1
|
Jirapongwattana N, Thongchot S, Chiraphapphaiboon W, Chieochansin T, Sa-Nguanraksa D, Warnnissorn M, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Mesothelin‑specific T cell cytotoxicity against triple negative breast cancer is enhanced by 40s ribosomal protein subunit 3‑treated self‑differentiated dendritic cells. Oncol Rep 2022; 48:127. [PMID: 35616135 PMCID: PMC9164262 DOI: 10.3892/or.2022.8338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022] Open
Abstract
Triple negative breast cancer (TNBC) lacks targeted treatment resulting in poor prognosis. Targeting overexpressing mesothelin (MSLN) using MSLN‑specific T cells is an attractive treatment approach and the aim of the present study. The expression of MSLN in human TNBC paraffin sections was analyzed by immunohistochemistry. Lentiviral vector harbored granulocyte‑macrophage colony stimulating factor (GM‑CSF), interleukin‑4 (IL‑4) and MSLN cDNAs was constructed to generate self‑differentiated myeloid‑derived antigen‑presenting‑cells reactive against tumor expressing MSLN dendritic cell (MSLN‑SmartDC) for MSLN‑specific T cell activation. The results showed high MSLN in 32.8% of all breast cancer subtypes and 57% in TNBC. High MSLN was significantly associated with TNBC subtype and the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. MSLN‑SmartDC exhibited comparable phenotype to DC generated by exogenous cytokine treatment and an addition of 40s ribosomal protein subunit 3 (RPS3), a toll‑like receptor 4 ligand, enhanced DC maturation and function by upregulation of CD40, CD80 and CD83 expressions and IL‑12p70 secretion. MSLN‑specific CD8+CD69+ IFN‑γ+ T cells were detected in T cells activated by both MSLN‑SmartDC and RPS3‑MSLN‑SmartDC. MSLN‑specific T cells activated by these DCs showed more specific killing capability against naturally expressed MSLN‑HCC70 and artificially MSLN‑overexpressing MDA‑MB‑231 compared with parental MDA‑MB‑231 in both two dimensional (2D)‑ and 3D‑culture systems. In conclusion, the results demonstrated the efficacy of MSLN‑SmartDC to promote MSLN‑specific T cells response against TNBC and RPS3 can enhance the cytolytic activity of these T cells providing an alternative treatment approach for patients with TNBC.
Collapse
Affiliation(s)
- Niphat Jirapongwattana
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wannasiri Chiraphapphaiboon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thaweesak Chieochansin
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Doonyapat Sa-Nguanraksa
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malee Warnnissorn
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
2
|
Yin Z, Fan J, Xu J, Wu F, Li Y, Zhou M, Liao T, Duan L, Wang S, Geng W, Jin Y. Immunoregulatory Roles of Extracellular Vesicles and Associated Therapeutic Applications in Lung Cancer. Front Immunol 2020; 11:2024. [PMID: 32983146 PMCID: PMC7483575 DOI: 10.3389/fimmu.2020.02024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer represents a fatal condition that has the highest morbidity and mortality among malignancies. The currently available treatments fall short of improving the survival and quality of life of late-stage lung cancer patients. Extracellular vesicles (EVs) secreted by tumors or immune cells transport proteins, lipids, and nucleic acids to other cells, thereby mediating immune regulation in the tumor microenvironment. The cargo carried by EVs vary by cellular state or extracellular milieu. So far, multiple studies have suggested that EVs from lung tumor cells (TEVs) or immune cells promote tumor progression mainly through suppressing antitumor immunity. However, modified or engineered EVs can be used as vaccines to elicit antitumor immunity. In addition, blocking the function of immunosuppressive EVs and using EVs carrying immunogenic medicine or EVs from certain immune cells also shows great potential in lung cancer treatment. To provide information for future studies on the role of EVs in lung cancer immunity, this review focus on the immunoregulatory role of EVs and associated treatment applications in lung cancer.
