1
|
Szczepanska-Sadowska E. Interplay of Angiotensin Peptides, Vasopressin, and Insulin in the Heart: Experimental and Clinical Evidence of Altered Interactions in Obesity and Diabetes Mellitus. Int J Mol Sci 2024; 25:1310. [PMID: 38279313 PMCID: PMC10816525 DOI: 10.3390/ijms25021310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The present review draws attention to the specific role of angiotensin peptides [angiotensin II (Ang II), angiotensin-(1-7) (Ang-(1-7)], vasopressin (AVP), and insulin in the regulation of the coronary blood flow and cardiac contractions. The interactions of angiotensin peptides, AVP, and insulin in the heart and in the brain are also discussed. The intracardiac production and the supply of angiotensin peptides and AVP from the systemic circulation enable their easy access to the coronary vessels and the cardiomyocytes. Coronary vessels and cardiomyocytes are furnished with AT1 receptors, AT2 receptors, Ang (1-7) receptors, vasopressin V1 receptors, and insulin receptor substrates. The presence of some of these molecules in the same cells creates good conditions for their interaction at the signaling level. The broad spectrum of actions allows for the engagement of angiotensin peptides, AVP, and insulin in the regulation of the most vital cardiac processes, including (1) cardiac tissue oxygenation, energy production, and metabolism; (2) the generation of the other cardiovascular compounds, such as nitric oxide, bradykinin (Bk), and endothelin; and (3) the regulation of cardiac work by the autonomic nervous system and the cardiovascular neurons of the brain. Multiple experimental studies and clinical observations show that the interactions of Ang II, Ang(1-7), AVP, and insulin in the heart and in the brain are markedly altered during heart failure, hypertension, obesity, and diabetes mellitus, especially when these diseases coexist. A survey of the literature presented in the review provides evidence for the belief that very individualized treatment, including interactions of angiotensins and vasopressin with insulin, should be applied in patients suffering from both the cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Dhalla NS, Bhullar SK, Shah AK. Future scope and challenges for congestive heart failure: Moving towards development of pharmacotherapy. Can J Physiol Pharmacol 2022; 100:834-847. [PMID: 35704943 DOI: 10.1139/cjpp-2022-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart failure is invariably associated with cardiac hypertrophy and impaired cardiac performance. Although several drugs have been developed to delay the progression of heart failure, none of the existing interventions have shown beneficial effects in reducing morbidity and mortality. In order to determine specific targets for future drug development, we have discussed different mechanisms involving both cardiomyocytes and non-myocyte (extracellular matrix) alterations for the transition of cardiac hypertrophy to heart failure as well as for the progression of heart failure. We have emphasized the role of oxidative stress, inflammatory cytokines, metabolic alterations and Ca2+-handling defects in adverse cardiac remodeling and heart dysfunction in hypertrophied myocardium. Alterations in the regulatory process due to several protein kinases as well as participation of mitochondrial Ca2+-overload, activation of proteases and phospholipases and changes in gene expression for subcellular remodeling have also been described for the occurrence of cardiac dysfunction. Association of cardiac arrhythmia with heart failure has been explained as a consequence of catecholamine oxidation products. Since these multifactorial defects in extracellular matrix and cardiomyocytes are evident in the failing heart, it is a challenge for experimental cardiologists to develop appropriate combination drug therapy for improving cardiac function in heart failure.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- University of Manitoba, 8664, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, Winnipeg, Canada;
| | - Sukhwinder K Bhullar
- Institute of Cardiovascular Sciences, St.Boniface Research Centre, Winnipeg, Manitoba, Canada;
| | - Anureet Kaur Shah
- School of Kinesiology, Nutrition and Food Science, California State University, Los Angeles, CA 900032, USA., Los Angeles, United States;
| |
Collapse
|
3
|
The Protective Effect of Qishen Granule on Heart Failure after Myocardial Infarction through Regulation of Calcium Homeostasis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1868974. [PMID: 33149749 PMCID: PMC7603572 DOI: 10.1155/2020/1868974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Qishen granule (QSG) is a frequently prescribed traditional Chinese medicine formula, which improves heart function in patients with heart failure (HF). However, the cardioprotective mechanisms of QSG have not been fully understood. The current study aimed to elucidate whether the effect of QSG is mediated by ameliorating cytoplasmic calcium (Ca2+) overload in cardiomyocytes. The HF rat model was induced by left anterior descending (LAD) artery ligation surgery. Rats were randomly divided into sham, model, QSG-low dosage (QSG-L) treatment, QSG-high dosage (QSG-H) treatment, and positive drug (diltiazem) treatment groups. 28 days after surgery, cardiac functions were assessed by echocardiography. Levels of norepinephrine (NE) and angiotensin II (AngII) in the plasma were evaluated. Expressions of critical proteins in the calcium signaling pathway, including cell membrane calcium channel CaV1.2, sarcoendoplasmic reticulum ATPase 2a (SERCA2a), calcium/calmodulin-dependent protein kinase type II (CaMKII), and protein phosphatase calcineurin (CaN), were measured by Western blotting (WB) and immunohistochemistry (IHC). Echocardiography showed that left ventricular ejection fraction (EF) and fractional shortening (FS) value significantly decreased in the model group compared to the sham group, and illustrating heart function was severely impaired. Furthermore, levels of NE and AngII in the plasma were dramatically increased. Expressions of CaV1.2, CaMKII, and CaN in the cardiomyocytes were upregulated, and expressions of SERCA2a were downregulated in the model group. After treatment with QSG, both EF and FS values were increased. QSG significantly reduced levels of NE and AngII in the plasma. In particular, QSG prevented cytoplasmic Ca2+ overload by downregulating expression of CaV1.2 and upregulating expression of SERCA2a. Meanwhile, expressions of CaMKII and CaN were inhibited by QSG treatment. In conclusion, QSG could effectively promote heart function in HF rats by restoring cardiac Ca2+ homeostasis. These findings revealed novel therapeutic mechanisms of QSG and provided potential targets in the treatment of HF.
