1
|
Zhou Y, Xie Y, Luo Y, Wang S, Han Q, Liu Q. SNAI2 enhances HPV‑negative cervical cancer cell dormancy by modulating u‑PAR expression and the activity of the ERK/p38 signaling pathway in vitro. Oncol Rep 2024; 52:104. [PMID: 38940353 PMCID: PMC11228422 DOI: 10.3892/or.2024.8763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
The prognosis of patients with human papillomavirus (HPV)‑negative cervical cancer is significantly worse than that of patients with HPV‑positive cervical cancer. Understanding the mechanisms of this is crucial for preventing disease evolution. In the present study, the GV367‑snail family transcriptional repressor 2 (SNAI2) lentiviral vector was constructed and transduced into C‑33A cells. Subsequently, the proliferation of tumor cells was detected using the Cell Counting Kit (CCK)‑8 method. Flow cytometry was used to analyze the cell cycle progression of tumor cells. The glucose consumption of tumor cells was detected using an oxidase assay, and the senescence of tumor cells was detected using beta‑galactosidase staining. The gene expression and the activity of p38 and ERK1/2 were detected using reverse transcription‑quantitative PCR and western blotting, respectively. The C‑33A‑SNAI2 cell line was successfully established. Compared with HeLa and C‑33A‑Wild cells, the proliferation and percentage of G0/G1‑phase cells in the C‑33A‑SNAI2 group were decreased, as detected by the CCK‑8 assay (100±0 vs. 239.1±58.3 vs. 39.7±20.1, P<0.01) and flow cytometry (34.0±7.1% vs. 46.2±10.6% vs. 61.3±5.3%, P<0.05). Compared with the HeLa group, the glucose consumption of the C‑33A‑Wild and C‑33A‑SNAI2 groups was significantly decreased (P<0.01). The results of beta‑galactosidase staining showed that the proportion of beta‑galactosidase‑positive cells in the C‑33A‑SNAI2 group was significantly decreased compared with the C‑33A‑Wild group (P<0.01). Upregulation of SNAI2 enhanced the increase in p21 expression, and the decrease in CDK1, urokinase plasminogen activator receptor (u‑PAR) and cyclin D1 expression in C‑33A cells compared with C‑33A‑Wild cells (P<0.05). In addition, the activities of p38, ERK1/2 and the phosphorylated (p)‑ERK1/2/p‑p38 ratio were decreased in the C‑33A‑SNAI2 group compared with the C‑33A‑Wild and HeLa groups (P<0.05). In conclusion, SNAI2 enhanced HPV‑negative cervical cancer C‑33A cell dormancy, which was characterized by G0/G1 arrest, by the downregulation of u‑PAR expression, and a decrease in the activity of the p‑ERK1/2 and p‑p38MAPK signaling pathways in vitro. Cancer recurrence and metastases are responsible for most cancer‑related deaths. Given that SNAI2 is required for enhancing HPV‑negative cervical cancer cell dormancy, regulating this process may promote cervical tumor cells to enter a continuous dormant state, which could be a potential approach for tumor therapy.
Collapse
Affiliation(s)
- Yuanhong Zhou
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Yan Xie
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Youzheng Luo
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Shuling Wang
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Qing Han
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Qiang Liu
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
2
|
Wang Y, Wang L, Wei Y, Wei C, Yang H, Chen Q, Zhang R, Shen H. Advances in the molecular regulation mechanism of tumor dormancy and its therapeutic strategy. Discov Oncol 2024; 15:184. [PMID: 38795254 PMCID: PMC11127899 DOI: 10.1007/s12672-024-01049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/20/2024] [Indexed: 05/27/2024] Open
Abstract
Tumor dormancy is a stage in the growth and development of malignant cells and is one of the biological characteristics of malignant cells. Complex transitions involving dormant tumor cells between quiescent and proliferative states pose challenges for tumor eradication. This paper explores the biological features and molecular mechanisms of tumor dormancy and highlights emerging therapies. The strategies discussed promise innovative clinical potential against malignant tumors. Understanding the mechanisms of dormancy can help provide valuable insights into the diagnosis and treatment of malignant tumors to advance the fight against this world problem.
Collapse
Affiliation(s)
- Yuan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Linlin Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Yaojun Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Chuang Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Haohang Yang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Qiurui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China.
| | - Han Shen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China.
| |
Collapse
|
3
|
Nasr MM, Lynch CC. How circulating tumor cluster biology contributes to the metastatic cascade: from invasion to dissemination and dormancy. Cancer Metastasis Rev 2023; 42:1133-1146. [PMID: 37442876 PMCID: PMC10713810 DOI: 10.1007/s10555-023-10124-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Circulating tumor cells (CTCs) are known to be prognostic for metastatic relapse and are detected in patients as solitary cells or cell clusters. Circulating tumor cell clusters (CTC clusters) have been observed clinically for decades and are of significantly higher metastatic potential compared to solitary CTCs. Recent studies suggest distinct differences in CTC cluster biology regarding invasion and survival in circulation. However, differences regarding dissemination, dormancy, and reawakening require more investigations compared to solitary CTCs. Here, we review the current state of CTC cluster research and consider their clinical significance. In addition, we discuss the concept of collective invasion by CTC clusters and molecular evidence as to how cluster survival in circulation compares to that of solitary CTCs. Molecular differences between solitary and clustered CTCs during dormancy and reawakening programs will also be discussed. We also highlight future directions to advance our current understanding of CTC cluster biology.