Collapse
Affiliation(s)
- Zhengrong Yin
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinshuo Fan
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Xu
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wu
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Zhou
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Liao
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Duan
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sufei Wang
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Geng
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Pathogen-Associated Molecular Patterns Induced Crosstalk between Dendritic Cells, T Helper Cells, and Natural Killer Helper Cells Can Improve Dendritic Cell Vaccination. Mediators Inflamm 2016; 2016:5740373. [PMID: 26980946 PMCID: PMC4766350 DOI: 10.1155/2016/5740373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/30/2015] [Indexed: 12/29/2022] Open
Abstract
A coordinated cellular interplay is of crucial importance in both host defense against pathogens and malignantly transformed cells. The various interactions of Dendritic Cells (DC), Natural Killer (NK) cells, and T helper (Th) cells can be influenced by a variety of pathogen-associated molecular patterns (PAMPs) and will lead to enhanced CD8+ effector T cell responses. Specific Pattern Recognition Receptor (PRR) triggering during maturation enables DC to enhance Th1 as well as NK helper cell responses. This effect is correlated with the amount of IL-12p70 released by DC. Activated NK cells are able to amplify the proinflammatory cytokine profile of DC via the release of IFN-γ. The knowledge on how PAMP recognition can modulate the DC is of importance for the design and definition of appropriate therapeutic cancer vaccines. In this review we will discuss the potential role of specific PAMP-matured DC in optimizing therapeutic DC-based vaccines, as some of these DC are efficiently activating Th1, NK cells, and cytotoxic T cells. Moreover, to optimize these vaccines, also the inhibitory effects of tumor-derived suppressive factors, for example, on the NK-DC crosstalk, should be taken into account. Finally, the suppressive role of the tumor microenvironment in vaccination efficacy and some proposals to overcome this by using combination therapies will be described.
Collapse
|
4
|
Soukup K, Halfmann A, Le Bras M, Sahin E, Vittori S, Poyer F, Schuh C, Luger R, Niederreiter B, Haider T, Stoiber D, Blüml S, Schabbauer G, Kotlyarov A, Gaestel M, Felzmann T, Dohnal AM. The MAPK-Activated Kinase MK2 Attenuates Dendritic Cell-Mediated Th1 Differentiation and Autoimmune Encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:541-52. [PMID: 26078274 DOI: 10.4049/jimmunol.1401663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 05/13/2015] [Indexed: 01/21/2023]
Abstract
Dendritic cell (DC)-mediated inflammation induced via TLRs is promoted by MAPK-activated protein kinase (MK)-2, a substrate of p38 MAPK. In this study we show an opposing role of MK2, by which it consolidates immune regulatory functions in DCs through modulation of p38, ERK1/2-MAPK, and STAT3 signaling. During primary TLR/p38 signaling, MK2 mediates the inhibition of p38 activation and positively cross-regulates ERK1/2 activity, leading to a reduction of IL-12 and IL-1α/β secretion. Consequently, MK2 impairs secondary autocrine IL-1α signaling in DCs, which further decreases the IL-1α/p38 but increases the anti-inflammatory IL-10/STAT3 signaling route. Therefore, the blockade of MK2 activity enables human and murine DCs to strengthen proinflammatory effector mechanisms by promoting IL-1α-mediated Th1 effector functions in vitro. Furthermore, MK2-deficient DCs trigger Th1 differentiation and Ag-specific cytotoxicity in vivo. Finally, wild-type mice immunized with LPS in the presence of an MK2 inhibitor strongly accumulate Th1 cells in their lymph nodes. These observations correlate with a severe clinical course in DC-specific MK2 knockout mice compared with wild-type littermates upon induction of experimental autoimmune encephalitis. Our data suggest that MK2 exerts a profound anti-inflammatory effect that prevents DCs from prolonging excessive Th1 effector T cell functions and autoimmunity.
