synthetic biology tools tailored for R. eutropha H16, including construction of expression vectors, regulatory elements, and transformation techniques. The availability of comprehensive omics data (i.e., transcriptomic, proteomic, and metabolomic) combined with the fully annotated genome sequence provides a robust genetic framework for advanced metabolic engineering. These advancements facilitate efficient reprogramming metabolic network of R. eutropha. The potential of R. eutropha as a versatile microbial platform for industrial biotechnology is further underscored by its ability to utilize a wide range of carbon sources for the production of value-added chemicals through both autotrophic and heterotrophic pathways. The integration of state-of-the-art genetic and genomic engineering tools and strategies with high cell-density fermentation processes enables engineered R. eutropha as promising microbial cell factories for optimizing carbon fluxes and expanding the portfolio of bio-based products.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yao Tian
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, 110819 Shenyang, China; Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, 110819 Shenyang, China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Hao Song
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
3
|
Kutraite I, Augustiniene E, Malys N. Maleylpyruvic Acid-Inducible Gene Expression System and Its Application for the Development of Gentisic Acid Biosensors. Anal Chem 2024; 96:18727-18735. [PMID: 39548649 PMCID: PMC11603403 DOI: 10.1021/acs.analchem.4c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Gentisic acid is a secondary plant metabolite, known for its health benefits, not only widely used as a supplement but also implicated as a potential biomarker for cancer-associated metabolism alterations. To advance bioproduction and detection of this compound or its derivatives, cell-based approaches have become of interest in recent years. However, the lack of tools for high-throughput gentisic acid monitoring and compound-metabolizing organism screening limits the progress in this area. Here, we analyzed the gene cluster responsible for gentisic acid metabolism in Cupriavidus necator H16. The transcriptional regulator GtdR-based inducible gene expression system CnGtdR/PgtdA was elucidated, showing that it was activated when C. necator cells were subjected to gentisic acid. Subsequently, a 3-maleylpyruvic acid was identified as a primary inducer for this inducible system. Furthermore, genes gtdA and gtdT, encoding for gentisate 1,2-dioxygenase and MFS transporter, were shown to be essential for inducible system activation in the presence of gentisic acid with GtdA enabling conversion of this phenolic acid into the inducer. The CnGtdRAT/PgtdA-based inducible system was employed to develop a whole-cell biosensor for the intracellular and extracellular detection of gentisic acid. The potential of the 3-maleylpyruvic acid-inducible system was demonstrated by its application in metabolic pathway research, detection of highly unstable 3-maleylpyruvic acid, and development of biosensors for the intracellular or extracellular determination of gentisic acid. In addition, the utility of the biosensor was emphasized by its application for detection of gentisic acid as a potential biomarker for cancer in urine samples.
Collapse
Affiliation(s)
- Ingrida Kutraite
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, Kaunas LT-50254, Lithuania
| | - Ernesta Augustiniene
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, Kaunas LT-50254, Lithuania
| | - Naglis Malys
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, Kaunas LT-50254, Lithuania
- Department
of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, Kaunas LT-50254, Lithuania
| |
Collapse
|
4
|
Shi J, Yang Y, Zhang S, Lin Q, Sun F, Lin H, Shen C, Su X. New insights into survival strategies and PCB bioremediation potential of resuscitated strain Achromobacter sp. HR2 under combined stress conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133242. [PMID: 38103289 DOI: 10.1016/j.jhazmat.2023.133242] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The resuscitated strains achieved through the addition of resuscitation promoting factor (Rpf) hold significant promise as bio-inoculants for enhancing the bioremediation of polychlorinated biphenyls (PCBs). Nevertheless, the potential of these resuscitated strains to transition into a viable but non-culturable (VBNC) state, along with the specific stressors that initiate this transformation, remains to be comprehensively elucidated. In this study, a resuscitated strain HR2, obtained through Rpf amendment, was employed to investigate its survival strategies under combined stress involving low temperature (LT), and PCBs, in the absence and presence of heavy metals (HMs). Whole-genome analysis demonstrated that HR2, affiliated with Achromobacter, possessed 107 genes associated with the degradation of polycyclic aromatic compounds. Remarkably, HR2 exhibited effective degradation of Aroclor 1242 and robust resistance to stress induced by LT and PCBs, while maintaining its culturability. However, when exposed to the combined stress of LT, PCBs, and HMs, HR2 entered the VBNC state. This state was characterized by significant decreases in enzyme activities and notable morphological, physiological, and molecular alterations compared to normal cells. These findings uncovered the survival status of resuscitated strains under stressful conditions, thereby offering valuable insights for the development of effective bioremediation strategies.
Collapse
Affiliation(s)
- Jie Shi
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Yang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou 325500, China
| | - Qihua Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
5
|
Tsagogiannis E, Asimakoula S, Drainas AP, Marinakos O, Boti VI, Kosma IS, Koukkou AI. Elucidation of 4-Hydroxybenzoic Acid Catabolic Pathways in Pseudarthrobacter phenanthrenivorans Sphe3. Int J Mol Sci 2024; 25:843. [PMID: 38255919 PMCID: PMC10815724 DOI: 10.3390/ijms25020843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
4-hydroxybenzoic acid (4-HBA) is an aromatic compound with high chemical stability, being extensively used in food, pharmaceutical and cosmetic industries and therefore widely distributed in various environments. Bioremediation constitutes the most sustainable approach for the removal of 4-hydroxybenzoate and its derivatives (parabens) from polluted environments. Pseudarthrobacter phenanthrenivorans Sphe3, a strain capable of degrading several aromatic compounds, is able to grow on 4-HBA as the sole carbon and energy source. Here, an attempt is made to clarify the catabolic pathways that are involved in the biodegradation of 4-hydroxybenzoate by Sphe3, applying a metabolomic and transcriptomic analysis of cells grown on 4-HBA. It seems that in Sphe3, 4-hydroxybenzoate is hydroxylated to form protocatechuate, which subsequently is either cleaved in ortho- and/or meta-positions or decarboxylated to form catechol. Protocatechuate and catechol are funneled into the TCA cycle following either the β-ketoadipate or protocatechuate meta-cleavage branches. Our results also suggest the involvement of the oxidative decarboxylation of the protocatechuate peripheral pathway to form hydroxyquinol. As a conclusion, P. phenanthrenivorans Sphe3 seems to be a rather versatile strain considering the 4-hydroxybenzoate biodegradation, as it has the advantage to carry it out effectively following different catabolic pathways concurrently.
Collapse
Affiliation(s)
- Epameinondas Tsagogiannis
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Stamatia Asimakoula
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Alexandros P. Drainas
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Orfeas Marinakos
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Vasiliki I. Boti
- Unit of Environmental, Organic and Biochemical High-Resolution Analysis-Orbitrap-LC-MS, University of Ioannina, 451110 Ioannina, Greece;
| | - Ioanna S. Kosma
- Laboratory of Food Chemistry, Sector of Industrial Chemistry and Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Anna-Irini Koukkou
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| |
Collapse
|
6
|
Augustiniene E, Kutraite I, Valanciene E, Matulis P, Jonuskiene I, Malys N. Transcription factor-based biosensors for detection of naturally occurring phenolic acids. N Biotechnol 2023; 78:1-12. [PMID: 37714511 DOI: 10.1016/j.nbt.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Phenolic acids including hydroxybenzoic and hydroxycinnamic acids are secondary plant and fungal metabolites involved in many physiological processes offering health and dietary benefits. They are often utilised as precursors for production of value-added compounds. The limited availability of synthetic biology tools, such as whole-cell biosensors suitable for monitoring the dynamics of phenolic acids intracellularly and extracellularly, hinders the capabilities to develop high-throughput screens to study their metabolism and forward engineering. Here, by applying a multi-genome approach, we have identified phenolic acid-inducible gene expression systems composed of transcription factor-inducible promoter pairs responding to eleven different phenolic acids. Subsequently, they were used for the development of whole-cell biosensors based on model bacterial hosts, such as Escherichia coli, Cupriavidus necator and Pseudomonas putida. The dynamics and range of the biosensors were evaluated by establishing their response and sensitivity landscapes. The specificity and previously uncharacterised interactions between transcription factor and its effector(s) were identified by a screen of twenty major phenolic acids. To exemplify applicability, we utilise a protocatechuic acid-biosensor to identify enzymes with enhanced activity for conversion of p-hydroxybenzoate to protocatechuate. Transcription factor-based biosensors developed in this study will advance the analytics of phenolic acids and expedite research into their metabolism.
Collapse
Affiliation(s)
- Ernesta Augustiniene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Ingrida Kutraite
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Egle Valanciene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Paulius Matulis
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Ilona Jonuskiene
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania; Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu st. 19, LT-50254 Kaunas, Lithuania.
| |
Collapse
|
7
|
Rodríguez-Valdecantos G, Torres-Rojas F, Muñoz-Echeverría S, del Rocío Mora-Ruiz M, Rosselló-Móra R, Cid-Cid L, Ledger T, González B. Aromatic compounds depurative and plant growth promotion rhizobacteria abilities of Allenrolfea vaginata ( Amaranthaceae) rhizosphere microbial communities from a solar saltern hypersaline soil. Front Microbiol 2023; 14:1251602. [PMID: 37954249 PMCID: PMC10635022 DOI: 10.3389/fmicb.2023.1251602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction This work investigates whether rhizosphere microorganisms that colonize halophyte plants thriving in saline habitats can tolerate salinity and provide beneficial effects to their hosts, protecting them from environmental stresses, such as aromatic compound (AC) pollution. Methods To address this question, we conducted a series of experiments. First, we evaluated the effects of phenol, tyrosine, 4-hydroxybenzoic acid, and 2,4-dichlorophenoxyacetic (2,4-D) acids on the soil rhizosphere microbial community associated with the halophyte Allenrolfea vaginata. We then determined the ability of bacterial isolates from these microbial communities to utilize these ACs as carbon sources. Finally, we assessed their ability to promote plant growth under saline conditions. Results Our study revealed that each AC had a different impact on the structure and alpha and beta diversity of the halophyte bacterial (but not archaeal) communities. Notably, 2,4-D and phenol, to a lesser degree, had the most substantial decreasing effects. The removal of ACs by the rhizosphere community varied from 15% (2,4-D) to 100% (the other three ACs), depending on the concentration. Halomonas isolates were the most abundant and diverse strains capable of degrading the ACs, with strains of Marinobacter, Alkalihalobacillus, Thalassobacillus, Oceanobacillus, and the archaea Haladaptatus also exhibiting catabolic properties. Moreover, our study found that halophile strains Halomonas sp. LV-8T and Marinobacter sp. LV-48T enhanced the growth and protection of Arabidopsis thaliana plants by 30% to 55% under salt-stress conditions. Discussion These results suggest that moderate halophile microbial communities may protect halophytes from salinity and potential adverse effects of aromatic compounds through depurative processes.