Collapse
Affiliation(s)
- Mostafa M Nasr
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
4
|
Wilczyński JR, Nowak M. Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:1-57. [PMID: 35165859 DOI: 10.1007/978-3-030-91311-3_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emphasizing the dynamic processes between cancer and host immune system, the initially discovered concept of cancer immunosurveillance has been replaced by the current concept of cancer immunoediting consisting of three phases: elimination, equilibrium, and escape. Solid tumors composed of both cancer and host stromal cells are an example how the three phases of cancer immunoediting functionally evolve and how tumor shaped by the host immune system gets finally resistant phenotype. The elimination, equilibrium, and escape have been described in this chapter in details, including the role of immune surveillance, cancer dormancy, disruption of the antigen-presenting machinery, tumor-infiltrating immune cells, resistance to apoptosis, as well as the function of tumor stroma, microvesicles, exosomes, and inflammation.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| | - Marek Nowak
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
- Department of Operative and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Menezes B, Linderman JJ, Thurber GM. Simulating the Selection of Resistant Cells with Bystander Killing and Antibody Coadministration in Heterogeneous Human Epidermal Growth Factor Receptor 2-Positive Tumors. Drug Metab Dispos 2022; 50:8-16. [PMID: 34649966 PMCID: PMC8969196 DOI: 10.1124/dmd.121.000503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023] Open
Abstract
Intratumoral heterogeneity is a leading cause of treatment failure resulting in tumor recurrence. For the antibody-drug conjugate (ADC) ado-trastuzumab emtansine (T-DM1), two major types of resistance include changes in human epidermal growth factor receptor 2 (HER2) expression and reduced payload sensitivity, which is often exacerbated by heterogenous HER2 expression and ADC distribution during treatment. ADCs with bystander payloads, such as trastuzumab-monomethyl auristatin E (T-MMAE), can reach and kill adjacent cells with lower receptor expression that cannot be targeted directly with the ADC. Additionally, coadministration of T-DM1 with its unconjugated antibody, trastuzumab, can improve distribution and minimize heterogeneous delivery. However, the effectiveness of trastuzumab coadministration and ADC bystander killing in heterogenous tumors in reducing the selection of resistant cells is not well understood. Here, we use an agent-based model to predict outcomes with these different regimens. The simulations demonstrate that both T-DM1 and T-MMAE benefit from trastuzumab coadministration for tumors with high average receptor expression (up to 70% and 40% decrease in average tumor volume, respectively), with greater benefit for nonbystander payloads. However, the benefit decreases as receptor expression is reduced, reversing at low concentrations (up to 360% and 430% increase in average tumor volume for T-DM1 and T-MMAE, respectively) for this mechanism that impacts both ADC distribution and efficacy. For tumors with intrinsic payload resistance, coadministration uniformly exhibits better efficacy than ADC monotherapy (50%-70% and 19%-36% decrease in average tumor volume for T-DM1 and T-MMAE, respectively). Finally, we demonstrate that several regimens select for resistant cells at clinical tolerable doses, which highlights the need to pursue other mechanisms of action for durable treatment responses. SIGNIFICANCE STATEMENT: Experimental evidence demonstrates heterogeneity in the distribution of both the antibody-drug conjugate and the target receptor in the tumor microenvironment, which can promote the selection of resistant cells and lead to recurrence. This study quantifies the impact of increasing the antibody dose and utilizing bystander payloads in heterogeneous tumors. Alternative cell-killing mechanisms are needed to avoid enriching resistant cell populations.
Collapse
Affiliation(s)
- Bruna Menezes
- Departments of Chemical Engineering (B.M., J.J.L., G.M.T.) and Biomedical Engineering (J.J.L., G.M.T.), University of Michigan, Ann Arbor, Michigan
| | - Jennifer J Linderman
- Departments of Chemical Engineering (B.M., J.J.L., G.M.T.) and Biomedical Engineering (J.J.L., G.M.T.), University of Michigan, Ann Arbor, Michigan
| | - Greg M Thurber
- Departments of Chemical Engineering (B.M., J.J.L., G.M.T.) and Biomedical Engineering (J.J.L., G.M.T.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Metrangolo V, Ploug M, Engelholm LH. The Urokinase Receptor (uPAR) as a "Trojan Horse" in Targeted Cancer Therapy: Challenges and Opportunities. Cancers (Basel) 2021; 13:cancers13215376. [PMID: 34771541 PMCID: PMC8582577 DOI: 10.3390/cancers13215376] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Discovered more than three decades ago, the urokinase-type plasminogen activator receptor (uPAR) has now firmly established itself as a versatile molecular target holding promise for the treatment of aggressive malignancies. The copious abundance of uPAR in virtually all human cancerous tissues versus their healthy counterparts has fostered a gradual shift in the therapeutic landscape targeting this receptor from function inhibition to cytotoxic approaches to selectively eradicate the uPAR-expressing cells by delivering a targeted cytotoxic insult. Multiple avenues are being explored in a preclinical setting, including the more innovative immune- or stroma targeting therapies. This review discusses the current state of these strategies, their potentialities, and challenges, along with future directions in the field of uPAR targeting. Abstract One of the largest challenges to the implementation of precision oncology is identifying and validating selective tumor-driving targets to enhance the therapeutic efficacy while limiting off-target toxicity. In this context, the urokinase-type plasminogen activator receptor (uPAR) has progressively emerged as a promising therapeutic target in the management of aggressive malignancies. By focalizing the plasminogen activation cascade and subsequent extracellular proteolysis on the cell surface of migrating cells, uPAR endows malignant cells with a high proteolytic and migratory potential to dissolve the restraining extracellular matrix (ECM) barriers and metastasize to distant sites. uPAR is also assumed to choreograph multiple other neoplastic stages via a complex molecular interplay with distinct cancer-associated signaling pathways. Accordingly, high uPAR expression is observed in virtually all human cancers and is frequently associated with poor patient prognosis and survival. The promising therapeutic potential unveiled by the pleiotropic nature of this receptor has prompted the development of distinct targeted intervention strategies. The present review will focus on recently emerged cytotoxic approaches emphasizing the novel technologies and related limits hindering their application in the clinical setting. Finally, future research directions and emerging opportunities in the field of uPAR targeting are also discussed.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-31-43-20-77
| |
Collapse
|
7
|
Tinganelli W, Durante M. Tumor Hypoxia and Circulating Tumor Cells. Int J Mol Sci 2020; 21:ijms21249592. [PMID: 33339353 PMCID: PMC7766826 DOI: 10.3390/ijms21249592] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) are a rare tumor cell subpopulation induced and selected by the tumor microenvironment's extreme conditions. Under hypoxia and starvation, these aggressive and invasive cells are able to invade the lymphatic and circulatory systems. Escaping from the primary tumor, CTCs enter into the bloodstream to form metastatic deposits or re-establish themselves in cancer's primary site. Although radiotherapy is widely used to cure solid malignancies, it can promote metastasis. Radiation can disrupt the primary tumor vasculature, increasing the dissemination of CTCs. Radiation also induces epithelial-mesenchymal transition (EMT) and eliminates suppressive signaling, causing the proliferation of existent, but previously dormant, disseminated tumor cells (DTCs). In this review, we collect the results and evidence underlying the molecular mechanisms of CTCs and DTCs and the effects of radiation and hypoxia in developing these cells.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64291 Darmstadt, Germany
- Correspondence:
| |
Collapse
|
8
|
Jahanban-Esfahlan R, Seidi K, Manjili MH, Jahanban-Esfahlan A, Javaheri T, Zare P. Tumor Cell Dormancy: Threat or Opportunity in the Fight against Cancer. Cancers (Basel) 2019; 11:cancers11081207. [PMID: 31430951 PMCID: PMC6721805 DOI: 10.3390/cancers11081207] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor dormancy, a clinically undetectable state of cancer, makes a major contribution to the development of multidrug resistance (MDR), minimum residual disease (MRD), tumor outgrowth, cancer relapse, and metastasis. Despite its high incidence, the whole picture of dormancy-regulated molecular programs is far from clear. That is, it is unknown when and which dormant cells will resume proliferation causing late relapse, and which will remain asymptomatic and harmless to their hosts. Thus, identification of dormancy-related culprits and understanding their roles can help predict cancer prognosis and may increase the probability of timely therapeutic intervention for the desired outcome. Here, we provide a comprehensive review of the dormancy-dictated molecular mechanisms, including angiogenic switch, immune escape, cancer stem cells, extracellular matrix (ECM) remodeling, metabolic reprogramming, miRNAs, epigenetic modifications, and stress-induced p38 signaling pathways. Further, we analyze the possibility of leveraging these dormancy-related molecular cues to outmaneuver cancer and discuss the implications of such approaches in cancer treatment.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 9841, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 9841, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 9841, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 9841, Iran
| | - Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, Massey Cancer Center, Richmond, VA 23298, USA
| | | | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
| | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland.
