1
|
Mohan C, Crepaldi M, Torazza D, Adamatzky A, Abdi G, Szkudlarek A, Chiolerio A. Liquid ferrofluid synapses for spike-based neuromorphic learning. MATERIALS HORIZONS 2025. [PMID: 40241544 DOI: 10.1039/d4mh01592d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Solid-state memory devices have emerged as promising synapses for neuromorphic engineering and computing. However, features such as limited endurance, static sensitivity, and lower ON/OFF ratios, as well as the need for peculiar conditions including current compliance and forming, still make their adoption challenging. Here we report a liquid state neuromorphic device based on a ferrofluid that exhibits short-term plasticity featuring extraordinary properties: a lower dynamic range, a high endurance, a fault tolerance capability, a deterministic resistance switching behavior, and no need for prerequisites such as a forming procedure and compliance current requirements. We also show how to stabilize nanoparticles using oleic acid as the surfactant, resulting in a yield increase and a smaller resistance variance. Additionally, we propose a low-power inference system on such a liquid synapse by applying the minimal magnitude of read biases, which are only affected to about 10% by the offset, gain errors, and noise of the system. Finally, we show the liquid synapse's feature to scale down the size and the capability to classify digits using a spike-based unsupervised learning method.
Collapse
Affiliation(s)
- Charanraj Mohan
- Electronic Design Laboratory, Istituto Italiano di Tecnologia, Via Melen 83, Genova 16152, Liguria, Italy
| | - Marco Crepaldi
- Electronic Design Laboratory, Istituto Italiano di Tecnologia, Via Melen 83, Genova 16152, Liguria, Italy
| | - Diego Torazza
- Mechanical Workshop, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Liguria, Italy
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of West England, Frenchay Campus, Coldharbour Ln, Bristol, BS16 1QY Bristol, UK
| | - Gisya Abdi
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland
| | - Aleksandra Szkudlarek
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Kawiory 30, 30-055 Kraków, Poland
| | - Alessandro Chiolerio
- Unconventional Computing Laboratory, University of West England, Frenchay Campus, Coldharbour Ln, Bristol, BS16 1QY Bristol, UK
- Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Liguria, Italy.
| |
Collapse
|
2
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
3
|
Koch D, Nandan A, Ramesan G, Koseska A. Biological computations: Limitations of attractor-based formalisms and the need for transients. Biochem Biophys Res Commun 2024; 720:150069. [PMID: 38754165 DOI: 10.1016/j.bbrc.2024.150069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Living systems, from single cells to higher vertebrates, receive a continuous stream of non-stationary inputs that they sense, for e.g. via cell surface receptors or sensory organs. By integrating these time-varying, multi-sensory, and often noisy information with memory using complex molecular or neuronal networks, they generate a variety of responses beyond simple stimulus-response association, including avoidance behavior, life-long-learning or social interactions. In a broad sense, these processes can be understood as a type of biological computation. Taking as a basis generic features of biological computations, such as real-time responsiveness or robustness and flexibility of the computation, we highlight the limitations of the current attractor-based framework for understanding computations in biological systems. We argue that frameworks based on transient dynamics away from attractors are better suited for the description of computations performed by neuronal and signaling networks. In particular, we discuss how quasi-stable transient dynamics from ghost states that emerge at criticality have a promising potential for developing an integrated framework of computations, that can help us understand how living system actively process information and learn from their continuously changing environment.
Collapse
Affiliation(s)
- Daniel Koch
- Lise Meitner Group Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behaviour - Caesar, Bonn, Germany
| | - Akhilesh Nandan
- Lise Meitner Group Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behaviour - Caesar, Bonn, Germany
| | - Gayathri Ramesan
- Lise Meitner Group Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behaviour - Caesar, Bonn, Germany
| | - Aneta Koseska
- Lise Meitner Group Cellular Computations and Learning, Max Planck Institute for Neurobiology of Behaviour - Caesar, Bonn, Germany.
| |
Collapse
|
4
|
Shu JJ, Tan ZH, Wang QW, Yong KY. Programmable Biomolecule-Mediated Processors. J Am Chem Soc 2023; 145:25033-25042. [PMID: 37864571 PMCID: PMC10682996 DOI: 10.1021/jacs.3c04142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Programmable biomolecule-mediated computing is a new computing paradigm as compared to contemporary electronic computing. It employs nucleic acids and analogous biomolecular structures as information-storing and -processing substrates to tackle computational problems. It is of great significance to investigate the various issues of programmable biomolecule-mediated processors that are capable of automatically processing, storing, and displaying information. This Perspective provides several conceptual designs of programmable biomolecule-mediated processors and provides some insights into potential future research directions for programmable biomolecule-mediated processors.