Collapse
Affiliation(s)
- Gustavo Rodríguez-Valdecantos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Felipe Torres-Rojas
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Sofía Muñoz-Echeverría
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Merit del Rocío Mora-Ruiz
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain
| | - Luis Cid-Cid
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Thomas Ledger
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Bernardo González
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
8
|
Schaerer L, Putman L, Bigcraft I, Byrne E, Kulas D, Zolghadr A, Aloba S, Ong R, Shonnard D, Techtmann S. Coexistence of specialist and generalist species within mixed plastic derivative-utilizing microbial communities. MICROBIOME 2023; 11:224. [PMID: 37838714 PMCID: PMC10576394 DOI: 10.1186/s40168-023-01645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Plastic-degrading microbial isolates offer great potential to degrade, transform, and upcycle plastic waste. Tandem chemical and biological processing of plastic wastes has been shown to substantially increase the rates of plastic degradation; however, the focus of this work has been almost entirely on microbial isolates (either bioengineered or naturally occurring). We propose that a microbial community has even greater potential for plastic upcycling. A microbial community has greater metabolic diversity to process mixed plastic waste streams and has built-in functional redundancy for optimal resilience. RESULTS Here, we used two plastic-derivative degrading communities as a model system to investigate the roles of specialist and generalist species within the microbial communities. These communities were grown on five plastic-derived substrates: pyrolysis treated high-density polyethylene, chemically deconstructed polyethylene terephthalate, disodium terephthalate, terephthalamide, and ethylene glycol. Short-read metagenomic and metatranscriptomic sequencing were performed to evaluate activity of microorganisms in each treatment. Long-read metagenomic sequencing was performed to obtain high-quality metagenome assembled genomes and evaluate division of labor. CONCLUSIONS Data presented here show that the communities are primarily dominated by Rhodococcus generalists and lower abundance specialists for each of the plastic-derived substrates investigated here, supporting previous research that generalist species dominate batch culture. Additionally, division of labor may be present between Hydrogenophaga terephthalate degrading specialists and lower abundance protocatechuate degrading specialists. Video Abstract.
Collapse
Affiliation(s)
- Laura Schaerer
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Lindsay Putman
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Isaac Bigcraft
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Emma Byrne
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Daniel Kulas
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Ali Zolghadr
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Sulihat Aloba
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Rebecca Ong
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - David Shonnard
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Stephen Techtmann
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA.
| |
Collapse
|
9
|
Suleiman M, Demaria F, Zimmardi C, Kolvenbach BA, Corvini PFX. Analyzing microbial communities and their biodegradation of multiple pharmaceuticals in membrane bioreactors. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12677-z. [PMID: 37436483 PMCID: PMC10390369 DOI: 10.1007/s00253-023-12677-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Pharmaceuticals are of concern to our planet and health as they can accumulate in the environment. The impact of these biologically active compounds on ecosystems is hard to predict, and information on their biodegradation is necessary to establish sound risk assessment. Microbial communities are promising candidates for the biodegradation of pharmaceuticals such as ibuprofen, but little is known yet about their degradation capacity of multiple micropollutants at higher concentrations (100 mg/L). In this work, microbial communities were cultivated in lab-scale membrane bioreactors (MBRs) exposed to increasing concentrations of a mixture of six micropollutants (ibuprofen, diclofenac, enalapril, caffeine, atenolol, paracetamol). Key players of biodegradation were identified using a combinatorial approach of 16S rRNA sequencing and analytics. Microbial community structure changed with increasing pharmaceutical intake (from 1 to 100 mg/L) and reached a steady-state during incubation for 7 weeks on 100 mg/L. HPLC analysis revealed a fluctuating but significant degradation (30-100%) of five pollutants (caffeine, paracetamol, ibuprofen, atenolol, enalapril) by an established and stable microbial community mainly composed of Achromobacter, Cupriavidus, Pseudomonas and Leucobacter. By using the microbial community from MBR1 as inoculum for further batch culture experiments on single micropollutants (400 mg/L substrate, respectively), different active microbial consortia were obtained for each single micropollutant. Microbial genera potentially responsible for degradation of the respective micropollutant were identified, i.e. Pseudomonas sp. and Sphingobacterium sp. for ibuprofen, caffeine and paracetamol, Sphingomonas sp. for atenolol and Klebsiella sp. for enalapril. Our study demonstrates the feasibility of cultivating stable microbial communities capable of degrading simultaneously a mixture of highly concentrated pharmaceuticals in lab-scale MBRs and the identification of microbial genera potentially responsible for the degradation of specific pollutants. KEY POINTS: • Multiple pharmaceuticals were removed by stable microbial communities. • Microbial key players of five main pharmaceuticals were identified.
Collapse
Affiliation(s)
- Marcel Suleiman
- Institute of Ecopreneurship, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
| | - Francesca Demaria
- Institute of Ecopreneurship, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Cristina Zimmardi
- Institute of Ecopreneurship, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Boris Alexander Kolvenbach
- Institute of Ecopreneurship, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | | |
Collapse
|
10
|
Xie Z, Wang D, Ben Fekih I, Yu Y, Li Y, Alwathnani H, Herzberg M, Rensing C. Whole Genome Sequence Analysis of Cupriavidus necator C39, a Multiple Heavy Metal(loid) and Antibiotic Resistant Bacterium Isolated from a Gold/Copper Mine. Microorganisms 2023; 11:1518. [PMID: 37375020 DOI: 10.3390/microorganisms11061518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Here a multiple heavy metal and antibiotic resistant bacterium Cupriavidus necator C39 (C. necator C39) was isolated from a Gold-Copper mine in Zijin, Fujian, China. C. necator C39 was able to tolerate intermediate concentrations of heavy metal(loid)s in Tris Minimal (TMM) Medium (Cu(II) 2 mM, Zn(II) 2 mM, Ni(II) 0.2 mM, Au(III) 70 μM and As(III) 2.5 mM). In addition, high resistance to multiple antibiotics was experimentally observed. Moreover, strain C39 was able to grow on TMM medium containing aromatic compounds such as benzoate, phenol, indole, p-hydroxybenzoic acid or phloroglucinol anhydrous as the sole carbon sources. The complete genome of this strain revealed 2 circular chromosomes and 1 plasmid, and showed the closest type strain is C. necator N-1T based on Genome BLAST Distance Phylogeny. The arsenic-resistance (ars) cluster GST-arsR-arsICBR-yciI and a scattered gene encoding the putative arsenite efflux pump ArsB were identified on the genome of strain C39, which thereby may provide the bacterium a robust capability for arsenic resistance. Genes encoding multidrug resistance efflux pump may confer high antibiotic resistance to strain C39. Key genes encoding functions in degradation pathways of benzene compounds, including benzoate, phenol, benzamide, catechol, 3- or 4-fluorobenzoate, 3- or 4-hydroxybenzoate and 3,4-dihydroxybenzoate, indicated its potential for degrading those benzene compounds.
Collapse
Affiliation(s)
- Zhenchen Xie
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dan Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Functional and Evolutionary Entomology, Terra, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes-2, B-5030 Gembloux, Belgium
| | - Yanshuang Yu
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanping Li
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh 11495, Saudi Arabia
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Zhuang J, Zhang R, Zeng Y, Dai T, Ye Z, Gao Q, Yang Y, Guo X, Li G, Zhou J. Petroleum pollution changes microbial diversity and network complexity of soil profile in an oil refinery. Front Microbiol 2023; 14:1193189. [PMID: 37287448 PMCID: PMC10242060 DOI: 10.3389/fmicb.2023.1193189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Petroleum pollution resulting from spills and leakages in oil refinery areas has been a significant environmental concern for decades. Despite this, the effects of petroleum pollutants on soil microbial communities and their potential for pollutant biodegradation still required further investigation. Methods In this study, we collected 75 soil samples from 0 to 5 m depths of 15 soil profiles in an abandoned refinery to analyze the effect of petroleum pollution on soil microbial diversity, community structure, and network co-occurrence patterns. Results Our results suggested soil microbial a-diversity decreased under high C10-C40 levels, coupled with significant changes in the community structure of soil profiles. However, soil microbial network complexity increased with petroleum pollution levels, suggesting more complex microbial potential interactions. A module specific for methane and methyl oxidation was also found under high C10-C40 levels of the soil profile, indicating stronger methanotrophic and methylotrophic metabolic activities at the heavily polluted soil profile. Discussion The increased network complexity observed may be due to more metabolic pathways and processes, as well as increased microbial interactions during these processes. These findings highlight the importance of considering both microbial diversity and network complexity in assessing the effects of petroleum pollution on soil ecosystems.
Collapse
Affiliation(s)
- Jugui Zhuang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Ruihuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Zhencheng Ye
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
12
|
Salvà-Serra F, Pérez-Pantoja D, Donoso RA, Jaén-Luchoro D, Fernández-Juárez V, Engström-Jakobsson H, Moore ERB, Lalucat J, Bennasar-Figueras A. Comparative genomics of Stutzerimonas balearica ( Pseudomonas balearica): diversity, habitats, and biodegradation of aromatic compounds. Front Microbiol 2023; 14:1159176. [PMID: 37275147 PMCID: PMC10234333 DOI: 10.3389/fmicb.2023.1159176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Stutzerimonas balearica (Pseudomonas balearica) has been found principally in oil-polluted environments. The capability of S. balearica to thrive from the degradation of pollutant compounds makes it a species of interest for potential bioremediation applications. However, little has been reported about the diversity of S. balearica. In this study, genome sequences of S. balearica strains from different origins were analyzed, revealing that it is a diverse species with an open pan-genome that will continue revealing new genes and functionalities as the genomes of more strains are sequenced. The nucleotide signatures and intra- and inter-species variation of the 16S rRNA genes of S. balearica were reevaluated. A strategy of screening 16S rRNA gene sequences in public databases enabled the detection of 158 additional strains, of which only 23% were described as S. balearica. The species was detected from a wide range of environments, although mostly from aquatic and polluted environments, predominantly related to petroleum oil. Genomic and phenotypic analyses confirmed that S. balearica possesses varied inherent capabilities for aromatic compounds degradation. This study increases the knowledge of the biology and diversity of S. balearica and will serve as a basis for future work with the species.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Raúl A. Donoso
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Víctor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Hedvig Engström-Jakobsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jorge Lalucat
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Antoni Bennasar-Figueras
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| |
Collapse
|
13
|
Luo YH, Long X, Cai Y, Zheng CW, Roldan MA, Yang S, Zhou D, Zhou C, Rittmann BE. A synergistic platform enables co-oxidation of halogenated organic pollutants without input of organic primary substrate. WATER RESEARCH 2023; 234:119801. [PMID: 36889084 DOI: 10.1016/j.watres.2023.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
While co-oxidation is widely used to biodegrade halogenated organic pollutants (HOPs), a considerable amount of organic primary substrate is required. Adding organic primary substrates increases the operating cost and also leads to extra carbon dioxide release. In this study, we evaluated a two-stage Reduction and Oxidation Synergistic Platform (ROSP), which integrated catalytic reductive dehalogenation with biological co-oxidation for HOPs removal. The ROSP was a combination of an H2-based membrane catalytic-film reactor (H2-MCfR) and an O2-based membrane biofilm reactor (O2-MBfR). 4-chlorophenol (4-CP) was used as a model HOP to evaluate the performance of ROSP. In the MCfR stage, zero-valent palladium nanoparticles (Pd0NPs) catalyzed reductive hydrodechlorination that converted 4-CP to phenol, with a conversion yield over 92%. In the MBfR stage, the phenol was oxidized and used as a primary substrate that supported the co-oxidation of residual 4-CP. Genomic DNA sequencing revealed that phenol produced from 4-CP reduction enriched bacteria having genes for functional enzymes for phenol biodegradation in the biofilm community. In the ROSP, over 99% of 60 mg/L 4-CP was removed and mineralized during continuous operation: Effluent 4-CP and chemical oxygen demand concentrations were below 0.1 and 3 mg/L, respectively. H2 was the only added electron donor to the ROSP, which means no extra carbon dioxide was produced by primary-substrate oxidation.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Yuhang Cai
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Manuel A Roldan
- Eyring Materials Center, Arizona State University, Tempe AZ 85287-3005, USA
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe AZ 85287-3005, USA
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA.