| |
Collapse
|
9
|
Allgayer H, Leupold JH, Patil N. Defining the "Metastasome": Perspectives from the genome and molecular landscape in colorectal cancer for metastasis evolution and clinical consequences. Semin Cancer Biol 2019; 60:1-13. [PMID: 31362074 DOI: 10.1016/j.semcancer.2019.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Metastasis still poses the highest challenge for personalized therapy in cancer, partly due to a still incomplete understanding of its molecular evolution. We recently presented the most comprehensive whole-genome study of colorectal metastasis vs. matched primary tumors and suggested novel components of disease progression and metastasis evolution, some of them potentially relevant for targeted therapy. In this review, we try to put these findings into perspective with latest discoveries of colleagues and recent literature, and propose a systematic international team effort to collectively define the "metastasome", a term we introduce to summarize all genomic, epigenomic, transcriptomic, further -omic, molecular and functional characteristics rendering metastases different from primary tumors. Based on recent discoveries, we propose a revised metastasis model for colorectal cancer which is based on a common ancestor clone, early dissemination but flexible early or late stage clonal separation paralleling stromal interactions. Furthermore, we discuss hypotheses on site-specific metastasis, colorectal cancer progression, metastasis-targeted diagnosis and therapy, and metastasis prevention based on latest metastasome data.
Collapse
Affiliation(s)
- Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Theodor Kutzer Ufer 1-3, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ludolf-Krehl-Str. 6, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany.
| | - Jörg H Leupold
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Theodor Kutzer Ufer 1-3, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ludolf-Krehl-Str. 6, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany
| | - Nitin Patil
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Theodor Kutzer Ufer 1-3, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Ludolf-Krehl-Str. 6, 68135, Mannheim, Ruprecht Karls University of Heidelberg, Germany
| |
Collapse
|
10
|
Abstract
The metastasis of neoplastic cells from their site of origin to distant anatomic locations continues to be the principal cause of death from malignant tumors, and that fact has been recognized by physicians for over a century. After the work done by Halsted in the treatment of breast cancer in the 1880s, accepted surgical canon held that metastasis occurred in a linear fashion, with centrifugal "growth in continuity" from the primary neoplasm that first involved regional lymph nodes. Those structures were considered to then be the sources of more distant, visceral metastases. With that premise in mind, radical and "ultra-radical" surgical procedures were devised to remove as many lymph nodes as possible in the treatment of carcinomas and melanomas. However, such interventions were ineffective in altering tumor-related mortality. This review considers the details of the historical material just mentioned. It also reviews currently-held concepts on biological mechanisms of metastasis, the "sentinel" lymph node biopsy technique, and the important topic of metastatic tumor "dormancy" as the cause of surgical treatment failure. Finally, predictive models of tumor behavior are discussed, which are based on gene signatures. These will likely be the key to identifying malignant lesions of low surgical stage that ultimately prove fatal through later manifestation of metastasis.
Collapse
Affiliation(s)
- Mark R Wick
- Division of Surgical Pathology & Cytopathology, Department of Pathology, University of Virginia Medical Center, Room 3020, 1215 Lee Street, Charlottesville, VA 22908-0214, United States.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW This review highlights our current knowledge of oxygen tensions in the bone marrow, and how low oxygen tensions (hypoxia) regulate tumor metastasis to and colonization of the bone marrow. RECENT FINDINGS The bone marrow is a relatively hypoxic microenvironment, but oxygen tensions fluctuate throughout the marrow cavity and across the endosteal and periosteal surfaces. Recent advances in imaging have made it possible to better characterize these fluctuations in bone oxygenation, but technical challenges remain. We have compiled evidence from multiple groups that suggests that hypoxia or hypoxia inducible factor (HIF) signaling may induce spontaneous metastasis to the bone and promote tumor colonization of bone, particularly in the case of breast cancer dissemination to the bone marrow. We are beginning to understand oxygenation patterns within the bone compartment and the role for hypoxia and HIF signaling in tumor cell dissemination to the bone marrow, but further studies are warranted.
Collapse
Affiliation(s)
- Rachelle W Johnson
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Miranda E Sowder
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
12
|
Abstract
Tumor dormancy is one of the stages in tumor development without clinical symptoms. Tumor dormant cells may appear in early stages of tumor development, as well as in micrometastasis and minimal residual disease. The mechanism for the switch of dormant cells between quiescent and proliferative stages is still largely unknown. Potential mechanisms that may account for the transition between dormant tumor cells and proliferative cells include angiogenesis, immune response, cellular factors, and signaling pathways. The clinical and therapeutic importance of dormant cells requires further studies to provide therapeutic strategies for inhibition of metastasis and tumor recurrence.
Collapse
|
13
|
Montuori N, Pesapane A, Rossi FW, Giudice V, De Paulis A, Selleri C, Ragno P. Urokinase type plasminogen activator receptor (uPAR) as a new therapeutic target in cancer. Transl Med UniSa 2016; 15:15-21. [PMID: 27896223 PMCID: PMC5120746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The urokinase (uPA)-type plasminogen activator receptor (uPAR) is a GPI-anchored receptor that focuses urokinase (uPA) proteolytic activity on the cell surface. uPAR also regulates cell adhesion, migration and proliferation, protects from apoptosis and contributes to epithelial mesenchymal transition (EMT), independently of uPA enzymatic activity. Indeed, uPAR interacts with beta1, beta2 and beta3 integrins, thus regulating their activities. uPAR cross-talks with receptor tyrosine kinases through integrins and regulates cancer cell dormancy, proliferation and angiogenesis. Moreover, uPAR mediates uPA-dependent cell migration and chemotaxis induced by fMet-Leu-Phe (fMLF), through its association with fMLF-receptors (fMLF-Rs). Further, uPAR is an adhesion receptor because it binds vitronectin (VN), a component of provisional extracellular matrix. High uPAR expression predicts for more aggressive disease in several cancer types for its ability to increase invasion and metastasis. In fact, uPAR has been hypothesized to be the link between tumor cell dormancy and proliferation that usually precedes the onset of metastasis. Thus, inhibiting uPAR could be a feasible approach to affect tumor growth and metastasis. Here, we review the more recent advances in the development of uPAR-targeted anti-cancer therapeutic agents suitable for further optimization or ready for the evaluation in early clinical trials.