Collapse
Affiliation(s)
- Klara Soukup
- Department of Immunology, St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Angela Halfmann
- Department of Immunology, St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Marie Le Bras
- Department of Immunology, St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Emine Sahin
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sarah Vittori
- Department of Immunology, St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Fiona Poyer
- Department of Immunology, St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Cornelia Schuh
- Department of Immunology, St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Romana Luger
- Department of Immunology, St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Birgit Niederreiter
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Haider
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Dagmar Stoiber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - Stephan Blüml
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Gernot Schabbauer
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexey Kotlyarov
- Institute of Physiological Chemistry, Hannover Medical School, 30625 Hannover, Germany; and
| | - Matthias Gaestel
- Institute of Physiological Chemistry, Hannover Medical School, 30625 Hannover, Germany; and
| | | | - Alexander M Dohnal
- Department of Immunology, St. Anna Children's Cancer Research Institute, 1090 Vienna, Austria;
| |
Collapse
|
5
|
Datta J, Berk E, Cintolo JA, Xu S, Roses RE, Czerniecki BJ. Rationale for a Multimodality Strategy to Enhance the Efficacy of Dendritic Cell-Based Cancer Immunotherapy. Front Immunol 2015; 6:271. [PMID: 26082780 PMCID: PMC4451636 DOI: 10.3389/fimmu.2015.00271] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/15/2015] [Indexed: 02/03/2023] Open
Abstract
Dendritic cells (DC), master antigen-presenting cells that orchestrate interactions between the adaptive and innate immune arms, are increasingly utilized in cancer immunotherapy. Despite remarkable progress in our understanding of DC immunobiology, as well as several encouraging clinical applications – such as DC-based sipuleucel-T for metastatic castration-resistant prostate cancer – clinically effective DC-based immunotherapy as monotherapy for a majority of tumors remains a distant goal. The complex interplay between diverse molecular and immune processes that govern resistance to DC-based vaccination compels a multimodality approach, encompassing a growing arsenal of antitumor agents which target these distinct processes and synergistically enhance DC function. These include antibody-based targeted molecular therapies, immune checkpoint inhibitors, therapies that inhibit immunosuppressive cellular elements, conventional cytotoxic modalities, and immune potentiating adjuvants. It is likely that in the emerging era of “precision” cancer therapeutics, tangible clinical benefits will only be realized with a multifaceted – and personalized – approach combining DC-based vaccination with adjunctive strategies.
Collapse
Affiliation(s)
- Jashodeep Datta
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, PA , USA
| | - Erik Berk
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, PA , USA
| | - Jessica A Cintolo
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, PA , USA
| | - Shuwen Xu
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, PA , USA
| | - Robert E Roses
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, PA , USA
| | - Brian J Czerniecki
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, PA , USA ; Rena Rowen Breast Center, Hospital of the University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
6
|
Wang J, Wang L, Lin Z, Tao L, Chen M. More efficient induction of antitumor T cell immunity by exosomes from CD40L gene-modified lung tumor cells. Mol Med Rep 2013; 9:125-31. [PMID: 24173626 DOI: 10.3892/mmr.2013.1759] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/08/2013] [Indexed: 11/06/2022] Open
Abstract
The incidence of lung cancer increases annually. However, the effects of the present methods for the treatment of lung cancer are extremely poor. It has been reported that exosomes from heat‑stressed 3LL Lewis lung tumor cells effectively elicit systemic antitumor immunity. CD40 signaling is critical in the activation of dendritic cells (DCs), which are important in the induction of antitumor immunity. In the present study, exosomes from CD40 ligand gene‑modified 3LL tumor cells (CD40L‑EXO) were identified to be more immunogenic compared with control‑EXO and lac Z-EXO. CD40L‑EXO induced a more mature phenotype of the DCs and promoted them to secrete high levels of interleukin‑12. CD40L‑EXO‑treated DCs induced a greater proliferation of allogeneic T cells in the mixed lymphocyte reaction. Moreover, CD40L‑EXO induced robust tumor antigen‑specific CD4+ T cell proliferation ex vivo. CD40L‑EXO were also extremely effective in the protective and therapeutic antitumor tests in vivo. These results indicate that CD40L‑EXO may be used as an efficient vaccine for lung cancer immunotherapy.