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| |
Collapse
|
14
|
Identification of a Phylogenetically Divergent Vanillate O-Demethylase from Rhodococcus ruber R1 Supporting Growth on Meta-Methoxylated Aromatic Acids. Microorganisms 2022; 11:microorganisms11010078. [PMID: 36677370 PMCID: PMC9867520 DOI: 10.3390/microorganisms11010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Rieske-type two-component vanillate O-demethylases (VanODs) catalyze conversion of the lignin-derived monomer vanillate into protocatechuate in several bacterial species. Currently, VanODs have received attention because of the demand of effective lignin valorization technologies, since these enzymes own the potential to catalyze methoxy group demethylation of distinct lignin monomers. In this work, we identified a phylogenetically divergent VanOD from Rhodococcus ruber R1, only distantly related to previously described homologues and whose presence, along with a 3-hydroxybenzoate/gentisate pathway, correlated with the ability to grow on other meta-methoxylated aromatics, such as 3-methoxybenzoate and 5-methoxysalicylate. The complementation of catabolic abilities by heterologous expression in a host strain unable to grow on vanillate, and subsequent resting cell assays, suggest that the vanAB genes of R1 strain encode a proficient VanOD acting on different vanillate-like substrates; and also revealed that a methoxy group in the meta position and a carboxylic acid moiety in the aromatic ring are key for substrate recognition. Phylogenetic analysis of the oxygenase subunit of bacterial VanODs revealed three divergent groups constituted by homologues found in Proteobacteria (Type I), Actinobacteria (Type II), or Proteobacteria/Actinobacteria (Type III) in which the R1 VanOD is placed. These results suggest that VanOD from R1 strain, and its type III homologues, expand the range of methoxylated aromatics used as substrates by bacteria.
Collapse
|
15
|
Tan F, Cheng J, Zhang Y, Jiang X, Liu Y. Genomics analysis and degradation characteristics of lignin by Streptomyces thermocarboxydus strain DF3-3. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:78. [PMID: 35831866 PMCID: PMC9277890 DOI: 10.1186/s13068-022-02175-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/01/2022] [Indexed: 11/27/2022]
Abstract
Background Lignocellulose is an important raw material for biomass-to-energy conversion, and it exhibits a complex but inefficient degradation mechanism. Microbial degradation is promising due to its environmental adaptability and biochemical versatility, but the pathways used by microbes for lignin degradation have not been fully studied. Degradation intermediates and complex metabolic pathways require more study. Results A novel actinomycete DF3-3, with the potential for lignin degradation, was screened and isolated. After morphological and molecular identification, DF3-3 was determined to be Streptomyces thermocarboxydus. The degradation of alkali lignin reached 31% within 15 days. Manganese peroxidase and laccase demonstrated their greatest activity levels, 1821.66 UL−1 and 1265.58 UL−1, respectively, on the sixth day. The highest lignin peroxidase activity was 480.33 UL−1 on the fourth day. A total of 19 lignin degradation intermediates were identified by gas chromatography–mass spectrometry (GC–MS), including 9 aromatic compounds. Genome sequencing and annotation identified 107 lignin-degrading enzyme-coding genes containing three core enzymatic systems for lignin depolymerization: laccases, peroxidases and manganese peroxidase. In total, 7 lignin metabolic pathways were predicted. Conclusions Streptomyces thermocarboxydus strain DF3-3 has good lignin degradation ability. Degradation products and genomics analyses of DF3-3 show that it has a relatively complete lignin degradation pathway, including the β-ketoadipate pathway and peripheral reactions, gentisate pathway, anthranilate pathway, homogentisic pathway, and catabolic pathway for resorcinol. Two other pathways, the phenylacetate–CoA pathway and the 2,3-dihydroxyphenylpropionic acid pathway, are predicted based on genome data alone. This study provides the basis for future characterization of potential biotransformation enzyme systems for biomass energy conversion. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02175-1.
Collapse
|
16
|
Tusher TR, Inoue C, Chien MF. Efficient biodegradation of 1,4-dioxane commingled with additional organic compound: Role of interspecies interactions within consortia. CHEMOSPHERE 2022; 308:136440. [PMID: 36116621 DOI: 10.1016/j.chemosphere.2022.136440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/15/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Microbial consortia-mediated biodegradation of 1,4-dioxane (1,4-D), an emerging water contaminant, is always a superior choice over axenic cultures. Thus, better understanding of the functions of coexisting microbes and their interspecies interactions within the consortia is crucial for predicting biodegradation efficiency and designing efficient 1,4-D-degrading microbial consortia. This study evaluated how microbial community compositions and interspecies interactions govern the microbial consortia-mediated 1,4-D biodegradation by investigating the biodegradability and microbial community dynamics of both enriched (N112) and synthetic (SCDs and SCDNs) microbial consortia in the absence or presence of additional organic compound (AOC). In the absence of AOC, N112 exhibited 100% 1,4-D biodegradation efficiency at a rate of 12.5 mg/L/d, whereas the co-occurrence of AOC resulted in substrate-dependent biodegradation inhibition and thereby reduced the biodegradation efficiency and activity (2.0-10.0 mg/L/d). The coexistence and negative influence of certain low-abundant non-degraders on both 1,4-D-degraders and key non-degraders in N112 was identified as the prime cause behind such biodegradation inhibition. Comparing with N112, SCDN-1 composed of 1,4-D-degraders and key non-degraders significantly improved the 1,4-D biodegradation efficiency in the presence of AOC, confirming the absence of negative influence of low-abundant non-degraders and cooperative interactions between 1,4-D-degraders and key non-degraders in SCDN-1. On the contrary, both two-species and three-species SCDs comprised of only 1,4-D-degraders resulted in lower 1,4-D biodegradation efficiency as compared to SCDN-1 under all treatment conditions, while max. 91% 1,4-D biodegradation occurred by SCDs in the absence of AOC. These results were attributed to the negative interaction among 1,4-D-degraders and the absence of complementary roles of key non-degraders in SCDs. The findings improve our understanding of how interspecies interactions can regulate the intrinsic abilities and functions of coexisting microbes during biodegradation in complex environments and provide valuable guidelines for designing highly efficient and robust microbial consortia for practical bioremediation of 1,4-D like emerging organic contaminants.
Collapse
Affiliation(s)
- Tanmoy Roy Tusher
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan; Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
17
|
Transcriptome profiling of Paraburkholderia aromaticivorans AR20-38 during ferulic acid bioconversion. AMB Express 2022; 12:148. [DOI: 10.1186/s13568-022-01487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractThe importance and need of renewable-based, sustainable feedstocks increased in recent years. Lignin-derived monomers have high potential, energetic and economic value in the microbial bioconversion to valuable biomolecules. The bacterium Paraburkholderia aromaticivorans AR20-38 produces a remarkable yield of vanillic acid from ferulic acid at moderate and low temperatures and is therefore a good candidate for biotechnological applications. To understand this bioconversion process on a molecular level, a transcriptomic study during the bioconversion process was conducted to elucidate gene expression patterns. Differentially expressed genes, cellular transporters as well as transcriptional factors involved in the bioconversion process could be described. Additional enzymes known for xenobiotic degradation were differentially expressed and a potential membrane vesicle mechanism was detected. The bioconversion mechanism on a transcriptional level of P. aromaticivorans could be elucidated and results can be used for strain optimization. Additionally, the transcriptome study showed the high potential of the strain for other degradation applications.
Collapse
|
18
|
Tang H, Wang MJ, Gan XF, Li YQ. Funneling lignin-derived compounds into polyhydroxyalkanoate by Halomonas sp. Y3. BIORESOURCE TECHNOLOGY 2022; 362:127837. [PMID: 36031122 DOI: 10.1016/j.biortech.2022.127837] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Lignin-derived compounds (LDCs) biological funneling for polyhydroxyalkanoate (PHA) synthesis has been attractive but elusive. Herein, the Halomonas sp. Y3 is isolated and developed for PHA production from LDCs. Of the tested 13 LDCs, 4-hydroxybenzoic acid (4-HBA), protocatechuate (PA), catechol (CAT), and vanillic acid (VA) exhibit a hyper-degradation and production with 87.2 %, 85.8 %, 84.7 %, and 83.4 % TOC removal rate and 535.2 mg/L, 506.5 mg/L, 435.6 mg/L, and 440.8 mg/L PHA concentration, respectively. The Halomonas sp. Y3 genome is sequenced by identifying numerous genes responsible for LDCs funneling, stress response, and PHA biosynthesis. An open unsterilized fermentation with optimal conditions of pH 9.0 and NaCl 60 g/L is investigated, achieving a completely aseptic effect and significantly improved PHA production from LDCs. Overall, the results indicate that the Halomonas sp. Y3 is an ideal candidate for LDC bioconversion and exhibits a great potential to realize black liquor valorization.
Collapse
Affiliation(s)
- Hao Tang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, Leshan 614000, China
| | - Ming-Jun Wang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, Leshan 614000, China
| | - Xiao-Feng Gan
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, Leshan 614000, China
| | - Yuan-Qiu Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, Leshan 614000, China; College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
19
|
Draft Genome Sequence of Cupriavidus basilensis SRS, a Bacterium Isolated from Stream Sediments. Microbiol Resour Announc 2022; 11:e0069122. [PMID: 36073916 PMCID: PMC9584297 DOI: 10.1128/mra.00691-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cupriavidus basilensis SRS was isolated from stream sediments from the Savannah River Site in South Carolina. Here, we report the draft genome sequence and annotation of Cupriavidus basilensis SRS. The genome contains 8,918,236 bp and 7,916 predicted protein-coding genes, with a total G+C content of 65.2%.
Collapse
|
20
|
Characterization and Expression Analysis of Extradiol and Intradiol Dioxygenase of Phenol-Degrading Haloalkaliphilic Bacterial Isolates. Curr Microbiol 2022; 79:294. [PMID: 35989347 PMCID: PMC9393131 DOI: 10.1007/s00284-022-02981-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
Haloalkophilic bacteria have a potential advantage as a bioremediation organism of high oil-polluted and industrial wastewater. In the current study, Haloalkaliphilic isolates were obtained from Hamralake, Wadi EL-Natrun, Egypt. The phenotype script, biochemical characters, and sequence analysis of bacterial-16S rRNA were used to identify the bacterial isolates; Halomonas HA1 and Marinobacter HA2. These strains required high concentrations of NaCl to ensure bacterial growth, especially Halomonas HA1 strain. Notably, both isolates can degrade phenol at optimal pH values, between 8 and 9, with the ability to grow in pH levels up to 11, like what was seen in the Halomonas HA1 strain. Moreover, both isolates represent two different mechanistic pathways for phenol degradation. Halomonas HA1 exploits the 1,2 phenol meta-cleavage pathway, while Marinobacter HA2 uses the 2,3 ortho-cleavage pathway as indicated by universal primers for 1,2 and 2,3 CTD genes. Interestingly, Marinobacter HA2 isolate eliminated the added phenol within an incubation period of 72 h, while the Halomonas HA1 isolate invested 96 h in degrading 84% of the same amount of phenol. Phylogenetic analysis of these 1,2 CTD (catechol dioxygenase) sequences clearly showed an evolutionary relationship between 1,2 dioxygenases of both Halomonadaceae and Pseudomonadaceae. In comparison, 2,3 CTD of Marinobacter HA2 shared the main domains of the closely related species. Furthermore, semi-quantitative RT-PCR analysis proved the constitutive expression pattern of both dioxygenase genes. These findings provide new isolates of Halomonas sp. and Marinobacter sp. that can degrade phenol at high salt and pH conditions via two independent mechanisms.