Collapse
Affiliation(s)
- Nunzia Montuori
- Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Ada Pesapane
- Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Francesca W Rossi
- Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Valentina Giudice
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Amato De Paulis
- Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Carmine Selleri
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Salerno, Italy
| |
Collapse
|
14
|
Rubio-Jurado B, Tello-González A, Bustamante-Chávez L, de la Peña A, Riebeling-Navarro C, Nava-Zavala AH. Circulating Levels of Urokinase-Type Plasminogen Activator Receptor and D-Dimer in Patients With Hematological Malignancies. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:621-6. [DOI: 10.1016/j.clml.2015.07.632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
15
|
Ruppender N, Larson S, Lakely B, Kollath L, Brown L, Coleman I, Coleman R, Nguyen H, Nelson PS, Corey E, Snyder LA, Vessella RL, Morrissey C, Lam HM. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS One 2015; 10:e0130565. [PMID: 26090669 PMCID: PMC4475050 DOI: 10.1371/journal.pone.0130565] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/21/2015] [Indexed: 12/20/2022] Open
Abstract
Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis.
Collapse
Affiliation(s)
- Nazanin Ruppender
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Sandy Larson
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Bryce Lakely
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Lori Kollath
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Lisha Brown
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Ilsa Coleman
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Roger Coleman
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Holly Nguyen
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Peter S. Nelson
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Linda A. Snyder
- Janssen Research and Development, LLC, Spring House, Pennsylvania, United States of America
| | - Robert L. Vessella
- Department of Urology, University of Washington, Seattle, Washington, United States of America
- Department of Veterans Affairs Medical Center, Seattle, Washington, United States of America
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog 2015; 55:170-81. [PMID: 25641046 DOI: 10.1002/mc.22267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/11/2014] [Accepted: 11/26/2014] [Indexed: 01/23/2023]
Abstract
The epidermal growth factor receptor (EGFR) is involved in the regulation of various cellular processes and dysregulation of its signalling plays a critical role in the etiology of a variety of malignancies like breast cancer. At the same time, elevated levels of urokinase (uPA), its receptor uPAR, and other components of the plasminogen activation system are found to be correlated with a poor prognosis in breast cancer. Interestingly, EGFR appears to participate in transducing the signal generated upon binding of uPA to uPAR. However, whether uPA signalling would thereby interfere with ligand-driven EGFR signalling was not described before. Therefore, it was the aim of the present study to investigate the combined effects of uPA and EGF in the low invasive and high invasive breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, respectively. Simultaneous exposure of cells to both signals negatively affected ERK1/2 and AKT activation whereas positive effects on p38 and Src kinase phosphorylation were noted in both cell lines. Furthermore, uPA attenuated the mitogenic effect of EGF on cellular proliferation, invasion and motility in both MCF-7 and MDA-MB-231 cells. Experiments with the uPA amino terminal fragment (ATF) revealed that the negative effects of uPA were independent from its protease activity. Together, these data suggest that enhanced levels of uPA in breast cancer modulate the mitogenic effects of EGF and thus, this knowledge may help to better understand breast cancer pathogenesis as well as to develop new therapeutic options.
Collapse
Affiliation(s)
- Nina Kozlova
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anatoly Samoylenko
- Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Laboratory of Cell Signalling, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lyudmyla Drobot
- Laboratory of Cell Signalling, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
17
|
Abstract
In cancer dormancy, residual tumor cells persist in a patient with no apparent clinical symptoms, only to potentially become clinically relevant at a later date. In prostate cancer (PCa), the primary tumor is often removed and many patients experience a prolonged period (>5 years) with no evidence of disease before recurrence. These characteristics make PCa an excellent candidate for the study of tumor cell dormancy. However, the mechanisms that constitute PCa dormancy have not been clearly defined. Additionally, the definition of tumor cell dormancy varies in the literature. Therefore, we have separated tumor cell dormancy in this review into three categories: (a) micrometastatic dormancy--a group of tumor cells that cannot increase in number due to a restrictive proliferation/apoptosis equilibrium. (b) Angiogenic dormancy--a group of tumor cells that cannot expand beyond the formation of a micrometastasis due to a lack of angiogenic potential. (c) Conditional dormancy--an individual cell or a very small number of cells that cannot proliferate without the appropriate cues from the microenvironment, but do not require angiogenesis to do so. This review aims to identify currently known markers, mechanisms, and models of tumor dormancy, in particular as they relate to PCa, and highlight current opportunities for advancement in our understanding of clinical cancer dormancy.
Collapse
|
18
|
Singh T, Kaur V, Kumar M, Kaur P, Murthy RSR, Rawal RK. The critical role of bisphosphonates to target bone cancer metastasis: an overview. J Drug Target 2014; 23:1-15. [DOI: 10.3109/1061186x.2014.950668] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol 2014; 35:8483-523. [PMID: 25104089 DOI: 10.1007/s13277-014-2421-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer is the final result of uninhibited cell growth that involves an enormous group of associated diseases. One major aspect of cancer is when cells attack adjacent components of the body and spread to other organs, named metastasis, which is the major cause of cancer-related mortality. In developing this process, metastatic cells must successfully negotiate a series of complex steps, including dissociation, invasion, intravasation, extravasation, and dormancy regulated by various signaling pathways. In this review, we will focus on the recent studies and collect a comprehensive encyclopedia in molecular basis of metastasis, and then we will discuss some new potential therapeutics which target the metastasis pathways. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell metastasis is critical for the development of therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.
Collapse
Affiliation(s)
- Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran,
| | | | | |
Collapse
|
20
|
Wang SH, Lin SY. Tumor dormancy: potential therapeutic target in tumor recurrence and metastasis prevention. Exp Hematol Oncol 2013; 2:29. [PMID: 24502434 PMCID: PMC4176492 DOI: 10.1186/2162-3619-2-29] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/12/2013] [Indexed: 12/14/2022] Open
Abstract
In past decades, cancer patient survival has been improved with earlier detection and advancements in therapy. However, many patients who exhibit no clinical symptoms after frontline therapy subsequently suffer, often many years later, aggressive tumor recurrence. Cancer recurrence represents a critical clinical challenge in effectively treating malignancies and for patients’ quality of life. Tumor cell dormancy may help to explain treatment resistance and recurrence or metastatic reactivation. Understanding the dormant stage of tumor cells may help in discovering ways to maintain the dormant state or permanently eliminate dormant residual disseminated tumor cells. Over the past decade, numerous studies indicate that various mechanisms of tumor dormancy exist, including cellular dormancy (quiescence), angiogenic dormancy, and immunologic dormancy. In this short review, we summarize recent experimental and clinical evidence for these three mechanisms and other possible tumor microenvironment mechanisms that may influence tumor dormancy.
Collapse
Affiliation(s)
| | - Shiaw-Yih Lin
- Department of Systems Biology, Unit 950, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,, Houston, TX 77054, USA.
| |
Collapse
|
21
|
Gelao L, Criscitiello C, Fumagalli L, Locatelli M, Manunta S, Esposito A, Minchella I, Goldhirsch A, Curigliano G. Tumour dormancy and clinical implications in breast cancer. Ecancermedicalscience 2013; 7:320. [PMID: 23717341 PMCID: PMC3660156 DOI: 10.3332/ecancer.2013.320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Indexed: 02/06/2023] Open
Abstract
The aim of adjuvant therapy in breast cancer is to reduce the risk of recurrence. Some patients develop metastases many years after apparently successful treatment of their primary cancer. Tumour dormancy may explain the long time between initial diagnosis and treatment of cancer, and occurrence of relapse. The regulation of the switch from clinical dormancy to cancer regrowth in locoregional and distant sites is poorly understood. In this review, we report some data supporting the existence of various factors that may explain cancer dormancy including genetic and epigenetic changes, angiogenic switch, microenvironment, and immunosurveillance. A better definition and understanding of these factors should allow the identification of patients at high risk of relapse and to develop new therapeutic strategies in order to improve prognosis.