Collapse
Affiliation(s)
- Jian-Jun Shu
- School of Mechanical &
Aerospace Engineering, Nanyang Technological
University, 50 Nanyang Avenue, Singapore 639798
| | - Zi Hian Tan
- School of Mechanical &
Aerospace Engineering, Nanyang Technological
University, 50 Nanyang Avenue, Singapore 639798
| | - Qi-Wen Wang
- School of Mechanical &
Aerospace Engineering, Nanyang Technological
University, 50 Nanyang Avenue, Singapore 639798
| | - Kian-Yan Yong
- School of Mechanical &
Aerospace Engineering, Nanyang Technological
University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
5
|
Gentili PL, Stano P. Monitoring the advancements in the technology of artificial cells by determining their complexity degree: Hints from complex systems descriptors. Front Bioeng Biotechnol 2023; 11:1132546. [PMID: 36815888 PMCID: PMC9928734 DOI: 10.3389/fbioe.2023.1132546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Affiliation(s)
- Pier Luigi Gentili
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy,*Correspondence: Pier Luigi Gentili, ; Pasquale Stano,
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Ecotekne, Lecce, Italy,*Correspondence: Pier Luigi Gentili, ; Pasquale Stano,
| |
Collapse
|
6
|
Formalising the Pathways to Life Using Assembly Spaces. ENTROPY 2022; 24:e24070884. [PMID: 35885107 PMCID: PMC9323097 DOI: 10.3390/e24070884] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022]
Abstract
Assembly theory (referred to in prior works as pathway assembly) has been developed to explore the extrinsic information required to distinguish a given object from a random ensemble. In prior work, we explored the key concepts relating to deconstructing an object into its irreducible parts and then evaluating the minimum number of steps required to rebuild it, allowing for the reuse of constructed sub-objects. We have also explored the application of this approach to molecules, as molecular assembly, and how molecular assembly can be inferred experimentally and used for life detection. In this article, we formalise the core assembly concepts mathematically in terms of assembly spaces and related concepts and determine bounds on the assembly index. We explore examples of constructing assembly spaces for mathematical and physical objects and propose that objects with a high assembly index can be uniquely identified as those that must have been produced using directed biological or technological processes rather than purely random processes, thereby defining a new scale of aliveness. We think this approach is needed to help identify the new physical and chemical laws needed to understand what life is, by quantifying what life does.
Collapse
|
7
|
Danchin A, Fenton AA. From Analog to Digital Computing: Is Homo sapiens’ Brain on Its Way to Become a Turing Machine? Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.796413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The abstract basis of modern computation is the formal description of a finite state machine, the Universal Turing Machine, based on manipulation of integers and logic symbols. In this contribution to the discourse on the computer-brain analogy, we discuss the extent to which analog computing, as performed by the mammalian brain, is like and unlike the digital computing of Universal Turing Machines. We begin with ordinary reality being a permanent dialog between continuous and discontinuous worlds. So it is with computing, which can be analog or digital, and is often mixed. The theory behind computers is essentially digital, but efficient simulations of phenomena can be performed by analog devices; indeed, any physical calculation requires implementation in the physical world and is therefore analog to some extent, despite being based on abstract logic and arithmetic. The mammalian brain, comprised of neuronal networks, functions as an analog device and has given rise to artificial neural networks that are implemented as digital algorithms but function as analog models would. Analog constructs compute with the implementation of a variety of feedback and feedforward loops. In contrast, digital algorithms allow the implementation of recursive processes that enable them to generate unparalleled emergent properties. We briefly illustrate how the cortical organization of neurons can integrate signals and make predictions analogically. While we conclude that brains are not digital computers, we speculate on the recent implementation of human writing in the brain as a possible digital path that slowly evolves the brain into a genuine (slow) Turing machine.
Collapse
|
8
|
Computing within bacteria: Programming of bacterial behavior by means of a plasmid encoding a perceptron neural network. Biosystems 2022; 213:104608. [DOI: 10.1016/j.biosystems.2022.104608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 01/12/2023]
|
9
|
Collado-Vides J, Gaudet P, de Lorenzo V. Missing Links Between Gene Function and Physiology in Genomics. Front Physiol 2022; 13:815874. [PMID: 35295568 PMCID: PMC8918662 DOI: 10.3389/fphys.2022.815874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
Knowledge of biological organisms at the molecular level that has been gathered is now organized into databases, often within ontological frameworks. To enable computational comparisons of annotations across different genomes and organisms, controlled vocabularies have been essential, as is the case in the functional annotation classifications used for bacteria, such as MultiFun and the more widely used Gene Ontology. The function of individual gene products as well as the processes in which collections of them participate constitute a wealth of classes that describe the biological role of gene products in a large number of organisms in the three kingdoms of life. In this contribution, we highlight from a qualitative perspective some limitations of these frameworks and discuss challenges that need to be addressed to bridge the gap between annotation as currently captured by ontologies and databases and our understanding of the basic principles in the organization and functioning of organisms; we illustrate these challenges with some examples in bacteria. We hope that raising awareness of these issues will encourage users of Gene Ontology and similar ontologies to be careful about data interpretation and lead to improved data representation.