Collapse
|
21
|
Chen K, Xu X, Yang M, Liu T, Liu B, Zhu J, Wang B, Jiang J. Genetic redundancy of 4-hydroxybenzoate 3-hydroxylase genes ensures the catabolic safety of Pigmentiphaga sp. H8 in 3-bromo-4-hydroxybenzoate-contaminated habitats. Environ Microbiol 2022; 24:5123-5138. [PMID: 35876302 DOI: 10.1111/1462-2920.16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
Abstract
Genetic redundancy is prevalent in organisms and plays important roles in the evolution of biodiversity and adaptation to environmental perturbation. However, selective advantages of genetic redundancy in overcoming metabolic disturbance due to structural analogues have received little attention. Here, functional divergence of the three 4-hydroxybenzoate 3-hydroxylase (PHBH) genes (phbh1~3) was found in Pigmentiphaga sp. strain H8. The genes phbh1/phbh2 were responsible for 3-bromo-4-hydroxybenzoate (3-Br-4-HB, an anthropogenic pollutant) catabolism, whereas phbh3 was primarily responsible for 4-hydroxybenzoate (4-HB, a natural intermediate of lignin) catabolism. 3-Br-4-HB inhibited 4-HB catabolism by competitively binding PHBH3, and was toxic to strain H8 cells especially at high concentrations. The existence of phbh1/phbh2 not only enabled strain H8 to utilize 3-Br-4-HB, but also ensured the catabolic safety of 4-HB. Molecular docking and site-directed mutagenesis analyses revealed that Val199 and Phe384 of PHBH1/PHBH2 were required for the hydroxylation activity towards 3-Br-4-HB. Phylogenetic analysis indicated that phbh1 and phbh2 originated from a common ancestor and evolved specifically in strain H8 to adapt to 3-Br-4-HB-contaminated habitats, whereas phbh3 evolved independently. This study deepens our understanding of selective advantages of genetic redundancy in prokaryote's metabolic robustness and reveals the factors driving the divergent evolution of redundant genes in adaptation to environmental perturbation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kai Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Muji Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Tairong Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Bin Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jianchun Zhu
- Laboratory Centre of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| |
Collapse
|
22
|
From Organic Wastes and Hydrocarbons Pollutants to Polyhydroxyalkanoates: Bioconversion by Terrestrial and Marine Bacteria. SUSTAINABILITY 2022. [DOI: 10.3390/su14148241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of fossil-based plastics has become unsustainable because of the polluting production processes, difficulties for waste management sectors, and high environmental impact. Polyhydroxyalkanoates (PHA) are bio-based biodegradable polymers derived from renewable resources and synthesized by bacteria as intracellular energy and carbon storage materials under nutrients or oxygen limitation and through the optimization of cultivation conditions with both pure and mixed culture systems. The PHA properties are affected by the same principles of oil-derived polyolefins, with a broad range of compositions, due to the incorporation of different monomers into the polymer matrix. As a consequence, the properties of such materials are represented by a broad range depending on tunable PHA composition. Producing waste-derived PHA is technically feasible with mixed microbial cultures (MMC), since no sterilization is required; this technology may represent a solution for waste treatment and valorization, and it has recently been developed at the pilot scale level with different process configurations where aerobic microorganisms are usually subjected to a dynamic feeding regime for their selection and to a high organic load for the intracellular accumulation of PHA. In this review, we report on studies on terrestrial and marine bacteria PHA-producers. The available knowledge on PHA production from the use of different kinds of organic wastes, and otherwise, petroleum-polluted natural matrices coupling bioremediation treatment has been explored. The advancements in these areas have been significant; they generally concern the terrestrial environment, where pilot and industrial processes are already established. Recently, marine bacteria have also offered interesting perspectives due to their advantageous effects on production practices, which they can relieve several constraints. Studies on the use of hydrocarbons as carbon sources offer evidence for the feasibility of the bioconversion of fossil-derived plastics into bioplastics.
Collapse
|
23
|
Characterization of the 2,6-Dimethylphenol Monooxygenase MpdAB and Evaluation of Its Potential in Vitamin E Precursor Synthesis. Appl Environ Microbiol 2022; 88:e0011022. [PMID: 35380460 DOI: 10.1128/aem.00110-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2,6-Dimethylphenol (2,6-DMP) is a widely used chemical intermediate whose residue has been frequently detected in the environment, posing a threat to some aquatic organisms. Microbial degradation is an effective method to eliminate 2,6-DMP in nature. However, the genetic and biochemical mechanisms of 2,6-DMP metabolism remain unknown. Mycobacterium neoaurum B5-4 is a 2,6-DMP-degrading bacterium isolated in our previous study. Here, a 2,6-DMP degradation-deficient mutant of strain B5-4 was screened. Comparative genomic, transcriptomic, gene disruption, and genetic complementation data indicated that mpdA and mpdB are responsible for the initial step of 2,6-DMP degradation in M. neoaurum B5-4. MpdAB was predicted to be a two-component flavin-dependent monooxygenase system, which shows 32% and 36% identities with HsaAB from Mycobacterium tuberculosis CDC1551. The transcription of mpdA and mpdB was substantially increased upon exposure to 2,6-DMP. Nuclear magnetic resonance analysis showed that purified 6×His-MpdA and 6×His-MpdB hydroxylated 2,6-DMP and 2,3,6-trimethylphenol (2,3,6-TMP) at the para-position using NADH and flavin adenine dinucleotide (FAD) as cofactors. The apparent Km values of MpdAB for 2,6-DMP and 2,3,6-TMP were 0.12 ± 0.01 and 0.17 ± 0.01 mM, respectively, and the corresponding kcat/Km values were 4.02 and 2.84 s-1 mM-1, respectively. Since para-hydroxylated 2,3,6-TMP is a major precursor for vitamin E synthesis, the potential of MpdAB in vitamin E synthesis was preliminarily evaluated using whole-cell catalysis. Low expression levels of MpdA and 2,3,6-TMP cytotoxicity limited the efficiency of whole-cell catalysis. Together, this study reveals the genetic and biochemical basis for the initial step of 2,6-DMP biodegradation and provides candidate enzymes for vitamin E synthesis. IMPORTANCE Although the microbial degradation of the six isomers of dimethylphenol has been extensively studied, the genetic and biochemical mechanisms of 2,6-DMP degradation remain unclear. This study identified the genes responsible for the initial step in the 2,6-DMP catabolic pathway in M. neoaurum B5-4. Moreover, MpdAB also catalyzed the transformation of 2,3,6-TMP to 2,3,5-trimethylhydroquinone (2,3,5-TMHQ), a crucial step in vitamin E synthesis. Overall, this study provides candidate enzymes for both the bioremediation of 2,6-DMP contamination and the development of a green method to synthesize vitamin E.
Collapse
|
24
|
Mori JF, Kanaly RA. Natural Chromosome-Chromid Fusion across rRNA Operons in a Burkholderiaceae Bacterium. Microbiol Spectr 2022; 10:e0222521. [PMID: 34985328 PMCID: PMC8729776 DOI: 10.1128/spectrum.02225-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 12/31/2022] Open
Abstract
Chromids (secondary chromosomes) in bacterial genomes that are present in addition to the main chromosome appear to be evolutionarily conserved in some specific bacterial groups. In rare cases among these groups, a small number of strains from Rhizobiales and Vibrionales were shown to possess a naturally fused single chromosome that was reported to have been generated through intragenomic homologous recombination between repeated sequences on the chromosome and chromid. Similar examples have never been reported in the family Burkholderiaceae, a well-documented group that conserves chromids. Here, an in-depth genomic characterization was performed on a Burkholderiaceae bacterium that was isolated from a soil bacterial consortium maintained on diesel fuel and mutagenic benzo[a]pyrene. This organism, Cupriavidus necator strain KK10, was revealed to carry a single chromosome with unexpectedly large size (>6.6 Mb), and results of comparative genomics with the genome of C. necator N-1T indicated that the single chromosome of KK10 was generated through fusion of the prototypical chromosome and chromid at the rRNA operons. This fusion hypothetically occurred through homologous recombination with a crossover between repeated rRNA operons on the chromosome and chromid. Some metabolic functions that were likely expressed from genes on the prototypical chromid region were indicated to be retained. If this phenomenon-the bacterial chromosome-chromid fusion across the rRNA operons through homologous recombination-occurs universally in prokaryotes, the multiple rRNA operons in bacterial genomes may not only contribute to the robustness of ribosome function, but also provide more opportunities for genomic rearrangements through frequent recombination. IMPORTANCE A bacterial chromosome that was naturally fused with the secondary chromosome, or "chromid," and presented as an unexpectedly large single replicon was discovered in the genome of Cupriavidus necator strain KK10, a biotechnologically useful member of the family Burkholderiaceae. Although Burkholderiaceae is a well-documented group that conserves chromids in their genomes, this chromosomal fusion event has not been previously reported for this family. This fusion has hypothetically occurred through intragenomic homologous recombination between repeated rRNA operons and, if so, provides novel insight into the potential of multiple rRNA operons in bacterial genomes to lead to chromosome-chromid fusion. The harsh conditions under which strain KK10 was maintained-a genotoxic hydrocarbon-enriched milieu-may have provided this genotype with a niche in which to survive.
Collapse
Affiliation(s)
- Jiro F. Mori
- Graduate School of Nanobiosicences, Yokohama City University, Yokohama, Japan
| | - Robert A. Kanaly
- Graduate School of Nanobiosicences, Yokohama City University, Yokohama, Japan
| |
Collapse
|
25
|
Alviz-Gazitua P, Durán RE, Millacura FA, Cárdenas F, Rojas LA, Seeger M. Cupriavidus metallidurans CH34 Possesses Aromatic Catabolic Versatility and Degrades Benzene in the Presence of Mercury and Cadmium. Microorganisms 2022; 10:microorganisms10020484. [PMID: 35208938 PMCID: PMC8879955 DOI: 10.3390/microorganisms10020484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Heavy metal co-contamination in crude oil-polluted environments may inhibit microbial bioremediation of hydrocarbons. The model heavy metal-resistant bacterium Cupriavidus metallidurans CH34 possesses cadmium and mercury resistance, as well as genes related to the catabolism of hazardous BTEX aromatic hydrocarbons. The aims of this study were to analyze the aromatic catabolic potential of C. metallidurans CH34 and to determine the functionality of the predicted benzene catabolic pathway and the influence of cadmium and mercury on benzene degradation. Three chromosome-encoded bacterial multicomponent monooxygenases (BMMs) are involved in benzene catabolic pathways. Growth assessment, intermediates identification, and gene expression analysis indicate the functionality of the benzene catabolic pathway. Strain CH34 degraded benzene via phenol and 2-hydroxymuconic semialdehyde. Transcriptional analyses revealed a transition from the expression of catechol 2,3-dioxygenase (tomB) in the early exponential phase to catechol 1,2-dioxygenase (catA1 and catA2) in the late exponential phase. The minimum inhibitory concentration to Hg (II) and Cd (II) was significantly lower in the presence of benzene, demonstrating the effect of co-contamination on bacterial growth. Notably, this study showed that C. metallidurans CH34 degraded benzene in the presence of Hg (II) or Cd (II).
Collapse
Affiliation(s)
- Pablo Alviz-Gazitua
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (P.A.-G.); (R.E.D.); (F.A.M.); (F.C.)
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de los Lagos, Osorno 5311890, Chile
| | - Roberto E. Durán
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (P.A.-G.); (R.E.D.); (F.A.M.); (F.C.)
| | - Felipe A. Millacura
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (P.A.-G.); (R.E.D.); (F.A.M.); (F.C.)
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, UK
| | - Franco Cárdenas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (P.A.-G.); (R.E.D.); (F.A.M.); (F.C.)
- Centro Regional de Estudios en Alimentos Saludables (CREAS), Avenida Universidad 330, Curauma, Valparaíso 2373223, Chile
| | - Luis A. Rojas
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avenida Angamos 610, Antofagasta 1270709, Chile;
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (P.A.-G.); (R.E.D.); (F.A.M.); (F.C.)