Collapse
Affiliation(s)
- L Gelao
- Early Drug Development for Innovative Therapy Division, European Institute of Oncology, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Marsden CG, Wright MJ, Carrier L, Moroz K, Rowan BG. Disseminated breast cancer cells acquire a highly malignant and aggressive metastatic phenotype during metastatic latency in the bone. PLoS One 2012; 7:e47587. [PMID: 23173031 PMCID: PMC3500091 DOI: 10.1371/journal.pone.0047587] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 09/18/2012] [Indexed: 12/19/2022] Open
Abstract
Background Disseminated tumor cells (DTCs) in the bone marrow may exist in a dormant state for extended periods of time, maintaining the ability to proliferate upon activation, engraft at new sites, and form detectable metastases. However, understanding of the behavior and biology of dormant breast cancer cells in the bone marrow niche remains limited, as well as their potential involvement in tumor recurrence and metastasis. Therefore, the purpose of this study was to investigate the tumorigenicity and metastatic potential of dormant disseminated breast cancer cells (prior to activation) in the bone marrow. Methodology/Principal Findings Total bone marrow, isolated from mice previously injected with tumorspheres into the mammary fat pad, was injected into the mammary fat pad of NUDE mice. As a negative control, bone marrow isolated from non-injected mice was injected into the mammary fat pad of NUDE mice. The resultant tumors were analyzed by immunohistochemistry for expression of epithelial and mesenchymal markers. Mouse lungs, livers, and kidneys were analyzed by H+E staining to detect metastases. The injection of bone marrow isolated from mice previously injected with tumorspheres into the mammary fat pad, resulted in large tumor formation in the mammary fat pad 2 months post-injection. However, the injection of bone marrow isolated from non-injected mice did not result in tumor formation in the mammary fat pad. The DTC-derived tumors exhibited accelerated development of metastatic lesions within the lung, liver and kidney. The resultant tumors and the majority of metastatic lesions within the lung and liver exhibited a mesenchymal-like phenotype. Conclusions/Significance Dormant DTCs within the bone marrow are highly malignant upon injection into the mammary fat pad, with the accelerated development of metastatic lesions within the lung, liver and kidney. These results suggest the acquisition of a more aggressive phenotype of DTCs during metastatic latency within the bone marrow microenvironment.
Collapse
Affiliation(s)
- Carolyn G. Marsden
- Department of Structural and Cellular Biology, The Louisiana Cancer Research Consortium, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Mary Jo Wright
- Department of Surgery, The Louisiana Cancer Research Consortium, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Latonya Carrier
- Department of Structural and Cellular Biology, The Louisiana Cancer Research Consortium, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Krzysztof Moroz
- Section of Surgical Pathology and Cytopathology, Louisiana Cancer Research Consortium, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Brian G. Rowan
- Department of Structural and Cellular Biology, The Louisiana Cancer Research Consortium, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
23
|
Gao D, Bambang IF, Putti TC, Lee YK, Richardson DR, Zhang D. ERp29 induces breast cancer cell growth arrest and survival through modulation of activation of p38 and upregulation of ER stress protein p58IPK. J Transl Med 2012; 92:200-13. [PMID: 22064321 DOI: 10.1038/labinvest.2011.163] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Endoplasmic reticulum protein 29 (ERp29) is an ER luminal protein that has a role in protein unfolding and secretion, but its role in cancer is unclear. Recently, we reported that overexpression of ERp29 significantly inhibited cell proliferation and prevented tumorigenesis in highly proliferative MDA-MB-231 breast cancer cells. Here, we show that ERp29-induced cancer cell growth arrest is modulated by the interplay between the concomitant phosphorylation of p38 and upregulation of the inhibitor of the interferon-induced, double-stranded RNA-activated protein kinase, p58(IPK). In this cell model, ERp29 overexpression significantly downregulates modulators of cell proliferation, namely urokinase plasminogen activator receptor, β(1)-integrin and epidermal growth factor receptor. Furthermore, ERp29 significantly (P<0.001) increases phosphorylation of p38 (p-p38) and reduces matrix metalloproteinase-9 secretion. The role of ERp29 in upregulating cyclin-dependent kinase inhibitors (p15 and p21) and in downregulating cyclin D(2) is demonstrated in slowly proliferating ERp29-overexpressing MDA-MB-231 cells, whereas the opposite response was observed in ERp29-knockdown MCF-7 cells. Pharmacological inhibition of p-p38 downregulates p15 and p21 and inhibits eIF2α phosphorylation, indicating a role for p-p38 in this process. Furthermore, p58(IPK) expression was increased in ERp29-overexpressing MDA-MB-231 cells and highly decreased in ERp29-knockdown MCF-7 cells. This upregulation of p58(IPK) by ERp29 suppresses the activation of p-p38/p-PERK/p-eIF2α by repressing eIF2α phosphorylation. In fact, reduction of p58(IPK) expression by RNA interference stimulated eIF2α phosphorylation. The repression of eIF2α phosphorylation by p58(IPK) prevents ERp29-transfected cells from undergoing ER-dependent apoptosis driven by the activation of ATF4/CHOP/caspase-3. Hence, the interplay between p38 phosphorylation and p58(IPK) upregulation has key roles in modulating ERp29-induced cell-growth arrest and survival.