Collapse
Affiliation(s)
- Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pascale Gaudet
- SIB Swiss Institute of Bioinformatics, Swiss-Prot Group, Geneva, Switzerland
| | - Víctor de Lorenzo
- Department of Systems Biology, Centro Nacional de Biotecnología CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Kim J, Silva-Rocha R, de Lorenzo V. Picking the right metaphors for addressing microbial systems: economic theory helps understanding biological complexity. Int Microbiol 2021; 24:507-519. [PMID: 34269947 DOI: 10.1007/s10123-021-00194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Any descriptive language is necessarily metaphoric and interpretative. Two somewhat overlapping-but not identical-languages have been thoroughly employed in the last decade to address the issue of regulatory complexity in biological systems: the terminology of network theory and the jargon of electric circuitry. These approaches have found many formal equivalences between the layout of extant genetic circuits and the architecture of man-made counterparts. However, these languages still fail to describe accurately key features of biological objects, in particular the diversity of signal-transfer molecules and the diffusion that is inherent to any biochemical system. Furthermore, current formalisms associated with networks and circuits can hardly face the problem of multi-scale regulatory complexity-from single molecules to entire ecosystems. We argue that the language of economic theory might be instrumental not only to portray accurately many features of regulatory networks, but also to unveil aspects of the biological complexity problem that remain opaque to other types of analyses. The main perspective opened by the economic metaphor when applied to control of microbiological activities is a focus on metabolism, not gene selfishness, as the necessary background to make sense of regulatory phenomena. As an example, we analyse and reinterpret the widespread phenomenon of catabolite repression with the formal frame of the consumer's choice theory.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Genomic Intelligence as Über Bio-Cybersecurity: The Gödel Sentence in Immuno-Cognitive Systems. ENTROPY 2021; 23:e23040405. [PMID: 33805411 PMCID: PMC8065710 DOI: 10.3390/e23040405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/27/2022]
Abstract
This paper gives formal foundations and evidence from gene science in the post Barbara McClintock era that the Gödel Sentence, far from being an esoteric construction in mathematical logic, is ubiquitous in genomic intelligence that evolved with multi-cellular life. Conditions uniquely found in the Adaptive Immune System (AIS) and Mirror Neuron System (MNS), termed the genomic immuno-cognitive system, coincide with three building blocks in computation theory of Gödel, Turing and Post (G-T-P). (i) Biotic elements have unique digital identifiers with gene codes executing 3D self-assembly for morphology and regulation of the organism using the recursive operation of Self-Ref (Self-Reference) with the other being a self-referential projection of self. (ii) A parallel offline simulation meta/mirror environment in 1–1 relation to online machine executions of self-codes gives G-T-P Self-Rep (Self-Representation). (iii) This permits a digital biotic entity to self-report that it is under attack by a biotic malware or non-self antigen in the format of the Gödel sentence, resulting in the “smarts” for contextual novelty production. The proposed unitary G-T-P recursive machinery in AIS and in MNS for social cognition yields a new explanation that the Interferon Gamma factor, known for friend-foe identification in AIS, is also integral to social behaviors. New G-T-P bio-informatics of AIS and novel anti-body production is given with interesting testable implications for COVID-19 pathology.
Collapse
|
12
|
Blanchard E, Longo G. From axiomatic systems to the Dogmatic gene and beyond. Biosystems 2021; 204:104396. [PMID: 33722644 DOI: 10.1016/j.biosystems.2021.104396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
The positivistic views that dominated the early debate on the foundations of mathematics, at the beginning of the 20th century, survived the "negative results" that have shown the limits of the axiomatic approach since the 1930s. Rigour, abstraction and symbolism have been confused with formalism, based on finite strings of signs, pre-given axioms, and potentially mechanisable rewriting rules. This contributed to major clarifications in the mathematical praxes but obscured the limits of formalisms due to the exclusion of the historical creation of sense proper to any science. We expand on this sometimes fruitful confusion with some case studies. We then hint to the historical creation of sense as a component of an epistemology of mathematics. We continue with an analogy with genocentric approaches in biology, as similar positivistic views resurfaced there fifty years later. Finite sequences of letters in the DNA would completely determine ontogenesis and phylogenesis, according to the Central Dogma of molecular biology. Limits and "negative evidence" have been disregarded while searching for the "gene for" everything. Alternative perspectives require a reconstruction of the sense of history as locus for the constitution of any object of biological knowledge. In particular, the historicity of biological evolution will be understood in terms of changing phase spaces and of the role of rare events in all phylogenetic trajectories. The analysis of the evolutionary production of variability, adaptivity and ecosystemic diversity is a key component of the project we hint to, as part of a renewed relation to the biological environment.
Collapse
Affiliation(s)
- Enka Blanchard
- Digitrust Consortium, Loria, Université de Lorraine, Nancy, France.
| | - Giuseppe Longo
- Centre Cavaillés, République des Savoirs, CNRS and École Normale Supérieure, Paris, France; School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
13
|
Tas H, Grozinger L, Stoof R, de Lorenzo V, Goñi-Moreno Á. Contextual dependencies expand the re-usability of genetic inverters. Nat Commun 2021; 12:355. [PMID: 33441561 PMCID: PMC7806840 DOI: 10.1038/s41467-020-20656-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
The implementation of Boolean logic circuits in cells have become a very active field within synthetic biology. Although these are mostly focussed on the genetic components alone, the context in which the circuit performs is crucial for its outcome. We characterise 20 genetic NOT logic gates in up to 7 bacterial-based contexts each, to generate 135 different functions. The contexts we focus on are combinations of four plasmid backbones and three hosts, two Escherichia coli and one Pseudomonas putida strains. Each gate shows seven different dynamic behaviours, depending on the context. That is, gates can be fine-tuned by changing only contextual parameters, thus improving the compatibility between gates. Finally, we analyse portability by measuring, scoring, and comparing gate performance across contexts. Rather than being a limitation, we argue that the effect of the genetic background on synthetic constructs expands functionality, and advocate for considering context as a fundamental design parameter.
Collapse
Affiliation(s)
- Huseyin Tas
- grid.428469.50000 0004 1794 1018Systems Biology Department, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, 28049 Spain
| | - Lewis Grozinger
- grid.1006.70000 0001 0462 7212School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5TG UK
| | - Ruud Stoof
- grid.1006.70000 0001 0462 7212School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5TG UK
| | - Victor de Lorenzo
- grid.428469.50000 0004 1794 1018Systems Biology Department, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, 28049 Spain
| | - Ángel Goñi-Moreno
- grid.1006.70000 0001 0462 7212School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5TG UK ,grid.419190.40000 0001 2300 669XCentro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politénica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
14
|
Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 81:145-159. [PMID: 33276091 DOI: 10.1016/j.semcancer.2020.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by whole genome doubling or more, is observed across organisms, often associated with mitigation strategies against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence and, ultimately, cancer lethality.