- Correspondence: or
| |
Collapse
|
26
|
T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer. THE ISME JOURNAL 2022; 16:500-510. [PMID: 34433898 PMCID: PMC8776902 DOI: 10.1038/s41396-021-01093-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
Outer membrane vesicles (OMVs) can function as nanoscale vectors that mediate bacterial interactions in microbial communities. How bacteria recognize and recruit OMVs inter-specifically remains largely unknown, thus limiting our understanding of the complex physiological and ecological roles of OMVs. Here, we report a ligand-receptor interaction-based OMV recruitment mechanism, consisting of a type VI secretion system (T6SS)-secreted lipopolysaccharide (LPS)-binding effector TeoL and the outer membrane receptors CubA and CstR. We demonstrated that Cupriavidus necator T6SS1 secretes TeoL to preferentially associate with OMVs in the extracellular milieu through interactions with LPS, one of the most abundant components of OMVs. TeoL associated with OMVs can further bind outer membrane receptors CubA and CstR, which tethers OMVs to the recipient cells and allows cargo to be delivered. The LPS-mediated mechanism enables bacterial cells to recruit OMVs derived from different species, and confers advantages to bacterial cells in iron acquisition, interbacterial competition, and horizontal gene transfer (HGT). Moreover, our findings provide multiple new perspectives on T6SS functionality in the context of bacterial competition and HGT, through the recruitment of OMVs.
Collapse
|
27
|
Unveiling lignocellulolytic trait of a goat omasum inhabitant Klebsiella variicola strain HSTU-AAM51 in light of biochemical and genome analyses. Braz J Microbiol 2022; 53:99-130. [PMID: 35088248 PMCID: PMC8882562 DOI: 10.1007/s42770-021-00660-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/19/2021] [Indexed: 01/30/2023] Open
Abstract
Klebsiella variicola is generally known as endophyte as well as lignocellulose-degrading strain. However, their roles in goat omasum along with lignocellulolytic genetic repertoire are not yet explored. In this study, five different pectin-degrading bacteria were isolated from a healthy goat omasum. Among them, a new Klebsiella variicola strain HSTU-AAM51 was identified to degrade lignocellulose. The genome of the HSTU-AAM51 strain comprised 5,564,045 bp with a GC content of 57.2% and 5312 coding sequences. The comparison of housekeeping genes (16S rRNA, TonB, gyrase B, RecA) and whole-genome sequence (ANI, pangenome, synteny, DNA-DNA hybridization) revealed that the strain HSTU-AAM51 was clustered with Klebsiella variicola strains, but the HSTU-AAM51 strain was markedly deviated. It consisted of seventeen cellulases (GH1, GH3, GH4, GH5, GH13), fourteen beta-glucosidase (2GH3, 7GH4, 4GH1), two glucosidase, and one pullulanase genes. The strain secreted cellulase, pectinase, and xylanase, lignin peroxidase approximately 76-78 U/mL and 57-60 U/mL, respectively, when it was cultured on banana pseudostem for 96 h. The catalytically important residues of extracellular cellulase, xylanase, mannanase, pectinase, chitinase, and tannase proteins (validated 3D model) were bound to their specific ligands. Besides, genes involved in the benzoate and phenylacetate catabolic pathways as well as laccase and DiP-type peroxidase were annotated, which indicated the strain lignin-degrading potentiality. This study revealed a new K. variicola bacterium from goat omasum which harbored lignin and cellulolytic enzymes that could be utilized for the production of bioethanol from lignocelluloses.
Collapse
|
28
|
Rodríguez-Esperón MC, Eastman G, Sandes L, Garabato F, Eastman I, Iriarte A, Fabiano E, Sotelo-Silveira JR, Platero R. Genomics and transcriptomics insights into luteolin effects on the beta-rhizobial strain Cupriavidus necator UYPR2.512. Environ Microbiol 2021; 24:240-264. [PMID: 34811861 DOI: 10.1111/1462-2920.15845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
Cupriavidus necator UYPR2.512 is a rhizobial strain that belongs to the Beta-subclass of proteobacteria, able to establish successful symbiosis with Mimosoid legumes. The initial steps of rhizobium-legumes symbioses involve the reciprocal recognition by chemical signals, being luteolin one of the molecules involved. However, there is a lack of information on the effect of luteolin in beta-rhizobia. In this work, we used long-read sequencing to complete the genome of UYPR2.512 providing evidence for the existence of four closed circular replicons. We used an RNA-Seq approach to analyse the response of UYPR2.512 to luteolin. One hundred and forty-five genes were differentially expressed, with similar numbers of downregulated and upregulated genes. Most repressed genes were mapped to the main chromosome, while the upregulated genes were overrepresented among pCne512e, containing the symbiotic genes. Induced genes included the nod operon and genes implicated in exopolysaccharides and flagellar biosynthesis. We identified many genes involved in iron, copper and other heavy metals metabolism. Among repressed genes, we identified genes involved in basal carbon and nitrogen metabolism. Our results suggest that in response to luteolin, C. necator strain UYPR2.512 reshapes its metabolism in order to be prepared for the forthcoming symbiotic interaction.
Collapse
Affiliation(s)
- M C Rodríguez-Esperón
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - G Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - L Sandes
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - F Garabato
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - I Eastman
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Montevideo, Uruguay
| | - E Fabiano
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - J R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - R Platero
- Laboratorio de Microbiología Ambiental, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
29
|
Sohn YJ, Son J, Jo SY, Park SY, Yoo JI, Baritugo KA, Na JG, Choi JI, Kim HT, Joo JC, Park SJ. Chemoautotroph Cupriavidus necator as a potential game-changer for global warming and plastic waste problem: A review. BIORESOURCE TECHNOLOGY 2021; 340:125693. [PMID: 34365298 DOI: 10.1016/j.biortech.2021.125693] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Cupriavidus necator, a versatile microorganism found in both soil and water, can have both heterotrophic and lithoautotrophic metabolisms depending on environmental conditions. C. necator has been extensively examined for producing Polyhydroxyalkanoates (PHAs), the promising polyester alternatives to petroleum-based synthetic polymers because it has a superior ability for accumulating a considerable amount of PHAs from renewable resources. The development of metabolically engineered C. necator strains has led to their application for synthesizing biopolymers, biofuels and biochemicals such as ethanol, isobutanol and higher alcohols. Bio-based processes of recombinant C. necator have made much progress in production of these high-value products from biomass wastes, plastic wastes and even waste gases. In this review, we discuss the potential of C. necator as promising platform host strains that provide a great opportunity for developing a waste-based circular bioeconomy.
Collapse
Affiliation(s)
- Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Se Young Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeong Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Korea.
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
30
|
Nazina TN, Abukova LA, Tourova TP, Babich TL, Bidzhieva SK, Filippova DS, Safarova EA. Diversity and Possible Activity of Microorganisms in Underground Gas Storage Aquifers. Microbiology (Reading) 2021. [DOI: 10.1134/s002626172105012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Guo Z, Yin H, Wei X, Zhu M, Lu G, Dang Z. Effects of methanol on the performance of a novel BDE-47 degrading bacterial consortium QY2 in the co-metabolism process. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125698. [PMID: 33773249 DOI: 10.1016/j.jhazmat.2021.125698] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
2,2',4,4'-tetrabrominated diphenyl ether (BDE-47), frequently detected in the environment, is arduous to be removed by conventional biological treatments due to its persistence and toxicity. Herein effects of methanol as a co-metabolic substrate on the biodegradation of BDE-47 was systematically studied by a functional bacterial consortium QY2, constructed through long-term and successive acclimation from indigenous microorganisms. The results revealed that BDE-47 (0.25 mg/L) was completely removed within 7 days in the 2.5 mM methanol treatment group, and its degradation efficiency was 3.26 times higher than that without methanol treatment. The addition of methanol dramatically accelerated the debromination, hydroxylation and phenyl ether bond breakage of BDE-47 by QY2. However, excessive methanol (>5 mM) combined with BDE-47 had strong stress on microbial cells, including significant (p < 0.05) increase of reactive oxygen species level, superoxide dismutase activity, catalase activity and malondialdehyde content, even causing 20.65% cell apoptosis and 11.27% death. It was worth noting that the changes of QY2 community structure remained relatively stable after adding methanol, presumably attributed to the important role of the genus Methylobacterium in maintaining the functional and structural stability of QY2. This study deepened our understanding of how methanol as co-metabolite substances stimulated the biodegradation of BDE-47 by microbial consortium.
Collapse
Affiliation(s)
- Zhanyu Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China.
| | - Xipeng Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China
| |
Collapse
|
32
|
Poirier W, Ravenel K, Bouchara JP, Giraud S. Lower Funneling Pathways in Scedosporium Species. Front Microbiol 2021; 12:630753. [PMID: 34276578 PMCID: PMC8283699 DOI: 10.3389/fmicb.2021.630753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Lignin, a natural polyaromatic macromolecule, represents an essential component of the lignocellulose biomass. Due to its complexity, the natural degradation of this molecule by microorganisms still remains largely misunderstood. Extracellular oxidative degradation is followed by intracellular metabolic degradation of conserved aromatic intermediate compounds (protocatechuate, catechol, hydroxyquinol, and gentisic acid) that are used as carbon and energy sources. The lower funneling pathways are characterized by the opening of the aromatic ring of these molecules through dioxygenases, leading to degradation products that finally enter into the tricarboxylic acid (TCA) cycle. In order to better understand the adaptation mechanisms of Scedosporium species to their environment, these specific catabolism pathways were studied. Genes encoding ring-cleaving dioxygenases were identified in Scedosporium genomes by sequence homology, and a bioinformatic analysis of the organization of the corresponding gene clusters was performed. In addition, these predictions were confirmed by evaluation of the expression level of the genes of the gentisic acid cluster. When the fungus was cultivated in the presence of lignin or gentisic acid as sole carbon source, experiments revealed that the genes of the gentisic acid cluster were markedly overexpressed in the two Scedosporium species analyzed (Scedosporium apiospermum and Scedosporium aurantiacum). Only the gene encoding a membrane transporter was not overexpressed in the gentisic acid-containing medium. Together, these data suggest the involvement of the lower funneling pathways in Scedosporium adaptation to their environment.
Collapse
Affiliation(s)
- Wilfried Poirier
- UNIV Angers, UNIV Brest, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), SFR ICAT, Angers, France
| | - Kevin Ravenel
- UNIV Angers, UNIV Brest, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), SFR ICAT, Angers, France
| | - Jean-Philippe Bouchara
- UNIV Angers, UNIV Brest, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), SFR ICAT, Angers, France
| | - Sandrine Giraud
- UNIV Angers, UNIV Brest, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), SFR ICAT, Angers, France
| |
Collapse
|
33
|
Donoso RA, Ruiz D, Gárate-Castro C, Villegas P, González-Pastor JE, de Lorenzo V, González B, Pérez-Pantoja D. Identification of a self-sufficient cytochrome P450 monooxygenase from Cupriavidus pinatubonensis JMP134 involved in 2-hydroxyphenylacetic acid catabolism, via homogentisate pathway. Microb Biotechnol 2021; 14:1944-1960. [PMID: 34156761 PMCID: PMC8449657 DOI: 10.1111/1751-7915.13865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
The self-sufficient cytochrome P450 RhF and its homologues belonging to the CYP116B subfamily have attracted considerable attention due to the potential for biotechnological applications based in their ability to catalyse an array of challenging oxidative reactions without requiring additional protein partners. In this work, we showed for the first time that a CYP116B self-sufficient cytochrome P450 encoded by the ohpA gene harboured by Cupriavidus pinatubonensis JMP134, a β-proteobacterium model for biodegradative pathways, catalyses the conversion of 2-hydroxyphenylacetic acid (2-HPA) into homogentisate. Mutational analysis and HPLC metabolite detection in strain JMP134 showed that 2-HPA is degraded through the well-known homogentisate pathway requiring a 2-HPA 5-hydroxylase activity provided by OhpA, which was additionally supported by heterologous expression and enzyme assays. The ohpA gene belongs to an operon including also ohpT, coding for a substrate-binding subunit of a putative transporter, whose expression is driven by an inducible promoter responsive to 2-HPA in presence of a predicted OhpR transcriptional regulator. OhpA homologues can be found in several genera belonging to Actinobacteria and α-, β- and γ-proteobacteria lineages indicating a widespread distribution of 2-HPA catabolism via homogentisate route. These results provide first time evidence for the natural function of members of the CYP116B self-sufficient oxygenases and represent a significant input to support novel kinetic and structural studies to develop cytochrome P450-based biocatalytic processes.