Collapse
Affiliation(s)
- Danmei Gao
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
24
|
Marsden CG, Wright MJ, Carrier L, Moroz K, Pochampally R, Rowan BG. "A novel in vivo model for the study of human breast cancer metastasis using primary breast tumor-initiating cells from patient biopsies". BMC Cancer 2012; 12:10. [PMID: 22233382 PMCID: PMC3277457 DOI: 10.1186/1471-2407-12-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/10/2012] [Indexed: 01/16/2023] Open
Abstract
Background The study of breast cancer metastasis depends on the use of established breast cancer cell lines that do not accurately represent the heterogeneity and complexity of human breast tumors. A tumor model was developed using primary breast tumor-initiating cells isolated from patient core biopsies that would more accurately reflect human breast cancer metastasis. Methods Tumorspheres were isolated under serum-free culture conditions from core biopsies collected from five patients with clinical diagnosis of invasive ductal carcinoma (IDC). Isolated tumorspheres were transplanted into the mammary fat pad of NUDE mice to establish tumorigenicity in vivo. Tumors and metastatic lesions were analyzed by hematoxylin and eosin (H+E) staining and immunohistochemistry (IHC). Results Tumorspheres were successfully isolated from all patient core biopsies, independent of the estrogen receptor α (ERα)/progesterone receptor (PR)/Her2/neu status or tumor grade. Each tumorsphere was estimated to contain 50-100 cells. Transplantation of 50 tumorspheres (1-5 × 103 cells) in combination with Matrigel into the mammary fat pad of NUDE mice resulted in small, palpable tumors that were sustained up to 12 months post-injection. Tumors were serially transplanted three times by re-isolation of tumorspheres from the tumors and injection into the mammary fat pad of NUDE mice. At 3 months post-injection, micrometastases to the lung, liver, kidneys, brain and femur were detected by measuring content of human chromosome 17. Visible macrometastases were detected in the lung, liver and kidneys by 6 months post-injection. Primary tumors variably expressed cytokeratins, Her2/neu, cytoplasmic E-cadherin, nuclear β catenin and fibronectin but were negative for ERα and vimentin. In lung and liver metastases, variable redistribution of E-cadherin and β catenin to the membrane of tumor cells was observed. ERα was re-expressed in lung metastatic cells in two of five samples. Conclusions Tumorspheres isolated under defined culture conditions from patient core biopsies were tumorigenic when transplanted into the mammary fat pad of NUDE mice, and metastasized to multiple mouse organs. Micrometastases in mouse organs demonstrated a dormancy period prior to outgrowth of macrometastases. The development of macrometastases with organ-specific phenotypic distinctions provides a superior model for the investigation of organ-specific effects on metastatic cancer cell survival and growth.
Collapse
Affiliation(s)
- Carolyn G Marsden
- Department of Structural and Cellular Biology, Louisiana Cancer Research Consortium, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
25
|
Distinct functional roles of Akt isoforms for proliferation, survival, migration and EGF-mediated signalling in lung cancer derived disseminated tumor cells. Cell Signal 2011; 23:1952-60. [DOI: 10.1016/j.cellsig.2011.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/04/2011] [Indexed: 02/07/2023]
|
26
|
Alpízar-Alpízar W, Christensen IJ, Santoni-Rugiu E, Skarstein A, Ovrebo K, Illemann M, Laerum OD. Urokinase plasminogen activator receptor on invasive cancer cells: A prognostic factor in distal gastric adenocarcinoma. Int J Cancer 2011; 131:E329-36. [DOI: 10.1002/ijc.26417] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 08/23/2011] [Indexed: 12/27/2022]
|
27
|
Gregory LA, Ricart RA, Patel SA, Lim PK, Rameshwar P. microRNAs, Gap Junctional Intercellular Communication and Mesenchymal Stem Cells in Breast Cancer Metastasis. CURRENT CANCER THERAPY REVIEWS 2011; 7:176-183. [PMID: 21886602 DOI: 10.2174/157339411796234915] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The failed outcome of autologous bone marrow transplantation for breast cancer opens the field for investigations. This is particularly important because the bone marrow could be a major source of cancer cells during tertiary metastasis. This review discusses subsets of breast cancer cells, including those that enter the bone marrow at an early period of disease development, perhaps prior to clinical detection. This population of cells evades chemotherapeutic damage even at high doses. An understanding of this population might be crucial for the success of bone marrow transplants for metastatic breast cancer and for the eradication of cancer cells in bone marrow. In vivo and in vitro studies have demonstrated gap junctional intercellular communication (GJIC) between bone marrow stroma and breast cancer cells. This review discusses GJIC in cancer metastasis, facilitating roles of mesenchymal stem cells (MSCs). In addition, the review addresses potential roles for miRNAs, including those already linked to cancer biology. The literature on MSCs is growing and their links to metastasis are beginning to be significant leads for the development of new drug targets for breast cancer. In summary, this review discusses interactions among GJIC, miRNAs and MSCs as future consideration for the development of cancer therapies.
Collapse
Affiliation(s)
- Larissa A Gregory
- Department of Medicine - Division of Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | | | | | |
Collapse
|
28
|
Aft R, Perez JR, Raje N, Hirsh V, Saad F. Could targeting bone delay cancer progression? Potential mechanisms of action of bisphosphonates. Crit Rev Oncol Hematol 2011; 82:233-48. [PMID: 21683613 DOI: 10.1016/j.critrevonc.2011.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 12/12/2022] Open
Abstract
Although dissemination may occur early in the course of many cancers, the development of overt metastases depends upon a variety of factors inherent to the cancer cells and the tissue(s) they colonize. The time lag between initial dissemination and established metastases could be several years, during which period the bone marrow may provide an unwitting sanctuary for disseminated tumor cells (DTCs). Survival in a dormant state within the bone marrow may help DTCs weather the effects of anticancer therapies and seed posttreatment relapses. The importance of the bone marrow for facilitating DTC survival may vary depending on the type of cancer and mechanisms of tumor cell dissemination. By altering the bone microenvironment, bisphosphonates may reduce DTC viability. Moreover, some bisphosphonates have demonstrated multiple anticancer activities. These multiple mechanisms may help explain the improvement in disease outcomes with the use of zoledronic acid in malignancies like breast cancer and multiple myeloma.
Collapse
Affiliation(s)
- Rebecca Aft
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
29
|
Abstract
The increasing number of cancer survivors is cause for celebration, but this expanding population has highlighted the problem of tumour dormancy, which can lead to relapse. As we start to understand more about the biology of dormant cancer cells, we can begin to address how best to treat this form of disease. Preclinical models and initial clinical trials, as exemplified in patients with breast cancer, are paving the way to address how best to treat long-term cancer survivors to minimize the risk of cancer recurrence.
Collapse
Affiliation(s)
- Paul E Goss
- Harvard Medical School, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Lawrence House, RH-302, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
30
|
Molecular mechanisms underlying tumor dormancy. Cancer Lett 2010; 294:139-46. [PMID: 20363069 DOI: 10.1016/j.canlet.2010.03.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 12/15/2022]
Abstract
Evidence suggests that dormant, microscopic tumors are not only common, but are highly prevalent in otherwise healthy individuals. Due to their small size and non-invasive nature, these dormant tumors remain asymptomatic and, in most cases, undetected. With advances in diagnostic imaging and molecular biology, it is now becoming clear that such neoplasms can remain in an asymptomatic, dormant stage for considerable periods of time without expanding in size. Although a number of processes may play a role in thwarting the expansion of microscopic tumors, one critical mechanism behind tumor dormancy is the ability of the tumor population to induce angiogenesis. Although cancer can arise through multiple pathways, it is assumed that essentially most tumors begin as microscopic, non-angiogenic neoplasms which cannot expand in size until vasculature is established. It is now becoming clear that cancer does not progress through a continuous exponential growth and mass expansion. Clinical cancer is usually manifested only in late, unavoidably symptomatic stages of the disease when tumors are sufficiently large to be readily detected. While dormancy in primary tumors is best defined as the time between the carcinogenic transformation event and the onset of inexorable progressive growth, it can also occur as minimal residual or occult disease from treated tumors or as micro-metastases. The existence of dormant tumors has important implications for the early detection and treatment of cancer. Elucidating the regulatory machinery of these processes will be instrumental in identifying novel early cancer biomarkers and could provide a rationale for the development of dormancy-promoting tumor therapies. Despite the high prevalence of microscopic, dormant tumors in humans and the significant clinical implications of their early detection, this area in cancer research has, to date, been under-investigated. In this mini review observations, models and experimental approaches to study tumor dormancy are summarized. Additionally, analogies and distinctions between the concepts of "tumor dormancy" and that of the "cellular dormancy" of tumor cells, as well as between the "exit from tumor dormancy" and the "onset of the angiogenic switch" are discussed.