Collapse
|
4
|
Adameova A, Elimban V, Ganguly PK, Dhalla NS. β-1 adrenoceptors and AT1 receptors may not be involved in catecholamine-induced lethal arrhythmias. Can J Physiol Pharmacol 2019; 97:570-576. [DOI: 10.1139/cjpp-2018-0531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An excessive amount of catecholamines produce arrhythmias, but the exact mechanisms of this action are not fully understood. For this purpose, Sprague–Dawley rats were treated with or without atenolol, a β1-adrenoceptor blocker (20 mg/kg per day), for 15 days followed by injections of epinephrine for cumulative doses of 4 to 128 μg/kg. Another group of animals were pretreated with losartan, an angiotensin receptor (AT1) blocker (20 mg/kg per day), for comparison. Control animals received saline. Varying degrees of ventricular arrhythmias were seen upon increasing the dose of epinephrine, but the incidence and duration of the rhythm abnormalities as well as the number of episodes and severity of arrhythmias were not affected by treating the animals with atenolol or losartan. The levels of both epinephrine and norepinephrine were increased in the atenolol-treated rats but were unchanged in the losartan-treated animals after the last injection of epinephrine; the severity of arrhythmias did not correlate with the circulating catecholamine levels. These results indicate that both β1-adrenoceptors and AT1 receptors may not be involved in the pathogenesis of catecholamine-induced arrhythmias and support the view that other mechanisms, such as the oxidation products of catecholamines, may play a crucial role in the occurrence of lethal arrhythmias.
Collapse
Affiliation(s)
- Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University 832 32 Bratislava, Odbojarov 10, Slovakia
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Paul K. Ganguly
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre and Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
5
|
Makino N, Ganguly P, Elimban V, Dhalla NS. Sarcolemmal Alterations in Unloaded Rat Heart after Heterotopic Transplantation. Int J Angiol 2018; 27:196-201. [PMID: 30410290 DOI: 10.1055/s-0038-1673646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Following heterotopic transplantation, the rat heart undergoes atrophy and exhibits delayed cardiac relaxation without any changes in contraction and systolic Ca 2+ transients. Furthermore, the sarcoplasmic reticular Ca 2+ uptake and release activities were reduced and Ca 2+ influx through L-type Ca 2+ channels was increased in the atrophied heart. Since Ca 2+ movements at sarcolemma are intimately involved in the regulation of intracellular Ca 2+ concentration, the present study was undertaken to test if sarcolemma plays any role to maintain cardiac function in the atrophied heart.The characteristics of sarcolemmal Ca 2+ pump and Na + -Ca 2+ exchange activities were examined in 8 weeks heterotopically isotransplanted rat hearts which did not support hemodynamic load and underwent atrophy. Sarcolemmal ATP (adenosine triphosphate)-dependent Ca 2+ uptake and Ca 2+ -stimulated ATPase (adenosine triphosphatase) activities were increased without any changes in Na + -K + ATPase activities in the transplanted hearts. Although no alterations in the Na + -dependent Ca 2+ uptake were evident, Na + -induced Ca 2+ release was increased in the transplanted heart sarcolemmal vesicles. The increase in Na + -induced Ca 2+ release was observed at different times of incubation as well as at 5, 20, and 40 mM Na + . The sarcolemma from transplanted hearts also showed higher contents of phosphatidic acid, sphingomyelin, and cholesterol.These results indicate that increases in the sarcolemmal, Ca 2+ transport activities in unloaded heart may provide an insight into adaptive mechanism to maintain normal contractile behavior of the atrophic heart.