Collapse
Affiliation(s)
- Raúl A Donoso
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Daniela Ruiz
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Carla Gárate-Castro
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Pamela Villegas
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - José Eduardo González-Pastor
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Bernardo González
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile.,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile
| |
Collapse
|
34
|
Härrer D, Windhorst C, Böhner N, Novion Ducassou J, Couté Y, Gescher J. Production of acetoin from renewable resources under heterotrophic and mixotrophic conditions. BIORESOURCE TECHNOLOGY 2021; 329:124866. [PMID: 33647604 DOI: 10.1016/j.biortech.2021.124866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to reveal whether Cupriavidus necator H16 is suited for the production of acetoin based on the carboxylic acids acetate, butyrate and propionate under heterotrophic and mixotrophic conditions. The chosen production strain, lacking the polyhydroxybutyrate synthases phaC1 and phaC2, was revealed to be beneficiary for autotrophic acetoin production. Proteomic analysis of the strain determined that the deletions do indeed have a significant impact on pyruvate formation and its subsequent direction towards the introduced acetoin-synthesis pathway. Moreover, the strain was tested for its ability to use typical dark fermentation products under hetero- and mixotrophic conditions. Growth with butyrate and acetate led to low efficiencies, while 46.54% ±0.78 of the added propionate was converted into acetoin. Interestingly, mixotrophic conditions led to simultaneous consumption of acetate and butyrate with the gaseous substrates and lowered efficiency. In contrast, mixotrophic propionate consumption led to diauxic behavior and high carbon efficiency of 71.2% ±0.64.
Collapse
Affiliation(s)
- Daniel Härrer
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Carina Windhorst
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Nicola Böhner
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | | | - Yohann Couté
- University Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France.
| | - Johannes Gescher
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany; Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
35
|
BenIsrael M, Habtewold JZ, Khosla K, Wanner P, Aravena R, Parker BL, Haack EA, Tsao DT, Dunfield KE. Identification of degrader bacteria and fungi enriched in rhizosphere soil from a toluene phytoremediation site using DNA stable isotope probing. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:846-856. [PMID: 33397125 DOI: 10.1080/15226514.2020.1860901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Improved knowledge of the ecology of contaminant-degrading organisms is paramount for effective assessment and remediation of aromatic hydrocarbon-impacted sites. DNA stable isotope probing was used herein to identify autochthonous degraders in rhizosphere soil from a hybrid poplar phytoremediation system incubated under semi-field-simulated conditions. High-throughput sequencing of bacterial 16S rRNA and fungal internal transcribed spacer (ITS) rRNA genes in metagenomic samples separated according to nucleic acid buoyant density was used to identify putative toluene degraders. Degrader bacteria were found mainly within the Actinobacteria and Proteobacteria phyla and classified predominantly as Cupriavidus, Rhodococcus, Luteimonas, Burkholderiaceae, Azoarcus, Cellulomonadaceae, and Pseudomonas organisms. Purpureocillium lilacinum and Mortierella alpina fungi were also found to assimilate toluene, while several strains of the fungal poplar endophyte Mortierella elongatus were indirectly implicated as potential degraders. Finally, PICRUSt2 predictive taxonomic functional modeling of 16S rRNA genes was performed to validate successful isolation of stable isotope-labeled DNA in density-resolved samples. Four unique sequences, classified within the Bdellovibrionaceae, Intrasporangiaceae, or Chitinophagaceae families, or within the Sphingobacteriales order were absent from PICRUSt2-generated models and represent potentially novel putative toluene-degrading species. This study illustrates the power of combining stable isotope amendment with advanced metagenomic and bioinformatic techniques to link biodegradation activity with unisolated microorganisms. Novelty statement: This study used emerging molecular biological techniques to identify known and new organisms implicated in aromatic hydrocarbon biodegradation from a field-scale phytoremediation system, including organisms with phyto-specific relevance and having potential for downstream applications (amendment or monitoring) in future and existing systems. Additional novelty in this study comes from the use of taxonomic functional modeling approaches for validation of stable isotope probing techniques. This study provides a basis for expanding existing reference databases of known aromatic hydrocarbon degraders from field-applicable sources and offers technological improvements for future site assessment and management purposes.
Collapse
Affiliation(s)
- Michael BenIsrael
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | | | - Kamini Khosla
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Philipp Wanner
- G360 Institute for Groundwater Research, University of Guelph, Guelph, Canada
| | - Ramon Aravena
- G360 Institute for Groundwater Research, University of Guelph, Guelph, Canada
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada
| | - Beth L Parker
- G360 Institute for Groundwater Research, University of Guelph, Guelph, Canada
| | | | - David T Tsao
- BP Corporation North America, Inc, Naperville, IL, USA
| | - Kari E Dunfield
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
36
|
dos Santos Melo-Nascimento AO, Mota Moitinho Sant´Anna B, Gonçalves CC, Santos G, Noronha E, Parachin N, de Abreu Roque MR, Bruce T. Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1. PLoS One 2020; 15:e0243739. [PMID: 33351813 PMCID: PMC7755216 DOI: 10.1371/journal.pone.0243739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
Lignin is a recalcitrant macromolecule formed by three alcohols (monolignols) predominantly connected by β-aryl ether linkages and is one of the most abundant organic macromolecules in the biosphere. However, the role played by environmental bacteria in lignin degradation is still not entirely understood. In this study, we identified an environmental Klebsiella strain isolated from sediment collected from an altitudinal region in a unique Brazilian biome called Caatinga. This organism can also grow in the presence of kraft lignin as a sole source of carbon and aromatic compounds. We performed whole-genome sequencing and conducted an extensive genome-based metabolic reconstruction to reveal the potential mechanisms used by the bacterium Klebsiella variicola P1CD1 for lignin utilization as a carbon source. We identified 262 genes associated with lignin-modifying enzymes (LMEs) and lignin-degrading auxiliary enzymes (LDAs) required for lignin and aromatic compound degradation. The presence of one DyP (Dye-decolorizing Peroxidase) gene suggests the ability of P1CD1 strain to access phenolic and nonphenolic structures of lignin molecules, resulting in the production of catechol and protocatechuate (via vanillin or syringate) along the peripheral pathways of lignin degradation. K. variicola P1CD1 uses aldehyde-alcohol dehydrogenase to perform direct conversion of vanillin to protocatechol. The upper funneling pathways are linked to the central pathways of the protocatechuate/catechol catabolic branches via β-ketoadipate pathways, connecting the more abundant catabolized aromatic compounds with essential cellular functions, such as energy cellular and biomass production (i.e., via acetyl-CoA formation). The combination of phenotypic and genomic approaches revealed the potential dissimilatory and assimilatory ability of K. variicola P1CD1 to perform base-catalyzed lignin degradation, acting on high- and low-molecular-weight lignin fragments. These findings will be relevant for developing metabolic models to predict the ligninolytic mechanism used by environmental bacteria and shedding light on the flux of carbon in the soil.
Collapse
Affiliation(s)
| | | | - Carolyne Caetano Gonçalves
- Departamento de Biologia Celular, Instituto de Biologia, Laboratório de Engenharia de Biocatalizadores, Universidade de Brasília, Brasília, Brazil
| | - Giovanna Santos
- Departamento de Biologia Celular, Instituto de Biologia, Laboratório de Engenharia de Biocatalizadores, Universidade de Brasília, Brasília, Brazil
| | - Eliane Noronha
- Departamento de Biologia Celular, Instituto de Biologia, Laboratório de Engenharia de Biocatalizadores, Universidade de Brasília, Brasília, Brazil
| | - Nádia Parachin
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Brazil
| | - Milton Ricardo de Abreu Roque
- Departamento de Microbiologia, Instituto de Biologia, Grupo de Biotecnologia Ambiental, Universidade Federal da Bahia, Salvador, Brazil
- Instituto de Ciências da Saúde, Laboratório de Bioprospecção, Universidade Federal da Bahia, Salvador, Brazil
| | - Thiago Bruce
- Departamento de Microbiologia, Instituto de Biologia, Grupo de Biotecnologia Ambiental, Universidade Federal da Bahia, Salvador, Brazil
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Brazil
- * E-mail:
| |
Collapse
|
37
|
Multispecies Diesel Fuel Biodegradation and Niche Formation Are Ignited by Pioneer Hydrocarbon-Utilizing Proteobacteria in a Soil Bacterial Consortium. Appl Environ Microbiol 2020; 87:AEM.02268-20. [PMID: 33067200 DOI: 10.1128/aem.02268-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
A soil bacterial consortium that was grown on diesel fuel and consisted of more than 10 members from different genera was maintained through repetitive subculturing and was utilized as a practical model to investigate a bacterial community that was continuously exposed to petroleum hydrocarbons. Through metagenomics analyses, consortium member isolation, growth assays, and metabolite identification which supported the linkage of genomic data and functionality, two pioneering genera, Sphingobium and Pseudomonas, whose catabolic capabilities were differentiated, were found to be responsible for the creation of specialized ecological niches that were apparently occupied by other bacterial members for survival within the consortium. Coexisting genera Achromobacter and Cupriavidus maintained their existence in the consortium through metabolic dependencies by utilizing hydrocarbon biotransformation products of pioneer metabolism, which was confirmed through growth tests and identification of biotransformation products of the isolated strains. Pioneering Sphingobium and Pseudomonas spp. utilized relatively water-insoluble hydrocarbon parent compounds and facilitated the development of a consortium community structure that resulted in the creation of niches in response to diesel fuel exposure which were created through the production of more-water-soluble biotransformation products available to cocolonizers. That these and other organisms were still present in the consortium after multiple transfers spanning 15 years provided evidence for these ecological niches. Member survival through occupation of these niches led to robustness of each group within the multispecies bacterial community. Overall, these results contribute to our understanding of the complex ecological relationships that may evolve during prokaryotic hydrocarbon pollutant biodegradation.IMPORTANCE There are few metagenome studies that have explored soil consortia maintained on a complex hydrocarbon substrate after the community interrelationships were formed. A soil bacterial consortium maintained on diesel fuel was utilized as a practical model to investigate bacterial community relationships through metagenomics analyses, consortium member isolation, growth assays, and metabolite identification, which supported the linkage of genomic data and functionality. Two pioneering genera were responsible for the biodegradation of aromatics and alkanes by initiating biotransformation and thereby created specialized niches that were populated by other members. A model that represents these relationships was constructed, which contributes to our understanding of the complex ecological relationships that evolve during prokaryotic hydrocarbon pollutant biodegradation.
Collapse
|
38
|
Ni C, Hou J, Wang Z, Li Y, Ren L, Wang M, Yin H, Tan W. Enhanced catalytic activity of OMS-2 for carcinogenic benzene elimination by tuning Sr 2+ contents in the tunnels. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122958. [PMID: 32485508 DOI: 10.1016/j.jhazmat.2020.122958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Cryptomelane-type manganese oxides (OMS-2) have been intensively investigated for application in the catalytic oxidation of carcinogenic benzene, and doping metal ions in the OMS-2 tunnels are widely used for modifying its catalytic activity. In this study, we reported a novel strategy of enhancing catalytic activity of OMS-2 for carcinogenic benzene elimination by tuning Sr2+ concentration in the tunnels. The catalytic activity result revealed that an obvious decrease (△T50 = 27 °C and △T90 = 37 °C) in T50 and T90 (corresponding to benzene conversions at 50 % and 90 %, respectively; initial benzene concentration was 2000 mg m-3; contact time was 1.5 s) had been observed by increasing the Sr2+ concentration in the OMS-2 tunnels. The origin of Sr2+ doping effect on catalytic activity was theoretically and experimentally investigated by CO temperature-programmed reduction, 18O2 isotope labeling, and density functional theory calculations. The result confirmed that increasing Sr2+ concentration in the tunnels not only promoted the lattice oxygen activity, but also facilitated the generation of more oxygen vacancy defects, thus considerably improving the catalytic activity of OMS-2.