Collapse
|
31
|
Abstract
The urokinase receptor (u-PAR) is one of the most critical molecules in migration, invasion, intravasation, and metastasis and is also a key regulator between tumour cell proliferation and dormancy. It is overexpressed in most human solid cancer types, which has led to increasing translational and clinical research on this molecule. The current review discusses in particular the in vivo, translational, and putative clinical relevance of u-PAR in the context of this latest development. It outlines how u-PAR is already being used and might increasingly be applied as a diagnostic tool, for example, in distinguishing benign from malignant neoplasms, as a molecular marker for predicting clinical response to chemotherapy or novel targeted therapy, and finally as a promising tool for the development of novel cancer therapeutics.
Collapse
|
32
|
Alpízar-Alpízar W, Nielsen BS, Sierra R, Illemann M, Ramírez JA, Arias A, Durán S, Skarstein A, Ovrebo K, Lund LR, Laerum OD. Urokinase plasminogen activator receptor is expressed in invasive cells in gastric carcinomas from high- and low-risk countries. Int J Cancer 2010; 126:405-15. [PMID: 19609941 DOI: 10.1002/ijc.24755] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gastric cancer is the second cancer causing death worldwide. Both incidence and mortality rates vary according to geographical regions. The receptor for urokinase plasminogen activator (uPAR) is involved in extracellular matrix degradation by mediating cell surface associated plasminogen activation, and its presence on gastric cancer cells is linked to micro-metastasis and poor prognosis. Immunohistochemical analyses of a set of 44 gastric cancer lesions from Costa Rica showed expression of uPAR in cancer cells in both intestinal subtype (14 of 27) and diffuse subtype (10 of 17). We compared the expression pattern of uPAR in gastric cancers from a high-risk country (Costa Rica) with a low-risk country (Norway). We found uPAR on gastric cancer cells in 24 of 44 cases (54%) from Costa Rica and in 13 of 23 cases (56%) from Norway. uPAR was seen in macrophages and neutrophils in all cases. We also examined the nonneoplastic mucosa and found that uPAR was more frequently seen in epithelial cells located at the luminal edge of the crypts in cases with Helicobacter pylori infection than in similar epithelial cells in noninfected mucosa (p = 0.033; chi(2) = 4.54). In conclusion, the expression of uPAR in cancer cells in more than half of the gastric cancer cases suggests that their uPAR-positivity do not contribute to explain the different mortality rates between the 2 countries, however, the actual prevalence of uPAR-positive cancer cells in the gastric cancers may still provide prognostic information.
Collapse
Affiliation(s)
- Warner Alpízar-Alpízar
- The Gade Institute, University of Bergen and Department of Pathology, Haukeland University Hospital, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Allgayer H. Pdcd4, a colon cancer prognostic that is regulated by a microRNA. Crit Rev Oncol Hematol 2009; 73:185-91. [PMID: 19836969 DOI: 10.1016/j.critrevonc.2009.09.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 08/03/2009] [Accepted: 09/09/2009] [Indexed: 01/02/2023] Open
Abstract
The novel tumor suppressor Pdcd4 inhibits neoplastic transformation, tumor progression and translation. Furthermore, we and others have recently shown that Pdcd4 suppresses invasion and intravasation, at least in part by suppressing expression of the invasion-related urokinase receptor (u-PAR) gene via the transcription factors Sp1/Sp3. Nevertheless, relatively little is known about mechanisms that regulate Pdcd4 expression in cancer. MicroRNAs (miRNAs) have been recently discovered and shown to be naturally occurring non-coding RNAs that control gene expression via specific sites within the 3'UTR of target miRNAs. This short review will focus on our recent finding that the microRNA miR-21 posttranscriptionally regulates Pdcd4, as well as invasion, intravasation, and metastasis. Furthermore, we will review the first translational and clinical results concerning the prognostic value of Pdcd4, in particular our own data that show Pdcd4 to be a novel and independent prognostic factor in colorectal cancer, and a potential supportive diagnostic tool for discriminating normal colonic tissues from benign adenomas and colorectal carcinomas.
Collapse
Affiliation(s)
- Heike Allgayer
- Dept. Experimental Surgery/Molecular Oncology of Solid Tumors (Collaboration Unit German Cancer Research Center-DKFZ-Heidelberg), Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
34
|
Xue A, Xue M, Jackson C, Smith RC. Suppression of urokinase plasminogen activator receptor inhibits proliferation and migration of pancreatic adenocarcinoma cells via regulation of ERK/p38 signaling. Int J Biochem Cell Biol 2009; 41:1731-1738. [PMID: 19433314 DOI: 10.1016/j.biocel.2009.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 03/12/2009] [Accepted: 03/12/2009] [Indexed: 01/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) expresses high levels of urokinase-type plasminogen activator (uPA), its receptor (uPAR) and plasminogen activator inhibitor (PAI)-2, which may play an important role in PDAC progression. The overexpression of uPAR predicted short survival in PDAC patients. In this study, two different PDAC cell lines were used to examine the effect of small interfering (si) RNAs to uPAR, uPA and PAI-2 on proliferation, apoptosis, migration and MAP kinase activation. In both PDAC cell lines, siRNA to uPAR significantly inhibited cell proliferation and migration and stimulated apoptosis, to a greater extent than uPA siRNA. When either PDAC cell line was treated with uPAR siRNA, the level of phosphorylated ERK (p-ERK) decreased substantially, whereas phosphorylated p38 (p-p38) increased when compared to non-silencing control, uPA siRNA or PAI-2 siRNA treatment. This resulted in enhancement of the p-p38/p-ERK ratio which favors cancer cell arrest. Interestingly, uPAR protein expression was suppressed by p-ERK inhibition and stimulated with p-p38 inhibition, suggesting the presence of a positive feedback loop between uPAR and ERK. In summary, our data indicate that, of the uPA system, uPAR exerts the strongest effects on PDAC cells, by acting through the ERK signaling pathway via a positive feedback loop. Disruption of this loop with uPAR siRNA or inhibitor of p-ERK, inhibits PDAC proliferation and migration and promotes apoptosis. These findings suggest that uPAR strongly contributes to PDAC progression and may be considered as a potential anti-pancreatic cancer target.