Collapse
|
15
|
Danchin A. Isobiology: A Variational Principle for Exploring Synthetic Life. Chembiochem 2020; 21:1781-1792. [DOI: 10.1002/cbic.202000060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Antoine Danchin
- Stellate TherapeuticsInstitut Cochin 24 rue du Faubourg Saint-Jacques 75014 Paris France
| |
Collapse
|
16
|
Hallinan JS, Wipat A, Kitney R, Woods S, Taylor K, Goñi‐Moreno A. Future‐proofing synthetic biology: educating the next generation. ENGINEERING BIOLOGY 2019. [DOI: 10.1049/enb.2019.0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
| | - Anil Wipat
- School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Richard Kitney
- Department of BioengineeringImperial College LondonLondonUK
| | - Simon Woods
- Policy, Ethics and Life Sciences (PEALS) Research CentreNewcastle UniversityNewcastle upon TyneUK
| | - Ken Taylor
- Policy, Ethics and Life Sciences (PEALS) Research CentreNewcastle UniversityNewcastle upon TyneUK
| | | |
Collapse
|
17
|
Is the cell really a machine? J Theor Biol 2019; 477:108-126. [PMID: 31173758 DOI: 10.1016/j.jtbi.2019.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 05/06/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
It has become customary to conceptualize the living cell as an intricate piece of machinery, different to a man-made machine only in terms of its superior complexity. This familiar understanding grounds the conviction that a cell's organization can be explained reductionistically, as well as the idea that its molecular pathways can be construed as deterministic circuits. The machine conception of the cell owes a great deal of its success to the methods traditionally used in molecular biology. However, the recent introduction of novel experimental techniques capable of tracking individual molecules within cells in real time is leading to the rapid accumulation of data that are inconsistent with an engineering view of the cell. This paper examines four major domains of current research in which the challenges to the machine conception of the cell are particularly pronounced: cellular architecture, protein complexes, intracellular transport, and cellular behaviour. It argues that a new theoretical understanding of the cell is emerging from the study of these phenomena which emphasizes the dynamic, self-organizing nature of its constitution, the fluidity and plasticity of its components, and the stochasticity and non-linearity of its underlying processes.
Collapse
|
18
|
Goñi-Moreno A, Nikel PI. High-Performance Biocomputing in Synthetic Biology-Integrated Transcriptional and Metabolic Circuits. Front Bioeng Biotechnol 2019; 7:40. [PMID: 30915329 PMCID: PMC6421265 DOI: 10.3389/fbioe.2019.00040] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/18/2019] [Indexed: 12/03/2022] Open
Abstract
Biocomputing uses molecular biology parts as the hardware to implement computational devices. By following pre-defined rules, often hard-coded into biological systems, these devices are able to process inputs and return outputs—thus computing information. Key to the success of any biocomputing endeavor is the availability of a wealth of molecular tools and biological motifs from which functional devices can be assembled. Synthetic biology is a fabulous playground for such purpose, offering numerous genetic parts that allow for the rational engineering of genetic circuits that mimic the behavior of electronic functions, such as logic gates. A grand challenge, as far as biocomputing is concerned, is to expand the molecular hardware available beyond the realm of genetic parts by tapping into the host metabolism. This objective requires the formalization of the interplay of genetic constructs with the rest of the cellular machinery. Furthermore, the field of metabolic engineering has had little intersection with biocomputing thus far, which has led to a lack of definition of metabolic dynamics as computing basics. In this perspective article, we advocate the conceptualization of metabolism and its motifs as the way forward to achieve whole-cell biocomputations. The design of merged transcriptional and metabolic circuits will not only increase the amount and type of information being processed by a synthetic construct, but will also provide fundamental control mechanisms for increased reliability.
Collapse
Affiliation(s)
- Angel Goñi-Moreno
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Boël G, Danot O, de Lorenzo V, Danchin A. Omnipresent Maxwell's demons orchestrate information management in living cells. Microb Biotechnol 2019; 12:210-242. [PMID: 30806035 PMCID: PMC6389857 DOI: 10.1111/1751-7915.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of synthetic biology calls for accurate understanding of the critical functions that allow construction and operation of a living cell. Besides coding for ubiquitous structures, minimal genomes encode a wealth of functions that dissipate energy in an unanticipated way. Analysis of these functions shows that they are meant to manage information under conditions when discrimination of substrates in a noisy background is preferred over a simple recognition process. We show here that many of these functions, including transporters and the ribosome construction machinery, behave as would behave a material implementation of the information-managing agent theorized by Maxwell almost 150 years ago and commonly known as Maxwell's demon (MxD). A core gene set encoding these functions belongs to the minimal genome required to allow the construction of an autonomous cell. These MxDs allow the cell to perform computations in an energy-efficient way that is vastly better than our contemporary computers.
Collapse
Affiliation(s)
- Grégory Boël
- UMR 8261 CNRS‐University Paris DiderotInstitut de Biologie Physico‐Chimique13 rue Pierre et Marie Curie75005ParisFrance
| | - Olivier Danot
- Institut Pasteur25‐28 rue du Docteur Roux75724Paris Cedex 15France
| | - Victor de Lorenzo
- Molecular Environmental Microbiology LaboratorySystems Biology ProgrammeCentro Nacional de BiotecnologiaC/Darwin n° 3, Campus de Cantoblanco28049MadridEspaña
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'Hôpital75013ParisFrance
- The School of Biomedical SciencesLi Kashing Faculty of MedicineHong Kong University21, Sassoon RoadPokfulamSAR Hong Kong
| |
Collapse
|
20
|
Porcar M. The Hidden Charm of Life. Life (Basel) 2019; 9:life9010005. [PMID: 30621097 PMCID: PMC6463155 DOI: 10.3390/life9010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology is an engineering view on biotechnology, which has revolutionized genetic engineering. The field has seen a constant development of metaphors that tend to highlight the similarities of cells with machines. I argue here that living organisms, particularly bacterial cells, are not machine-like, engineerable entities, but, instead, factory-like complex systems shaped by evolution. A change of the comparative paradigm in synthetic biology from machines to factories, from hardware to software, and from informatics to economy is discussed.