Collapse
Affiliation(s)
- Naoki Makino
- Department of Molecular and Clinical Gerontology, Medical Institute of the Bioregulation, Kyushu University, Oita, Japan
| | - Paul Ganguly
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Vijayan Elimban
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada
| | - Naranjan S Dhalla
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Wen Z, Mai Z, Chen Y, Wang J, Geng D. Angiotensin II receptor blocker reverses heart failure by attenuating local oxidative stress and preserving resident stem cells in rats with myocardial infarction. Am J Transl Res 2018; 10:2387-2401. [PMID: 30210678 PMCID: PMC6129522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to test whether angiotensin receptor blockers (ARBs) are cardioprotective after myocardial infarction (MI) by preventing augmented local renin-angiotensin-system (RAS)-induced oxidative stress injury and senescence, preserving resident stem cells, and restoring the insulin-like growth factor (IGF-1)/IGF-1 receptor (IGF-R) pathway. Sprague-Dawley rats with ligated or unligated coronary arteries were treated with losartan (20 mg/kg/d) or vehicle for 3 or 9 weeks. Heart function and molecular and histological changes were assessed. It was found MI induced left ventricular dysfunction and remodeling, increased levels of the oxidative stress marker 8-hydroxy-2'-deoxyguanosine and cell senescence marker p16ink4a, and downregulated the IGF-1/IGF-1R/Akt pathway after both 3 and 9 weeks post-MI. MI induced an increase in stem cells identified by immunostaining for c-kit and Wilms' tumor-1 predominantly after 3 weeks. Losartan significantly inhibited local cardiac RAS activation and improved left ventricular function and remodeling at both timepoints. Losartan also preserved c-kit- and Wilms' tumor-1-positive cells (particularly at 3 weeks), attenuated 8-hydroxy-2'-deoxyguanosine- and p16ink4a-positive cardiomyocytes, and restored the IGF-1/IGF-1R/Akt pathway at both 3 and 9 weeks. In conclusion, ARBs aided cardiac repair post-MI through short-term preservation of stem cells and persistent anti-oxidative stress and anti-senescence effects, partially by attenuating activation of cardiac RAS and restoring the local IGF-1/IGF-1R/Akt pathway.
Collapse
Affiliation(s)
- Zhuzhi Wen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guandong Province Key Laboratory of Arrhythmia and ElectrophysiologyChina
| | - Zun Mai
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guandong Province Key Laboratory of Arrhythmia and ElectrophysiologyChina
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guandong Province Key Laboratory of Arrhythmia and ElectrophysiologyChina
| | - Dengfeng Geng
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China
- Guandong Province Key Laboratory of Arrhythmia and ElectrophysiologyChina
| |
Collapse
|
7
|
Polegato BF, Minicucci MF, Azevedo PS, Gonçalves AF, Lima AF, Martinez PF, Okoshi MP, Okoshi K, Paiva SAR, Zornoff LAM. Association between Functional Variables and Heart Failure after Myocardial Infarction in Rats. Arq Bras Cardiol 2016; 106:105-12. [PMID: 26815462 PMCID: PMC4765008 DOI: 10.5935/abc.20160015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022] Open
Abstract
Background Heart failure prediction after acute myocardial infarction may have important
clinical implications. Objective To analyze the functional echocardiographic variables associated with heart
failure in an infarction model in rats. Methods The animals were divided into two groups: control and infarction.
Subsequently, the infarcted animals were divided into groups: with and
without heart failure. The predictive values were assessed by logistic
regression. The cutoff values predictive of heart failure were determined
using ROC curves. Results Six months after surgery, 88 infarcted animals and 43 control animals were
included in the study. Myocardial infarction increased left cavity diameters
and the mass and wall thickness of the left ventricle. Additionally,
myocardial infarction resulted in systolic and diastolic dysfunction,
characterized by lower area variation fraction values, posterior wall
shortening velocity, E-wave deceleration time, associated with higher values
of E / A ratio and isovolumic relaxation time adjusted by heart rate. Among
the infarcted animals, 54 (61%) developed heart failure. Rats with heart
failure have higher left cavity mass index and diameter, associated with
worsening of functional variables. The area variation fraction, the E/A
ratio, E-wave deceleration time and isovolumic relaxation time adjusted by
heart rate were functional variables predictors of heart failure. The cutoff
values of functional variables associated with heart failure were: area
variation fraction < 31.18%; E / A > 3.077; E-wave deceleration time
< 42.11 and isovolumic relaxation time adjusted by heart rate <
69.08. Conclusion In rats followed for 6 months after myocardial infarction, the area variation
fraction, E/A ratio, E-wave deceleration time and isovolumic relaxation time
adjusted by heart rate are predictors of heart failure onset.