Collapse
Affiliation(s)
- Jiaoli Wang
- Department of Respiratory Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | | | | | | | | |
Collapse
|
7
|
Luger R, Valookaran S, Knapp N, Vizzardelli C, Dohnal AM, Felzmann T. Toll-like receptor 4 engagement drives differentiation of human and murine dendritic cells from a pro- into an anti-inflammatory mode. PLoS One 2013; 8:e54879. [PMID: 23408948 PMCID: PMC3569454 DOI: 10.1371/journal.pone.0054879] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/17/2012] [Indexed: 01/21/2023] Open
Abstract
The dendritic cell (DC) coordinates innate and adaptive immunity to fight infections and cancer. Our observations reveal that DCs exposed to the microbial danger signal lipopolysaccharide (LPS) in the presence of interferon-γ (IFN-γ) acquire a continuously changing activation/maturation phenotype. The DCs’ initial mode of action is pro-inflammatory via up-regulation among others of the signaling molecule interleukin (IL) 12, which polarizes IFN-γ secreting type 1 helper T-cells (Th1). Within 24 hours the same DC switches from the pro- into an anti-inflammatory phenotype. This is mediated by autocrine IL-10 release and secretion of soluble IL-2 receptor alpha (sIL-2RA) molecules. T-cells, when contacted with DCs during their anti-inflammatory phase loose their proliferative capacity and develop regulatory T-cell (Treg) -like anti-inflammatory functions indicated by IL-10 secretion and elevated FoxP3 levels. Studying the kinetics of IL-12 and IL-10 expression from LPS/IFN-γ activated myeloid DCs on a single cell level confirmed these observations. When T-cells are separated from DCs within 24 hours, they are spared from the anti-inflammatory DC activity. We conclude that, in addition to differentiation of DCs into distinct subsets, the observed sequential functional phases of DC differentiation permit the fine-tuning of an immune response. A better understanding of time-kinetic DC features is required for optimally exploiting the therapeutic capacity of DCs in cancer immune therapy.
Collapse
Affiliation(s)
- Romana Luger
- St. Anna Children’s Cancer Research Institute, Laboratory of Tumor Immunology, Department of Pediatrics, Medical University Vienna, Austria
| | - Sneha Valookaran
- St. Anna Children’s Cancer Research Institute, Laboratory of Tumor Immunology, Department of Pediatrics, Medical University Vienna, Austria
| | - Natalie Knapp
- St. Anna Children’s Cancer Research Institute, Laboratory of Tumor Immunology, Department of Pediatrics, Medical University Vienna, Austria
| | - Caterina Vizzardelli
- St. Anna Children’s Cancer Research Institute, Laboratory of Tumor Immunology, Department of Pediatrics, Medical University Vienna, Austria
| | - Alexander M. Dohnal
- St. Anna Children’s Cancer Research Institute, Laboratory of Tumor Immunology, Department of Pediatrics, Medical University Vienna, Austria
| | - Thomas Felzmann
- St. Anna Children’s Cancer Research Institute, Laboratory of Tumor Immunology, Department of Pediatrics, Medical University Vienna, Austria
- Activartis Biotech GmbH, Vienna, Austria
- * E-mail:
| |
Collapse
|
8
|
Stempor PA, Cauchi M, Wilson P. MMpred: functional miRNA--mRNA interaction analyses by miRNA expression prediction. BMC Genomics 2012; 13:620. [PMID: 23151045 PMCID: PMC3562514 DOI: 10.1186/1471-2164-13-620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 10/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background MicroRNA (miRNA) directed gene repression is an important mechanism of posttranscriptional regulation. Comprehensive analyses of how microRNA influence biological processes requires paired miRNA-mRNA expression datasets. However, a review of both GEO and ArrayExpress repositories revealed few such datasets, which was in stark contrast to the large number of messenger RNA (mRNA) only datasets. It is of interest that numerous primary miRNAs (precursors of microRNA) are known to be co-expressed with coding genes (host genes). Results We developed a miRNA-mRNA interaction analyses pipeline. The proposed solution is based on two miRNA expression prediction methods – a scaling function and a linear model. Additionally, miRNA-mRNA anti-correlation analyses are used to determine the most probable miRNA gene targets (i.e. the differentially expressed genes under the influence of up- or down-regulated microRNA). Both the consistency and accuracy of the prediction method is ensured by the application of stringent statistical methods. Finally, the predicted targets are subjected to functional enrichment analyses including GO, KEGG and DO, to better understand the predicted interactions. Conclusions The MMpred pipeline requires only mRNA expression data as input and is independent of third party miRNA target prediction methods. The method passed extensive numerical validation based on the binding energy between the mature miRNA and 3’ UTR region of the target gene. We report that MMpred is capable of generating results similar to that obtained using paired datasets. For the reported test cases we generated consistent output and predicted biological relationships that will help formulate further testable hypotheses.