Collapse
Affiliation(s)
- Manuel Porcar
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC, 46980 Paterna, Spain.
- Darwin Bioprospecting Excellence, SL., Parc Científic Universitat de València, 46980 Paterna, Spain.
| |
Collapse
|
21
|
Huang WE, Nikel PI. The Synthetic Microbiology Caucus: from abstract ideas to turning microbes into cellular machines and back. Microb Biotechnol 2019; 12:5-7. [PMID: 30461208 PMCID: PMC6302714 DOI: 10.1111/1751-7915.13337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
22
|
Stano P. Is Research on "Synthetic Cells" Moving to the Next Level? Life (Basel) 2018; 9:E3. [PMID: 30587790 PMCID: PMC6463193 DOI: 10.3390/life9010003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
"Synthetic cells" research focuses on the construction of cell-like models by using solute-filled artificial microcompartments with a biomimetic structure. In recent years this bottom-up synthetic biology area has considerably progressed, and the field is currently experiencing a rapid expansion. Here we summarize some technical and theoretical aspects of synthetic cells based on gene expression and other enzymatic reactions inside liposomes, and comment on the most recent trends. Such a tour will be an occasion for asking whether times are ripe for a sort of qualitative jump toward novel SC prototypes: is research on "synthetic cells" moving to a next level?
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento; Ecotekne-S.P. Lecce-Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
23
|
de Lorenzo V. Evolutionary tinkering vs. rational engineering in the times of synthetic biology. LIFE SCIENCES, SOCIETY AND POLICY 2018; 14:18. [PMID: 30099657 PMCID: PMC6087506 DOI: 10.1186/s40504-018-0086-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Synthetic biology is not only a contemporary reformulation of the recombinant DNA technologies of the last 30 years, combined with descriptive language imported from electrical and industrial engineering. It is also a new way to interpret living systems and a statement of intent for the use and reprogramming of biological objects for human benefit. In this context, the notion of designer biology is often presented as opposed to natural selection following the powerful rationale formulated by François Jacob on evolution-as-tinkering. The onset of synthetic biology opens a different perspective by leaving aside the question about the evolutionary origin of biological phenomena and focusing instead on the relational logic and the material properties of the corresponding components that make biological system work as they do. Once a functional challenge arises, the solution space for the problem is not homogeneous but it has attractors that can be accessed either through random exploration (as evolution does) or rational design (as engineers do). Although these two paths (i.e. evolution and engineering) are essentially different, they can lead to solutions to specific mechanistic bottlenecks that frequently coincide or converge-and one can easily help to understand and improve the other. Alas, productive discussions on these matters are often contaminated by ideological preconceptions that prevent adoption of the engineering metaphor to understand and ultimately reshape living systems-as ambitioned by synthetic biology. Yet, some possible ways to overcome the impasse are feasible. In parallel to Monod's evolutionary paradox of teleo-logy (finality/purpose) vs. teleo-nomy (appearance of finality/purpose), a mechanistic paradox could be entertained between techno-logy (rational engineering) vs techno-nomy (appearance of rational engineering), all for the sake of understanding the relational logic that enables live systems to function as physico-chemical entities in time and space. This article thus proposes a radical vision of synthetic biology through the lens of the engineering metaphor.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
24
|
Danchin A, Sekowska A, Noria S. Functional Requirements in the Program and the Cell Chassis for Next-Generation Synthetic Biology. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition; 47 boulevard de l'Hôpital Paris 75013 France
| | - Agnieszka Sekowska
- Institute of Cardiometabolism and Nutrition; 47 boulevard de l'Hôpital Paris 75013 France
| | - Stanislas Noria
- Fondation Fourmentin-Guilbert; 2 avenue du Pavé Neuf Noisy le Grand 93160 France
| |
Collapse
|
25
|
Borriss R, Danchin A, Harwood CR, Médigue C, Rocha EP, Sekowska A, Vallenet D. Bacillus subtilis, the model Gram-positive bacterium: 20 years of annotation refinement. Microb Biotechnol 2018; 11:3-17. [PMID: 29280348 PMCID: PMC5743806 DOI: 10.1111/1751-7915.13043] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome annotation is, nowadays, performed via automatic pipelines that cannot discriminate between right and wrong annotations. Given their importance in increasing the accuracy of the genome annotations of other organisms, it is critical that the annotations of model organisms reflect the current annotation gold standard. The genome of Bacillus subtilis strain 168 was sequenced twenty years ago. Using a combination of inductive, deductive and abductive reasoning, we present a unique, manually curated annotation, essentially based on experimental data. This reveals how this bacterium lives in a plant niche, while carrying a paleome operating system common to Firmicutes and Tenericutes. Dozens of new genomic objects and an extensive literature survey have been included for the sequence available at the INSDC (AccNum AL009126.3). We also propose an extension to Demerec's nomenclature rules that will help investigators connect to this type of curated annotation via the use of common gene names.