Collapse
Affiliation(s)
- Bertha F Polegato
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Marcos F Minicucci
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Paula S Azevedo
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Andréa F Gonçalves
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Aline F Lima
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Paula F Martinez
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Marina P Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Katashi Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Sergio A R Paiva
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Leonardo A M Zornoff
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| |
Collapse
|
8
|
Losartan treatment attenuates tumor-induced myocardial dysfunction. J Mol Cell Cardiol 2015; 85:37-47. [PMID: 25988231 DOI: 10.1016/j.yjmcc.2015.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/28/2015] [Accepted: 05/11/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Fatigue and muscle wasting are common symptoms experienced by cancer patients. Data from animal models demonstrate that angiotensin is involved in tumor-induced muscle wasting, and that tumor growth can independently affect myocardial function, which could contribute to fatigue in cancer patients. In clinical studies, inhibitors of angiotensin converting enzyme (ACE) can prevent the development of chemotherapy-induced cardiovascular dysfunction, suggesting a mechanistic role for the renin-angiotensin-aldosterone system (RAAS). In the present study, we investigated whether an angiotensin (AT) 1-receptor antagonist could prevent the development of tumor-associated myocardial dysfunction. METHODS AND RESULTS Colon26 adenocarcinoma (c26) cells were implanted into female CD2F1 mice at 8weeks of age. Simultaneously, mice were administered Losartan (10mg/kg) daily via their drinking water. In vivo echocardiography, blood pressure, in vitro cardiomyocyte function, cell proliferation assays, and measures of systemic inflammation and myocardial protein degradation were performed 19days following tumor cell injection. Losartan treatment prevented tumor-induced loss of muscle mass and in vitro c26 cell proliferation, decreased tumor weight, and attenuated myocardial expression of interleukin-6. Furthermore, Losartan treatment mitigated tumor-associated alterations in calcium signaling in cardiomyocytes, which was associated with improved myocyte contraction velocity, systolic function, and blood pressures in the hearts of tumor-bearing mice. CONCLUSIONS These data suggest that Losartan may mitigate tumor-induced myocardial dysfunction and inflammation.
Collapse
|
9
|
Artom N, Montecucco F, Mach F, Dallegri F, Pende A. Angiotensin II receptor antagonists in acute coronary syndromes. Eur J Clin Invest 2014; 44:219-230. [PMID: 24289238 DOI: 10.1111/eci.12198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/01/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND It is well known that inappropriate or exaggerated activity of the renin-angiotensin system might contribute to the development of systemic hypertension with consequent organ injury and associated increased risk of acute cardiovascular (CV) diseases. This review will discuss evidence form basic research and clinical studies, investigating the efficacy of angiotensin II receptor blockers (ARBs) in the management of acute coronary syndromes (ACS). MATERIALS AND METHODS This narrative review is based on the material found on MEDLINE and PubMed up to June 2013. We looked for the terms 'angiotensin, AT1 receptor, ACE inhibitors' in combination with 'acute coronary syndromes, acute myocardial infarction, pathophysiology'. RESULTS Preclinical studies showed relevant protective effects of ARBs to reduce adverse cardiac remodelling in animal models of acute cardiac ischaemia. However, although recommended in Consensus guidelines as a good alternative to angiotensin-converting enzyme inhibitors (ACEIs), clinical studies did not confirm a superior efficacy of the ARBs as compared to ACEIs. As a matter of fact for some authors, these drugs might potentially have deleterious effects increasing the CV risk. CONCLUSIONS Emerging evidence from clinical trials suggests that the use of ARBs in ACS might be controversial, and caution should be used for their clinical use to replace ACEIs in ACS.
Collapse
Affiliation(s)
- Nathan Artom
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | |
Collapse
|
10
|
Babick A, Elimban V, Zieroth S, Dhalla NS. Reversal of cardiac dysfunction and subcellular alterations by metoprolol in heart failure due to myocardial infarction. J Cell Physiol 2013; 228:2063-70. [DOI: 10.1002/jcp.24373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 03/20/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Andrea Babick
- Institute of Cardiovascular Sciences, St Boniface Hospital Research, Department of Physiology and Division of Cardiology, Faculty of Medicine; University of Manitoba; Winnipeg, Manitoba; Canada
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St Boniface Hospital Research, Department of Physiology and Division of Cardiology, Faculty of Medicine; University of Manitoba; Winnipeg, Manitoba; Canada
| | - Shelley Zieroth
- Institute of Cardiovascular Sciences, St Boniface Hospital Research, Department of Physiology and Division of Cardiology, Faculty of Medicine; University of Manitoba; Winnipeg, Manitoba; Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St Boniface Hospital Research, Department of Physiology and Division of Cardiology, Faculty of Medicine; University of Manitoba; Winnipeg, Manitoba; Canada
| |
Collapse
|