Collapse
|
9
|
Mineharu Y, Muhammad AKMG, Yagiz K, Candolfi M, Kroeger KM, Xiong W, Puntel M, Liu C, Levy E, Lugo C, Kocharian A, Allison JP, Curran MA, Lowenstein PR, Castro MG. Gene therapy-mediated reprogramming tumor infiltrating T cells using IL-2 and inhibiting NF-κB signaling improves the efficacy of immunotherapy in a brain cancer model. Neurotherapeutics 2012; 9:827-43. [PMID: 22996231 PMCID: PMC3480576 DOI: 10.1007/s13311-012-0144-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Immune-mediated gene therapy using adenovirus expressing Flt3 ligand and thymidine kinase followed by ganciclovir administration (Flt3/TK) effectively elicits tumor regression in preclinical glioma models. Herein, we assessed new strategies to optimize Flt3L/TK therapeutic efficacy in a refractory RG2 orthotopic glioblastoma model. Specifically, we aimed to optimize the therapeutic efficacy of Flt3L/TK treatment in the RG2 model by overexpressing the following genes within the brain tumor microenvironment: 1) a TK mutant with enhanced cytotoxicity (SR39 mutant TK), 2) Flt3L-IgG fusion protein that has a longer half-life, 3) CD40L to stimulate DC maturation, 4) T helper cell type 1 polarizing dendritic cell cytokines interleukin-12 or C-X-C motif ligand 10 chemokine (CXCL)-10, 5) C-C motif ligand 2 chemokine (CCL2) or C-C motif ligand 3 chemokine (CCL3) to enhance dendritic cell recruitment into the tumor microenvironment, 6) T helper cell type 1 cytokines interferon-γ or interleukin-2 to enhance effector T-cell functions, and 7) IκBα or p65RHD (nuclear factor kappa-B [NF-κB] inhibitors) to suppress the function of Foxp3+ Tregs and enhanced effector T-cell functions. Anti-tumor immunity and tumor specific effector T-cell functions were assessed by cytotoxic T lymphocyte assay and intracellular IFN-γ staining. Our data showed that overexpression of interferon-γ or interleukin-2, or inhibition of the nuclear factor kappa-B within the tumor microenvironment, enhanced cytotoxic T lymphocyte-mediated immune responses and successfully extended the median survival of rats bearing intracranial RG2 when combined with Flt3L/TK. These findings indicate that enhancement of T-cell functions constitutes a critical therapeutic target to overcome immune evasion and enhance therapeutic efficacy for brain cancer. In addition, our study provides novel targets to be used in combination with immune-therapeutic strategies for glioblastoma, which are currently being tested in the clinic.