Collapse
Affiliation(s)
- Aiqun Xue
- Department of Surgery, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | | | | | | |
Collapse
|
35
|
Zeitoun G. [Cellular and molecular deregulations driving the metastatic phenotype]. Med Sci (Paris) 2009; 25 Spec No 1:29-32. [PMID: 19361408 DOI: 10.1051/medsci/2009251s29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cancerogenesis is initiated by DNA instability that induces modifications in stem cells. Regulation is organ specific and depends on morphogenetic factors. DNA instability is alternatively related to chromosomal aberrations or DNA replication errors. Chromosomal instability is the most frequent characteristics of colon adenocarcinoma, and is observed in distant metastatic foci. It is associated with somatic APC mutations that deregulates the WNT pathway. Position of the mutations within the coding sequence are essential for the cell migration capacities thus for stem cell metastasis ability. After this step the new morphogenic program is able induce expansion in the host organ.
Collapse
Affiliation(s)
- Guy Zeitoun
- Service de Chirurgie générale et digestive, Centre Hospitalier François Quesnay, 2, boulevard Sully, 78200 Mantes-la-Jolie, France.
| |
Collapse
|
36
|
Mimori K, Kataoka A, Yamaguchi H, Masuda N, Kosaka Y, Ishii H, Ohno S, Mori M. Preoperative u-PAR gene expression in bone marrow indicates the potential power of recurrence in breast cancer cases. Ann Surg Oncol 2009; 16:2035-41. [PMID: 19404710 DOI: 10.1245/s10434-009-0465-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The clinical significance of isolated tumor cells (ITC) in peripheral blood (PB) and bone marrow (BM) as predictive markers in the recurrence or metastasis of breast cancer has not yet been determined. In the current study, we focused on the urokinase plasminogen activator receptor (u-PAR) gene as a powerful indicator of the potential to relapse after surgery. PATIENTS AND METHODS We examined CK-7 and CK19 as an ITC marker and u-PAR as a candidate indicator for metastasis in PB and BM from 800 cases of breast cancer by quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR). Serum tumor markers, carcinoembryonic antigen (CEA) and cancer antigen 15-3 (CA15-3), were compared with u-PAR or CK status. RESULTS CK7 in PB was positive in 262 cases that showed a poorer disease-free survival (DFS) than 478 CK7(-) cases (P < 0.05). The 153 cases of u-PAR(+) in BM showed significantly poorer DFS and overall survival (OS) than did the 579 cases of u-PAR(-) in BM (P < 0001 and P < 0.0001, respectively). In PB, a significant difference was also observed between 330 cases of u-PAR(+) and 437 cases of u-PAR(-) (P < 0.0001). The hazard ratio (HR) for prediction of recurrence was significantly higher in u-PAR (P < 0.0001; HR 0.0519) than the level of three serum tumor markers. DISCUSSION u-PAR expresses in cancer cells during the dormant phase. The current findings revealed that the expression levels of u-PAR in PB and BM evaluated preoperatively indicate the potential to relapse or metastasize after surgery.
Collapse
Affiliation(s)
- Koshi Mimori
- Department of Surgical Oncology, Medical Institute of Bioregulation, Kyushu University, Beppu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Barrios J, Wieder R. Dual FGF-2 and intergrin alpha5beta1 signaling mediate GRAF-induced RhoA inactivation in a model of breast cancer dormancy. CANCER MICROENVIRONMENT 2009; 2:33-47. [PMID: 19308677 PMCID: PMC2787927 DOI: 10.1007/s12307-009-0019-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 01/14/2009] [Indexed: 12/25/2022]
Abstract
Interactions with the bone marrow stroma regulate dormancy and survival of breast cancer micrometastases. In an in vitro model of dormancy in the bone marrow, we previously demonstrated that estrogen-dependent breast cancer cells are partially re-differentiated by FGF-2, re-express integrin α5β1 lost with malignant transformation and acquire an activated PI3K/Akt pathway. Ligation of integrin α5β1 by fibronectin and activation of the PI3K pathway both contribute to survival of these dormant cells. Here, we investigated mechanisms responsible for the dormant phenotype. Experiments demonstrate that integrin α5β1 controls de novo cytoskeletal rearrangements, cell spreading, focal adhesion kinase rearrangement to the cell perimeter and recruitment of a RhoA GAP known as GRAF. This results in the inactivation of RhoA, an effect which is necessary for the stabilization of cortical actin. Experiments also demonstrate that activation of the PI3K pathway by FGF-2 is independent of integrin α5β1 and is also required for cortical actin reorganization, GRAF membrane relocalization and RhoA inactivation. These data suggest that GRAF-mediated RhoA inactivation and consequent phenotypic changes of dormancy depend on dual signaling by FGF-2-initiated PI3K activation and through ligation of integrin α5β1 by fibronectin.
Collapse
Affiliation(s)
- Judith Barrios
- Department of Medicine, UMDNJ-New Jersey Medical School-University Hospital Cancer Center, 185 South Orange Avenue, CCH1216, Newark, NJ 07103 USA
| | - Robert Wieder
- Department of Medicine, UMDNJ-New Jersey Medical School-University Hospital Cancer Center, 185 South Orange Avenue, CCH1216, Newark, NJ 07103 USA
| |
Collapse
|
38
|
Chaurasia P, Mezei M, Zhou MM, Ossowski L. Computer aided identification of small molecules disrupting uPAR/alpha5beta1--integrin interaction: a new paradigm for metastasis prevention. PLoS One 2009; 4:e4617. [PMID: 19242538 PMCID: PMC2643475 DOI: 10.1371/journal.pone.0004617] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 01/02/2009] [Indexed: 11/18/2022] Open
Abstract
Background Disseminated dormant cancer cells can resume growth and eventually form overt metastases, but the underlying molecular mechanism responsible for this change remains obscure. We previously established that cell surface interaction between urokinase receptor (uPAR) and α5β1-integrin initiates a sequel of events, involving MAPK-ERK activation that culminates in progressive cancer growth. We also identified the site on uPAR that binds α5β1-integrin. Disruption of uPAR/integrin interaction blocks ERK activation and forces cancer cells into dormancy. Methods and Principle Findings Using a target structure guided computation docking we identified 68 compounds from a diversity library of 13,000 small molecules that were predicted to interact with a previously identified integrin-binding site on uPAR. Of these 68 chemical hits, ten inhibited ERK activation in a cellular assay and of those, 2 compounds, 2-(Pyridin-2-ylamino)-quinolin-8-ol and, 2,2′-(methylimino)di (8-quinolinol) inhibited ERK activation by disrupting the uPAR/integrins interaction. These two compounds, when applied in vivo, inhibited ERK activity and tumor growth and blocked metastases of a model head and neck carcinoma. Conclusions/Significance We showed that interaction between two large proteins (uPAR and α5β1-integrin) can be disrupted by a small molecule leading to profound downstream effects. Because this interaction occurs in cells with high uPAR expression, a property almost exclusive to cancer cells, we expect a new therapy based on these lead compounds to be cancer cell specific and minimally toxic. This treatment, rather than killing disseminated metastatic cells, should induce a protracted state of dormancy and prevent overt metastases.
Collapse
Affiliation(s)
- Pratima Chaurasia
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Mihaly Mezei
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Liliana Ossowski
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|