Collapse
Affiliation(s)
- Rainer Borriss
- Department of PhytomedicineHumboldt‐Universität zu BerlinLentzeallee 55‐5714195BerlinGermany
| | - Antoine Danchin
- Hôpital de la Pitié‐SalpêtrièreInstitute of Cardiometabolism and Nutrition47 Boulevard de l'Hôpital75013ParisFrance
- School of Biomedical SciencesLi Kashing Faculty of MedicineUniversity of Hong Kong21 Sassoon RoadPok Fu LamSAR Hong KongChina
| | - Colin R. Harwood
- The Centre for Bacterial Cell BiologyNewcastle UniversityBaddiley‐Clark BuildingRichardson RoadNewcastle upon TyneNE2 4AXUK
| | - Claudine Médigue
- CEA DRF Genoscope LABGeMCNRS, UMR8030 Génomique MétaboliqueUniversité d'Evry Val d'EssonneUniversité Paris‐SaclayF‐91057EvryFrance
| | - Eduardo P.C. Rocha
- Microbial Evolutionary Genomics UnitInstitut Pasteur28 rue du Docteur Roux75724Paris Cedex 15France
| | - Agnieszka Sekowska
- Hôpital de la Pitié‐SalpêtrièreInstitute of Cardiometabolism and Nutrition47 Boulevard de l'Hôpital75013ParisFrance
| | - David Vallenet
- CEA DRF Genoscope LABGeMCNRS, UMR8030 Génomique MétaboliqueUniversité d'Evry Val d'EssonneUniversité Paris‐SaclayF‐91057EvryFrance
| |
Collapse
|
26
|
de Lorenzo V, Schmidt M. Biological standards for the Knowledge-Based BioEconomy: What is at stake. N Biotechnol 2018; 40:170-180. [DOI: 10.1016/j.nbt.2017.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/03/2017] [Indexed: 02/07/2023]
|
27
|
Elastic Multi-scale Mechanisms: Computation and Biological Evolution. J Mol Evol 2017; 86:47-57. [PMID: 29248946 DOI: 10.1007/s00239-017-9823-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
Abstract
Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.
Collapse
|
28
|
Cellular gauge symmetry and the Li organization principle: General considerations. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [DOI: 10.1016/j.pbiomolbio.2017.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Fields C, Levin M. Multiscale memory and bioelectric error correction in the cytoplasm-cytoskeleton-membrane system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/19/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Chris Fields
- 21 Rue des Lavandiéres, 11160 Caunes Minervois; France
| | - Michael Levin
- Allen Discovery Center at Tufts University; Medford MA USA
| |
Collapse
|
30
|
Physical Universality, State-Dependent Dynamical Laws and Open-Ended Novelty. ENTROPY 2017. [DOI: 10.3390/e19090461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Walker SI. Origins of life: a problem for physics, a key issues review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:092601. [PMID: 28593934 DOI: 10.1088/1361-6633/aa7804] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The origins of life stands among the great open scientific questions of our time. While a number of proposals exist for possible starting points in the pathway from non-living to living matter, these have so far not achieved states of complexity that are anywhere near that of even the simplest living systems. A key challenge is identifying the properties of living matter that might distinguish living and non-living physical systems such that we might build new life in the lab. This review is geared towards covering major viewpoints on the origin of life for those new to the origin of life field, with a forward look towards considering what it might take for a physical theory that universally explains the phenomenon of life to arise from the seemingly disconnected array of ideas proposed thus far. The hope is that a theory akin to our other theories in fundamental physics might one day emerge to explain the phenomenon of life, and in turn finally permit solving its origins.
Collapse
Affiliation(s)
- Sara Imari Walker
- School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, United States of America. Blue Marble Space Institute of Science, Seattle, WA, United States of America
| |
Collapse
|
32
|
Danchin A. From chemical metabolism to life: the origin of the genetic coding process. Beilstein J Org Chem 2017; 13:1119-1135. [PMID: 28684991 PMCID: PMC5480338 DOI: 10.3762/bjoc.13.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Looking for origins is so much rooted in ideology that most studies reflect opinions that fail to explore the first realistic scenarios. To be sure, trying to understand the origins of life should be based on what we know of current chemistry in the solar system and beyond. There, amino acids and very small compounds such as carbon dioxide, dihydrogen or dinitrogen and their immediate derivatives are ubiquitous. Surface-based chemical metabolism using these basic chemicals is the most likely beginning in which amino acids, coenzymes and phosphate-based small carbon molecules were built up. Nucleotides, and of course RNAs, must have come to being much later. As a consequence, the key question to account for life is to understand how chemical metabolism that began with amino acids progressively shaped into a coding process involving RNAs. Here I explore the role of building up complementarity rules as the first information-based process that allowed for the genetic code to emerge, after RNAs were substituted to surfaces to carry over the basic metabolic pathways that drive the pursuit of life.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| |
Collapse
|
33
|
|
34
|
Martínez-García E, de Lorenzo V. The quest for the minimal bacterial genome. Curr Opin Biotechnol 2016; 42:216-224. [DOI: 10.1016/j.copbio.2016.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023]
|
35
|
Davies PCW, Walker SI. The hidden simplicity of biology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:102601. [PMID: 27608530 DOI: 10.1088/0034-4885/79/10/102601] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Life is so remarkable, and so unlike any other physical system, that it is tempting to attribute special factors to it. Physics is founded on the assumption that universal laws and principles underlie all natural phenomena, but is it far from clear that there are 'laws of life' with serious descriptive or predictive power analogous to the laws of physics. Nor is there (yet) a 'theoretical biology' in the same sense as theoretical physics. Part of the obstacle in developing a universal theory of biological organization concerns the daunting complexity of living organisms. However, many attempts have been made to glimpse simplicity lurking within this complexity, and to capture this simplicity mathematically. In this paper we review a promising new line of inquiry to bring coherence and order to the realm of biology by focusing on 'information' as a unifying concept.