Collapse
Affiliation(s)
- Yohei Mineharu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - AKM Ghulam Muhammad
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Kader Yagiz
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Marianela Candolfi
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Kurt M. Kroeger
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Weidong Xiong
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Mariana Puntel
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Chunyan Liu
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Eva Levy
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Claudia Lugo
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Adrina Kocharian
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - James P. Allison
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Michael A. Curran
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 USA
| | - Pedro R. Lowenstein
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
| | - Maria G. Castro
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109-0650 USA
| |
Collapse
|
10
|
Gerlach AM, Steimle A, Krampen L, Wittmann A, Gronbach K, Geisel J, Autenrieth IB, Frick JS. Role of CD40 ligation in dendritic cell semimaturation. BMC Immunol 2012; 13:22. [PMID: 22537317 PMCID: PMC3485177 DOI: 10.1186/1471-2172-13-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/16/2012] [Indexed: 01/17/2023] Open
Abstract
Background DC are among the first antigen presenting cells encountering bacteria at mucosal surfaces, and play an important role in maintenance of regular homeostasis in the intestine. Upon stimulation DC undergo activation and maturation and as initiators of T cell responses they have the capacity to stimulate naïve T cells. However, stimulation of naïve murine DC with B. vulgatus or LPS at low concentration drives DC to a semimature (sm) state with low surface expression of activation-markers and a reduced capacity to activate T-cells. Additionally, semimature DC are nonresponsive to subsequent TLR stimulation in terms of maturation, TNF-α but not IL-6 production. Ligation of CD40 is an important mechanism in enhancing DC maturation, function and capacity to activate T-cells. We investigated whether the DC semimaturation can be overcome by CD40 ligation. Results Upon CD40 ligation smDC secreted IL-12p40 but not the bioactive heterodimer IL-12p70. Additionally, CD40 ligation of smDC resulted in an increased production of IL-6 but not in an increased expression of CD40. Analysis of the phosphorylation pattern of MAP kinases showed that in smDC the p38 phosphorylation induced by CD40 ligation is inhibited. In contrast, phosphorylation of ERK upon CD40 ligation was independent of the DC maturation state. Conclusion Our data show that the semimature differentiation state of DC can not be overcome by CD40 ligation. We suggest that the inability of CD40 ligation in overcoming DC semimaturation might contribute to the tolerogenic phenotype of semimature DC and at least partially account for maintenance of intestinal immune homeostasis.
Collapse
Affiliation(s)
- Anna-Maria Gerlach
- Institute for Medical Microbiology and Hygiene, University Hospital of Tübingen, 72076 Elfriede-Aulhorn-Str. 6, Tübingen, D-72076, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Nyakeriga AM, Ying J, Shire NJ, Fichtenbaum CJ, Chougnet CA. Highly active antiretroviral therapy in patients infected with human immunodeficiency virus increases CD40 ligand expression and IL-12 production in cells ex vivo. Viral Immunol 2011; 24:281-9. [PMID: 21830900 DOI: 10.1089/vim.2010.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Highly active anti-retroviral therapy (HAART) restores CD4(+) T-cell numbers in the periphery; however, its efficacy in restoring functional immunity is not fully elucidated. Here we evaluated longitudinal changes in the expression of several key markers of T-cell activation, namely CD40 ligand (CD154), OX40 (CD134), or CD69, after anti-CD3/CD28 activation, as well as levels of IL-12 production after Staphylococcus aureus Cowan stimulation in 28 HIV-infected adult patients. Patients were followed up to 12 mo post-HAART initiation. Viral burdens and CD4 cell counts were measured at the same time points. A control group of 15 HIV-uninfected adult subjects was included for comparison. Significant increases in CD40L and OX40 expression, but not of CD69 expression, were observed over time in the overall patient population, and more particularly in patients with baseline CD4 counts lower than or equal to 200 cells/μL, or those with baseline viral loads lower than or equal to 10(5) RNA copies/mL. Similar increases were seen for IL-12 production. Viral loads were inversely associated with CD40L expression or IL-12 production in a mixed linear model analysis, while CD4 counts were directly associated. CD40L expression and IL-12 production were significantly correlated. In conclusion, HAART-mediated control of viral replication led to partial restoration of CD40L upregulation/expression, and to increased IL-12 production, but the magnitude of the response depended on the baseline characteristics of the treated patients.