Collapse
Affiliation(s)
- Chunlan Ni
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingtao Hou
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zongwei Wang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanzhi Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Mingxia Wang
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Yin
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
39
|
The Hydroxyquinol Degradation Pathway in Rhodococcus jostii RHA1 and Agrobacterium Species Is an Alternative Pathway for Degradation of Protocatechuic Acid and Lignin Fragments. Appl Environ Microbiol 2020; 86:AEM.01561-20. [PMID: 32737130 DOI: 10.1128/aem.01561-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Deletion of the pcaHG genes, encoding protocatechuate 3,4-dioxygenase in Rhodococcus jostii RHA1, gives a gene deletion strain still able to grow on protocatechuic acid as the sole carbon source, indicating a second degradation pathway for protocatechuic acid. Metabolite analysis of wild-type R. jostii RHA1 grown on medium containing vanillin or protocatechuic acid indicated the formation of hydroxyquinol (benzene-1,2,4-triol) as a downstream product. Gene cluster ro01857-ro01860 in Rhodococcus jostii RHA1 contains genes encoding hydroxyquinol 1,2-dioxygenase and maleylacetate reductase for degradation of hydroxyquinol but also putative mono-oxygenase (ro01860) and putative decarboxylase (ro01859) genes, and a similar gene cluster is found in the genome of lignin-degrading Agrobacterium species. Recombinant R. jostii mono-oxygenase and decarboxylase enzymes in combination were found to convert protocatechuic acid to hydroxyquinol. Hence, an alternative pathway for degradation of protocatechuic acid via oxidative decarboxylation to hydroxyquinol is proposed.IMPORTANCE There is a well-established paradigm for degradation of protocatechuic acid via the β-ketoadipate pathway in a range of soil bacteria. In this study, we have found the existence of a second pathway for degradation of protocatechuic acid in Rhodococcus jostii RHA1, via hydroxyquinol (benzene-1,2,4-triol), which establishes a metabolic link between protocatechuic acid and hydroxyquinol. The presence of this pathway in a lignin-degrading Agrobacterium sp. strain suggests the involvement of the hydroxyquinol pathway in the metabolism of degraded lignin fragments.
Collapse
|
40
|
Al-Nussairawi M, Risa A, Garai E, Varga E, Szabó I, Csenki-Bakos Z, Kriszt B, Cserháti M. Mycotoxin Biodegradation Ability of the Cupriavidus Genus. Curr Microbiol 2020; 77:2430-2440. [PMID: 32504322 PMCID: PMC7415022 DOI: 10.1007/s00284-020-02063-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/27/2020] [Indexed: 10/25/2022]
Abstract
The biodegradation and biodetoxification ability of five prominent mycotoxins, namely aflatoxin B1 (AFB1), ochratoxin-A (OTA), zearalenone (ZON), T-2 toxin (T-2) and deoxynivalenol (DON) of Cupriavidus genus were investigated. Biological methods are the most appropriate approach to detoxify mycotoxins. The Cupriavidus genus has resistance to heavy metals and can be found in several niches such as root nodules and aquatic environments. The genus has 17 type strains, 16 of which have been investigated in the present study. According to the results, seven type strains can degrade OTA, four strains can degrade AFB1, four strains can degrade ZON and three strains can degrade T-2. None of the strains can degrade DON. The biodetoxification was measured using different biotests. SOS-chromotest was used for detecting the genotoxicity of AFB1, the BLYES test was used to evaluate the oestrogenicity of ZON, and the zebrafish embryo microinjection test was conducted to observe the teratogenicity of OTA, T-2 and their by-products. Two type strains, namely C. laharis CCUG 53908T and C. oxalaticus JCM 11285T reduced the genotoxicity of AFB1, whilst C. basilensis DSM 11853T decreased the oestrogenic of ZON. There were strains which were able to biodegrade more than two mycotoxins. Two strains degraded two mycotoxins, namely C. metalliduriens CCUG 13724T (AFB1, T-2) and C. oxalaticus (AFB1, ZON) whilst two strains C. pinatubonensis DSM 19553T and C. basilensis degraded three toxins (ZON, OTA, T-2) and C. numazuensis DSM 15562T degraded four mycotoxins (AFB1, ZON, OTA, T-2), which is unique a phenomenon amongst bacteria.
Collapse
Affiliation(s)
- Mohammed Al-Nussairawi
- Department of Environmental Safety and Ecotoxicology, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary
| | - Anita Risa
- Department of Environmental Safety and Ecotoxicology, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary
| | - Edina Garai
- Department of Aquaculture, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary
| | - Emese Varga
- Department of Applied Chemistry, Faculty of Food Sciences, Szent István University, Villanyi Road, Budapest, 1118, Hungary
| | - István Szabó
- Department of Environmental Safety and Ecotoxicology, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary
| | - Zsolt Csenki-Bakos
- Department of Environmental Safety and Ecotoxicology, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety and Ecotoxicology, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary
| | - Mátyás Cserháti
- Department of Environmental Safety and Ecotoxicology, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary.
| |
Collapse
|
41
|
Sanz D, García JL, Díaz E. Expanding the current knowledge and biotechnological applications of the oxygen-independent ortho-phthalate degradation pathway. Environ Microbiol 2020; 22:3478-3493. [PMID: 32510798 DOI: 10.1111/1462-2920.15119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
ortho-Phthalate derives from industrially produced phthalate esters, which are massively used as plasticizers and constitute major emerging environmental pollutants. The pht pathway for the anaerobic bacterial biodegradation of o-phthalate involves its activation to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we have explored further the pht peripheral pathway in denitrifying bacteria and shown that it requires also an active transport system for o-phthalate uptake that belongs to the poorly characterized class of TAXI-TRAP transporters. The construction of a fully functional pht cassette combining both catabolic and transport genes allowed to expand the o-phthalate degradation ecological trait to heterologous hosts. Unexpectedly, the pht cassette also allowed the aerobic conversion of o-phthalate to benzoyl-CoA when coupled to a functional box central pathway. Hence, the pht pathway may constitute an evolutionary acquisition for o-phthalate degradation by bacteria that thrive either in anoxic environments or in environments that face oxygen limitations and that rely on benzoyl-CoA, rather than on catecholic central intermediates, for the aerobic catabolism of aromatic compounds. Finally, the recombinant pht cassette was used both to screen for functional aerobic box pathways in bacteria and to engineer recombinant biocatalysts for o-phthalate bioconversion into sustainable bioplastics, e.g., polyhydroxybutyrate, in plastic recycling industrial processes.
Collapse
Affiliation(s)
- David Sanz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - José L García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| |
Collapse
|
42
|
Muccee F, Ejaz S. Whole genome shotgun sequencing of POPs degrading bacterial community dwelling tannery effluents and petrol contaminated soil. Microbiol Res 2020; 238:126504. [PMID: 32534383 DOI: 10.1016/j.micres.2020.126504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
The present study involved identification of genes which are present in the genome of native bacteria to make them effective tools for bioremediation of persistent organic pollutants (POPs). During this study, forty-one POPs (naphthalene, toluene and petrol) metabolizing bacteria were isolated from tannery effluents and petrol contaminated soil samples by successive enrichment culturing. The taxonomic diversity and gene repertoire conferring POPs degradation ability to the isolated bacterial community were studied through whole genome shotgun sequencing of DNA consortium. The DNA consortium contained equimolar concentration of DNA extracted from each bacterial isolate using organic method. To add a double layer of confirmation the established DNA consortium was subjected to 16S rRNA metagenome sequencing and whole genome shotgun sequencing analysis. Biodiversity analysis revealed that the consortium was composed of phyla Firmicutes (80 %), Proteobacteria (12 %) and Actinobacteria (5%). Genera found included Bacillus (45 %), Burkholderia (25 %), Brevibacillus (9%) and Geobacillus (4%). Functional profiling of consortium helped us to identify genes associated with degradation pathways of a variety of organic compounds including toluene, naphthalene, caprolactam, benzoate, aminobenzoate, xylene, 4-hydroxyphenyl acetic acid, biphenyl, anthracene, aminobenzoate, chlorocyclohexane, chlorobenzene, n-phenylalkanoic acid, phenylpropanoid, salicylate, gentisate, central meta cleavage of aromatic compounds, cinnamic acid, catechol and procatechuate branch of β-ketoadipate pathway, phenyl-acetyl CoA and homogentisate catabolic pathway. The information thus generated has ensured not only biodegradation potential but also revealed many possible future applications of the isolated bacteria.
Collapse
Affiliation(s)
- Fatima Muccee
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Samina Ejaz
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| |
Collapse
|
43
|
Verma SK, Sharma PC. NGS-based characterization of microbial diversity and functional profiling of solid tannery waste metagenomes. Genomics 2020; 112:2903-2913. [PMID: 32272146 DOI: 10.1016/j.ygeno.2020.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/20/2020] [Accepted: 04/02/2020] [Indexed: 01/13/2023]
Abstract
Tanneries pose a serious threat to the environment by generating large amount of solid tannery waste (STW). Two metagenomes representing tannery waste dumpsites Jajmau (JJK) and Unnao (UNK) were sequenced using Illumina HiSeq platform. Microbial diversity analysis revealed domination of Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Planctomycetes in both metagenomes. Presence of pollutant degrading microbes such as Bacillus, Clostridium, Halanaerobium and Pseudomonas strongly indicated their bioremediation ability. KEGG and SEED annotated main functional categories included carbohydrate metabolism, amino acids metabolism, and protein metabolism. KEGG displayed 5848 and 9633 proteases encoding ORFs compared to 5159 and 8044 ORFs displayed by SEED classification in JJK and UNK metagenomes, respectively. Abundantly present serine- and metallo-proteases belonging to Bacillaceae, Clostridiaceae, Xanthomonadaceae, Flavobacteriaceae and Chitinophagaceae families exhibited proteinaceous waste degrading ability of these metagenomes. Further structural and functional analysis of metagenome encoded enzymes may facilitate the discovery of novel proteases useful in bioremediation of STW.
Collapse
Affiliation(s)
- Sumit Kumar Verma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India.
| |
Collapse
|
44
|
Xiang S, Lin R, Shang H, Xu Y, Zhang Z, Wu X, Zong F. Efficient Degradation of Phenoxyalkanoic Acid Herbicides by the Alkali-Tolerant Cupriavidus oxalaticus Strain X32. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3786-3795. [PMID: 32133852 DOI: 10.1021/acs.jafc.9b05061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenoxyalkanoic acid (PAA) herbicides are mainly metabolized by microorganisms in soils, but the degraders that perform well under alkaline environments are rarely considered. Herein, we report Cupriavidus oxalaticus strain X32, which showed encouraging PAA-degradation abilities, PAA tolerance, and alkali tolerance. In liquid media, without the addition of exogenous carbon sources, X32 could completely remove 500 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) or 4-chloro-2-methylphenoxyacetic acid within 3 days, faster than that with the model degrader Cupriavidus necator JMP134. Particularly, X32 still functioned at pH 10.5. Of note, with X32 inoculation, we observed 2,4-D degradation in soils and diminished phytotoxicity to maize (Zea mays). Furthermore, potential mechanisms underlying PAA biodegradation and alkali tolerance were then analyzed by whole-genome sequencing. Three modules of tfd gene clusters involved in 2,4-D catabolism and genes encoding monovalent cation/proton antiporters involved in alkali tolerance were putatively identified. Thus, X32 could be a promising candidate for the bioremediation of PAA-contaminated sites, especially in alkaline surroundings.