Collapse
Affiliation(s)
- Paul C W Davies
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
36
|
Danchin A, Fang G. Unknown unknowns: essential genes in quest for function. Microb Biotechnol 2016; 9:530-40. [PMID: 27435445 PMCID: PMC4993169 DOI: 10.1111/1751-7915.12384] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 01/18/2023] Open
Abstract
The experimental design of a minimal synthetic genome revealed the presence of a large number of genes without ascribed function, in part because the abstract laws of life must be implemented within ad hoc material contraptions. Creating a function needs recruitment of some pre‐existing structure and this reveals kludges in their set‐up and history. Here, we show that looking for functions as an engineer would help in discovery of a significant number of those, proposed together with conceptual handles allowing investigators to pursue this endeavour in other contexts.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition, CHU Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Gang Fang
- Department of Biology, New York University Shanghai Campus, 1555 Century Avenue, Pudong New Area, Shanghai, 200122, China
| |
Collapse
|
37
|
Nikel PI, Chavarría M, Danchin A, de Lorenzo V. From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 2016; 34:20-29. [PMID: 27239751 DOI: 10.1016/j.cbpa.2016.05.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 01/14/2023]
Abstract
The soil bacterium Pseudomonas putida is endowed with a central carbon metabolic network capable of fulfilling high demands of reducing power. This situation arises from a unique metabolic architecture that encompasses the partial recycling of triose phosphates to hexose phosphates-the so-called EDEMP cycle. In this article, the value of P. putida as a bacterial chassis of choice for contemporary, industrially-oriented metabolic engineering is addressed. The biochemical properties that make this bacterium adequate for hosting biotransformations involving redox reactions as well as toxic compounds and intermediates are discussed. Finally, novel developments and open questions in the continuous quest for an optimal microbial cell factory are presented at the light of current and future needs in the area of biocatalysis.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| | - Max Chavarría
- Escuela de Química & CIPRONA, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Antoine Danchin
- AMAbiotics SAS, Institut of Cardiometabolism and Nutrition (ICAN), Hôpital Universitaire de la Pitié-Salpêtrière, 75013 Paris, France
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
38
|
Walker SI, Kim H, Davies PCW. The informational architecture of the cell. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0057. [PMID: 26857675 DOI: 10.1098/rsta.2015.0057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
We compare the informational architecture of biological and random networks to identify informational features that may distinguish biological networks from random. The study presented here focuses on the Boolean network model for regulation of the cell cycle of the fission yeast Schizosaccharomyces pombe. We compare calculated values of local and global information measures for the fission yeast cell cycle to the same measures as applied to two different classes of random networks: Erdös-Rényi and scale-free. We report patterns in local information processing and storage that do indeed distinguish biological from random, associated with control nodes that regulate the function of the fission yeast cell-cycle network. Conversely, we find that integrated information, which serves as a global measure of 'emergent' information processing, does not differ from random for the case presented. We discuss implications for our understanding of the informational architecture of the fission yeast cell-cycle network in particular, and more generally for illuminating any distinctive physics that may be operative in life.
Collapse
Affiliation(s)
- Sara Imari Walker
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 86281, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ 86281, USA Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Hyunju Kim
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 86281, USA
| | - Paul C W Davies
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 86281, USA
| |
Collapse
|
39
|
Kim H, Davies P, Walker SI. New scaling relation for information transfer in biological networks. J R Soc Interface 2015; 12:20150944. [PMID: 26701883 PMCID: PMC4707865 DOI: 10.1098/rsif.2015.0944] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022] Open
Abstract
We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781-4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös-Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties.
Collapse
Affiliation(s)
- Hyunju Kim
- BEYOND: Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, USA
| | - Paul Davies
- BEYOND: Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, USA
| | - Sara Imari Walker
- BEYOND: Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA ASU-SFI Center for Biosocial Complex Systems, Arizona State University, Tempe, AZ, USA Blue Marble Space Institute of Science, Seattle, WA, USA
| |
Collapse
|
40
|
Marijuán PC, Navarro J, del Moral R. How the living is in the world: An inquiry into the informational choreographies of life. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:469-80. [DOI: 10.1016/j.pbiomolbio.2015.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
|
42
|
Affiliation(s)
- Kristin Hagen
- EA European Academy of Technology and Innovation Assessment GmbH, Bad Neuenahr-Ahrweiler, Germany
| | - Margret Engelhard
- EA European Academy of Technology and Innovation Assessment GmbH, Bad Neuenahr-Ahrweiler, Germany
| | - Georg Toepfer
- Center for Literary and Cultural Research Berlin, Berlin, Germany
| |
Collapse
|
43
|
The Cellular Chassis as the Basis for New Functionalities: Shortcomings and Requirements. Synth Biol (Oxf) 2015. [DOI: 10.1007/978-3-319-02783-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
44
|
Moya A. Obsolescence and intervention: on synthetic-biological entities. Front Bioeng Biotechnol 2014; 2:59. [PMID: 25505787 PMCID: PMC4244834 DOI: 10.3389/fbioe.2014.00059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/11/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrés Moya
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia , Valencia , Spain ; Valencian Region Foundation for the Promotion of Health and Biomedical Research (FISABIO) , Valencia , Spain ; Consortium for Biomedical Research in Epidemiology and Public Health (CIBEResp) , Madrid , Spain
| |
Collapse
|
45
|