Collapse
Affiliation(s)
- Alice M Nyakeriga
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
12
|
Oxer DS, Godoy LC, Borba E, Lima-Salgado T, Passos LA, Laurindo I, Kubo S, Barbeiro DF, Fernandes D, Laurindo FR, Velasco IT, Curi R, Bonfa E, Souza HP. PPARγ expression is increased in systemic lupus erythematosus patients and represses CD40/CD40L signaling pathway. Lupus 2011; 20:575-87. [PMID: 21415255 DOI: 10.1177/0961203310392419] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease involving several immune cell types and pro-inflammatory signals, including the one triggered by binding of CD40L to the receptor CD40. Peroxisome-proliferator activated receptor gamma (PPARγ) is a transcription factor with anti-inflammatory properties. Here we investigated whether CD40 and PPARγ could exert opposite effects in the immune response and the possible implications for SLE. Increased PPARγ mRNA levels were detected by real-time PCR in patients with active SLE, compared to patients with inactive SLE PPARγ/GAPDH mRNA = 2.21 ± 0.49 vs. 0.57 ± 0.14, respectively (p < 0.05) or patients with infectious diseases and healthy subjects (p < 0.05). This finding was independent of the corticosteroid therapy. We further explored these observations in human THP1 and in SLE patient-derived macrophages, where activation of CD40 by CD40L promoted augmented PPARγ gene transcription compared to non-stimulated cells (PPARγ/GAPDH mRNA = 1.14 ± 0.38 vs. 0.14 ± 0.01, respectively; p < 0.05). This phenomenon occurred specifically upon CD40 activation, since lipopolysaccharide treatment did not induce a similar response. In addition, increased activity of PPARγ was also detected after CD40 activation, since higher PPARγ-dependent transcription of CD36 transcription was observed. Furthermore, CD40L-stimulated transcription of CD80 gene was elevated in cells treated with PPARγ-specific small interfering RNA (small interfering RNA, siRNA) compared to cells treated with CD40L alone (CD80/GAPDH mRNA = 0.11 ± 0.04 vs. 0.05 ± 0.02, respectively; p < 0.05), suggesting a regulatory role for PPARγ on the CD40/CD40L pathway. Altogether, our findings outline a novel mechanism through which PPARγ regulates the inflammatory signal initiated by activation of CD40, with important implications for the understanding of immunological mechanisms underlying SLE and the development of new treatment strategies.
Collapse
Affiliation(s)
- D S Oxer
- Faculdade de Medicina da Universidade de São Paulo, Emergency Medicine Division, LIM 51, Av. Dr. Arnaldo, 455 sala 3189. 01246-903 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Narayanan P, Lapteva N, Seethammagari M, Levitt JM, Slawin KM, Spencer DM. A composite MyD88/CD40 switch synergistically activates mouse and human dendritic cells for enhanced antitumor efficacy. J Clin Invest 2011; 121:1524-34. [PMID: 21383499 DOI: 10.1172/jci44327] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 01/12/2011] [Indexed: 01/18/2023] Open
Abstract
The in vivo therapeutic efficacy of DC-based cancer vaccines is limited by suboptimal DC maturation protocols. Although delivery of TLR adjuvants systemically boosts DC-based cancer vaccine efficacy, it could also increase toxicity. Here, we have engineered a drug-inducible, composite activation receptor for DCs (referred to herein as DC-CAR) comprising the TLR adaptor MyD88, the CD40 cytoplasmic region, and 2 ligand-binding FKBP12 domains. Administration of a lipid-permeant dimerizing ligand (AP1903) induced oligomerization and activation of this fusion protein, which we termed iMyD88/CD40. AP1903 administration to vaccinated mice enabled prolonged and targeted activation of iMyD88/CD40-modified DCs. Compared with conventionally matured DCs, AP1903-activated iMyD88/CD40-DCs had increased activation of proinflammatory MAPKs. AP1903-activated iMyD88/CD40-transduced human or mouse DCs also produced higher levels of Th1 cytokines, showed improved migration in vivo, and enhanced both antigen-specific CD8+ T cell responses and innate NK cell responses. Furthermore, treatment with AP1903 in vaccinated mice led to robust antitumor immunity against preestablished E.G7-OVA lymphomas and aggressive B16.F10 tumors. Thus, the iMyD88/CD40 unified "switch" effectively and safely replaced exogenous adjuvant cocktails, allowing remote and sustained DC activation in vivo. DC "licensing" through iMyD88/CD40 may represent a mechanism by which to exploit the natural synergy between the TLR and CD40 signaling pathways in DCs using a single small molecule drug and could augment the efficacy of antitumor DC-based vaccines.
Collapse
|