Collapse
Affiliation(s)
- Sheng Xiang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ronghua Lin
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Hongyi Shang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yong Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhenhua Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xuemin Wu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Fulin Zong
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| |
Collapse
|
45
|
Vanillin Production in Pseudomonas: Whole-Genome Sequencing of Pseudomonas sp. Strain 9.1 and Reannotation of Pseudomonas putida CalA as a Vanillin Reductase. Appl Environ Microbiol 2020; 86:AEM.02442-19. [PMID: 31924622 PMCID: PMC7054097 DOI: 10.1128/aem.02442-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Microbial degradation of lignin and its related aromatic compounds has great potential for the sustainable production of chemicals and bioremediation of contaminated soils. We previously isolated Pseudomonas sp. strain 9.1 from historical waste deposits (forming so-called fiber banks) released from pulp and paper mills along the Baltic Sea coast. The strain accumulated vanillyl alcohol during growth on vanillin, and while reported in other microbes, this phenotype is less common in wild-type pseudomonads. As the reduction of vanillin to vanillyl alcohol is an undesired trait in Pseudomonas strains engineered to accumulate vanillin, connecting the strain 9.1 phenotype with a genotype would increase the fundamental understanding and genetic engineering potential of microbial vanillin metabolism. The genome of Pseudomonas sp. 9.1 was sequenced and assembled. Annotation identified oxidoreductases with homology to Saccharomyces cerevisiae alcohol dehydrogenase ScADH6p, known to reduce vanillin to vanillyl alcohol, in both the 9.1 genome and the model strain Pseudomonas putida KT2440. Recombinant expression of the Pseudomonas sp. 9.1 FEZ21_09870 and P. putida KT2440 PP_2426 (calA) genes in Escherichia coli revealed that these open reading frames encode aldehyde reductases that convert vanillin to vanillyl alcohol, and that P. putida KT2440 PP_3839 encodes a coniferyl alcohol dehydrogenase that oxidizes coniferyl alcohol to coniferyl aldehyde (i.e., the function previously assigned to calA). The deletion of PP_2426 in P. putida GN442 engineered to accumulate vanillin resulted in a decrease in by-product (vanillyl alcohol) yield from 17% to ∼1%. Based on these results, we propose the reannotation of PP_2426 and FEZ21_09870 as areA and PP_3839 as calA-II IMPORTANCE Valorization of lignocellulose (nonedible plant matter) is of key interest for the sustainable production of chemicals from renewable resources. Lignin, one of the main constituents of lignocellulose, is a heterogeneous aromatic biopolymer that can be chemically depolymerized into a heterogeneous mixture of aromatic building blocks; those can be further converted by certain microbes into value-added aromatic chemicals, e.g., the flavoring agent vanillin. We previously isolated a Pseudomonas sp. strain with the (for the genus) unusual trait of vanillyl alcohol production during growth on vanillin. Whole-genome sequencing of the isolate led to the identification of a vanillin reductase candidate gene whose deletion in a recombinant vanillin-accumulating P. putida strain almost completely alleviated the undesired vanillyl alcohol by-product yield. These results represent an important step toward biotechnological production of vanillin from lignin using bacterial cell factories.
Collapse
|
46
|
Ji J, Zhang Y, Liu Y, Zhu P, Yan X. Biodegradation of plastic monomer 2,6-dimethylphenol by Mycobacterium neoaurum B5-4. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113793. [PMID: 31864921 DOI: 10.1016/j.envpol.2019.113793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/06/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
2,6-Dimethylphenol (2,6-DMP), an important chemical intermediate and the monomer of plastic polyphenylene oxide, is widely used in chemical and plastics industry. However, the pollution problem of 2,6-DMP residues is becoming increasingly serious, which is harmful to some aquatic animals. Microbial degradation provided an effective approach to eliminate DMPs in nature, which is considered as a prospective way to remediate DMPs-contaminated environments. But the 2,6-DMP-degrading bacteria is not available and the molecular mechanism of 2,6-DMP degradation is unclear as well. Here, a 2,6-DMP-degrading bacterium named B5-4 was isolated and identified as Mycobacterium neoaurum. M. neoaurum B5-4 could utilize 2,6-DMP as the sole carbon source for growth. Furthermore, M. neoaurum B5-4 could degrade 2,6-DMP with concentrations ranging from 1 to 500 mg L-1. Six intermediate metabolites of 2,6-DMP were identified and a metabolic pathway of 2,6-DMP in M. neoaurum B5-4 was proposed, in which 2,6-DMP was initially converted to 2,6-dimethyl-hydroquinone and 2,6-dimethyl-3-hydroxy-hydroquinone by two consecutive hydroxylations at C-4 and γ position; 2,6-dimethyl-3-hydroxy-hydroquinone was then subjected to aromatic ring ortho-cleavage to produce 2,4-dimethyl-3-hydroxymuconic acid, which was further transformed to citraconate, and subsequently into TCA cycle. In addition, toxicity bioassay of 2,6-DMP in water using zebrafish indicates that 2,6-DMP is toxic to zebrafish and M. neoaurum B5-4 could effectively eliminate 2,6-DMP in water to protect zebrafish from 2,6-DMP-induced death. This work provides a potential strain for bioremediation of 2,6-DMP-contaminated environments and lays a foundation for elucidating the molecular mechanism and genetic determinants of 2,6-DMP degradation.
Collapse
Affiliation(s)
- Junbin Ji
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yanting Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yongchuang Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Pingping Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
47
|
MhpA Is a Hydroxylase Catalyzing the Initial Reaction of 3-(3-Hydroxyphenyl)Propionate Catabolism in Escherichia coli K-12. Appl Environ Microbiol 2020; 86:AEM.02385-19. [PMID: 31811039 DOI: 10.1128/aem.02385-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli K-12 and some other strains have been reported to be capable of utilizing 3-(3-hydroxyphenyl)propionate (3HPP), one of the phenylpropanoids from lignin. Although other enzymes involved in 3HPP catabolism and their corresponding genes from its degraders have been identified, 3HPP 2-hydroxylase, catalyzing the first step of its catabolism, has yet to be functionally identified at biochemical and genetic levels. In this study, we investigated the function and characteristics of MhpA from E. coli strain K-12 (MhpAK-12). Gene deletion and complementation showed that mhpA was vital for its growth on 3HPP, but the mhpA deletion strain was still able to grow on 3-(2,3-dihydroxyphenyl)propionate (DHPP), the hydroxylation product transformed from 3HPP by MhpAK-12 MhpAK-12 was overexpressed and purified, and it was likely a polymer and tightly bound with an approximately equal number of moles of FAD. Using NADH or NADPH as a cofactor, purified MhpAK-12 catalyzed the conversion of 3HPP to DHPP at a similar efficiency. The conversion from 3HPP to DHPP by purified MhpAK-12 was confirmed using high-performance liquid chromatography and liquid chromatography-mass spectrometry. Bioinformatics analysis indicated that MhpAK-12 and its putative homologues belonged to taxa that were phylogenetically distant from functionally identified FAD-containing monooxygenases (hydroxylases). Interestingly, MhpAK-12 has approximately an extra 150 residues at its C terminus in comparison to its close homologues, but its truncated versions MhpAK-12 400 and MhpAK-12 480 (with 154 and 74 residues deleted from the C terminus, respectively) both lost their activities. Thus, MhpAK-12 has been confirmed to be a 3HPP 2-hydroxylase catalyzing the conversion of 3HPP to DHPP, the initial reaction of 3HPP degradation.IMPORTANCE Phenylpropionate and its hydroxylated derivatives resulted from lignin degradation ubiquitously exist on the Earth. A number of bacterial strains have the ability to grow on 3HPP, one of the above derivatives. The hydroxylation was thought to be the initial and vital step for its aerobic catabolism via the meta pathway. The significance of our research is the functional identification and characterization of the purified 3HPP 2-hydroxylase MhpA from Escherichia coli K-12 at biochemical and genetic levels, since this enzyme has not previously been expressed from its encoding gene, purified, and characterized in any bacteria. It will not only fill a gap in our understanding of 3HPP 2-hydroxylase and its corresponding gene for the critical step in microbial 3HPP catabolism but also provide another example of the diversity of microbial degradation of plant-derived phenylpropionate and its hydroxylated derivatives.
Collapse
|
48
|
Han L, Chen S, Zhou J. Expression and cloning of catA encoding a catechol 1,2-dioxygenase from the 2,4-D-degrading strain Cupriavidus campinensis BJ71. Prep Biochem Biotechnol 2020; 50:486-493. [PMID: 31900038 DOI: 10.1080/10826068.2019.1709978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Catechol 1,2-dioxygenases catalyze catechol ring-opening, a critical step in the degradation of aromatic compounds. Cupriavidus campinensis BJ71, an efficient 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterial strain, was previously isolated from an environment contaminated with 2,4-D. In this study, catA encoding a catechol 1,2-dioxygenase was cloned from the BJ71 strain. The gene was 939 bp long and encoded a polypeptide of 312 amino acids with a molecular weight of 34 kDa. To investigate its enzymatic characteristics, CatA was heterologously expressed in Escherichia coli. Optimal reaction conditions for the pure enzyme were 35 °C and pH 8.0. The enzyme remained stable within a range of 25 °C-45 °C and pH 6.0-9.0, thus indicating that CatA has wide temperature and pH adaptability. After incubation at 45 °C, the enzyme activity of CatA decreased to 37.12%, but its activity was not affected by incubation at pH 9.0. The pure enzyme was able to use catechol, 4-methyl-catechol and 4-chlorocatechol as substrates. Enzyme kinetic parameters Km and Vmax were 39.97 µM and 10.68 U/mg, respectively. This is the first report of the cloning of a gene encoding a catechol 1,2-dioxygenase from a 2,4-D-degrading bacterial strain.
Collapse
Affiliation(s)
- Lizhen Han
- College of Life Sciences, Guizhou University, Guiyang, China
| | - Sen Chen
- College of Life Sciences, Guizhou University, Guiyang, China
| | - Jing Zhou
- College of Life Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
49
|
Tischler D, Kumpf A, Eggerichs D, Heine T. Styrene monooxygenases, indole monooxygenases and related flavoproteins applied in bioremediation and biocatalysis. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:399-425. [DOI: 10.1016/bs.enz.2020.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Nagata Y, Kato H, Ohtsubo Y, Tsuda M. Lessons from the genomes of lindane-degrading sphingomonads. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:630-644. [PMID: 31063253 DOI: 10.1111/1758-2229.12762] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 05/27/2023]
Abstract
Bacterial strains capable of degrading man-made xenobiotic compounds are good materials to study bacterial evolution towards new metabolic functions. Lindane (γ-hexachlorocyclohexane, γ-HCH, or γ-BHC) is an especially good target compound for the purpose, because it is relatively recalcitrant but can be degraded by a limited range of bacterial strains. A comparison of the complete genome sequences of lindane-degrading sphingomonad strains clearly demonstrated that (i) lindane-degrading strains emerged from a number of different ancestral hosts that have recruited lin genes encoding enzymes that are able to channel lindane to central metabolites, (ii) in sphingomonads lin genes have been acquired by horizontal gene transfer mediated by different plasmids and in which IS6100 plays a role in recruitment and distribution of genes, and (iii) IS6100 plays a role in dynamic genome rearrangements providing genetic diversity to different strains and ability to evolve to other states. Lindane-degrading bacteria whose genomes change so easily and quickly are also fascinating starting materials for tracing the bacterial evolution process experimentally in a relatively short time period. As the origin of the specific lin genes remains a mystery, such genes will be useful probes for exploring the cryptic 'gene pool' available to bacteria.
Collapse
Affiliation(s)
- Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Hiromi Kato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| |
Collapse
|