de Lorenzo V, Sekowska A, Danchin A. Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. FEMS Microbiol Rev 2014; 39:96-119. [PMID: 25227915 DOI: 10.1111/1574-6976.12089] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this review, we examine how bacterial metabolism is shaped by chemical constraints acting on the material and dynamic layout of enzymatic networks and beyond. These are moulded not only for optimisation of given metabolic objectives (e.g. synthesis of a particular amino acid or nucleotide) but also for curbing the detrimental reactivity of chemical intermediates. Besides substrate channelling, toxicity is avoided by barriers to free diffusion (i.e. compartments) that separate otherwise incompatible reactions, along with ways for distinguishing damaging vs. harmless molecules. On the other hand, enzymes age and their operating lifetime must be tuned to upstream and downstream reactions. This time dependence of metabolic pathways creates time-linked information, learning and memory. These features suggest that the physical structure of existing biosystems, from operon assemblies to multicellular development may ultimately stem from the need to restrain chemical damage and limit the waste inherent to basic metabolic functions. This provides a new twist of our comprehension of fundamental biological processes in live systems as well as practical take-home lessons for the forward DNA-based engineering of novel biological objects.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Cantoblanco-Madrid, Spain
| | - Agnieszka Sekowska
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Antoine Danchin
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
46
|
Nicholson DJ. The machine conception of the organism in development and evolution: a critical analysis. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2014; 48 Pt B:162-174. [PMID: 25220402 DOI: 10.1016/j.shpsc.2014.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 06/03/2023]
Abstract
This article critically examines one of the most prevalent metaphors in contemporary biology, namely the machine conception of the organism (MCO). Although the fundamental differences between organisms and machines make the MCO an inadequate metaphor for conceptualizing living systems, many biologists and philosophers continue to draw upon the MCO or tacitly accept it as the standard model of the organism. The analysis presented here focuses on the specific difficulties that arise when the MCO is invoked in the contexts of development and evolution. In developmental biology the MCO underlies a logically incoherent model of ontogeny, the genetic program, which serves to legitimate three problematic theses about development: genetic animism, neo-preformationism, and developmental computability. In evolutionary biology the MCO is responsible for grounding unwarranted theoretical appeals to the concept of design as well as to the interpretation of natural selection as an engineer, which promote a distorted understanding of the process and products of evolutionary change. Overall, it is argued that, despite its heuristic value, the MCO today is impeding rather than enabling further progress in our comprehension of living systems.
Collapse
Affiliation(s)
- Daniel J Nicholson
- Centre for the Study of Life Sciences (Egenis), University of Exeter, Byrne House, St. German's Road, Exeter, Devon, EX4 4PJ, UK.
| |
Collapse
|
47
|
|
48
|
Jiménez JI, Pérez-Pantoja D, Chavarría M, Díaz E, de Lorenzo V. A second chromosomal copy of thecatAgene endowsPseudomonas putida mt-2 with an enzymatic safety valve for excess of catechol. Environ Microbiol 2014; 16:1767-78. [DOI: 10.1111/1462-2920.12361] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 12/10/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Jose I. Jiménez
- Centro de Investigaciones Biológicas; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
- Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| | - Danilo Pérez-Pantoja
- Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| | - Max Chavarría
- Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| | - Eduardo Díaz
- Centro de Investigaciones Biológicas; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| | - Víctor de Lorenzo
- Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| |
Collapse
|
49
|
Calles B, Lorenzo VD. Expanding the boolean logic of the prokaryotic transcription factor XylR by functionalization of permissive sites with a protease-target sequence. ACS Synth Biol 2013; 2:594-603. [PMID: 23875967 DOI: 10.1021/sb400050k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The σ54-dependent prokaryotic regulator XylR implements a one-input/one-output actuator that transduces the presence of the aromatic effector m-xylene into transcriptional activation of the cognate promoter Pu. Such a signal conversion involves the effector-mediated release of the intramolecular repression of the N-terminal A domain on the central C module of XylR. On this background, we set out to endow this regulator with additional signal-sensing capabilities by inserting a target site of the viral protease NIa in permissive protein locations that once cleaved in vivo could either terminate XylR activity or generate an effector-independent, constitutive transcription factor. To find optimal protein positions to this end, we saturated the xylR gene DNA with a synthetic transposable element designed for randomly delivering in-frame polypeptides throughout the sequence of any given protein. This Tn5-based system supplies the target gene with insertions of a selectable marker that can later be excised, leaving behind the desired (poly) peptides grafted into the protein structure. Implementation of such knock-in-leave-behind (KILB) method to XylR was instrumental to produce a number of variants of this transcription factor (TF) that could compute in vivo two inputs (m-xylene and protease) into a single output following a logic that was dependent on the site of the insertion of the NIa target sequence in the TF. Such NIa-sensitive XylR specimens afforded the design of novel regulatory nodes that entered protease expression as one of the signals recognized in vivo for controlling Pu. This approach is bound to facilitate the functionalization of TFs and other proteins with new traits, especially when their forward engineering is made difficult by, for example, the absence of structural data.
Collapse
Affiliation(s)
- Belen Calles
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco,
28049 Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco,
28049 Madrid, Spain
| |
Collapse
|
50
|
Silva-Rocha R, de Azevedo JSN, Carepo MSP, Lopes de Souza R, Silva A, de Lorenzo V, Schneider MPC. Vestigialization of arsenic resistance phenotypes/genotypes inChromobacterium violaceumstrains thriving in pristine Brazilian sites. BIOCATAL BIOTRANSFOR 2013. [DOI: 10.3109/10242422.2013.843170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|