1
|
Bae WH, Maraka S, Daher A. Challenges and advances in glioblastoma targeted therapy: the promise of drug repurposing and biomarker exploration. Front Oncol 2024; 14:1441460. [PMID: 39439947 PMCID: PMC11493774 DOI: 10.3389/fonc.2024.1441460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma remains the most prevalent and aggressive primary malignant brain tumor in adults, characterized by limited treatment options and a poor prognosis. Previous drug repurposing efforts have yielded only marginal survival benefits, particularly those involving inhibitors targeting receptor tyrosine kinase and cyclin-dependent kinase-retinoblastoma pathways. This limited efficacy is likely due to several critical challenges, including the tumor's molecular heterogeneity, the dynamic evolution of its genetic profile, and the restrictive nature of the blood-brain barrier that impedes effective drug delivery. Emerging diagnostic tools, such as circulating tumor DNA and extracellular vesicles, offer promising non-invasive methods for real-time tumor monitoring, potentially enabling the application of targeted therapies to more selected patient populations. Moreover, innovative drug delivery strategies, including focused ultrasound, implantable drug-delivery systems, and engineered nanoparticles, hold potential for enhancing the bioavailability and therapeutic efficacy of treatments.
Collapse
Affiliation(s)
- William Han Bae
- Division of Hematology/Oncology, Department of Internal Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Stefania Maraka
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| | - Ahmad Daher
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Rios SA, Oyervides S, Uribe D, Reyes AM, Fanniel V, Vazquez J, Keniry M. Emerging Therapies for Glioblastoma. Cancers (Basel) 2024; 16:1485. [PMID: 38672566 PMCID: PMC11048459 DOI: 10.3390/cancers16081485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma is most commonly a primary brain tumor and the utmost malignant one, with a survival rate of approximately 12-18 months. Glioblastoma is highly heterogeneous, demonstrating that different types of cells from the same tumor can manifest distinct gene expression patterns and biological behaviors. Conventional therapies such as temozolomide, radiation, and surgery have limitations. As of now, there is no cure for glioblastoma. Alternative treatment methods to eradicate glioblastoma are discussed in this review, including targeted therapies to PI3K, NFKβ, JAK-STAT, CK2, WNT, NOTCH, Hedgehog, and TGFβ pathways. The highly novel application of oncolytic viruses and nanomaterials in combating glioblastoma are also discussed. Despite scores of clinical trials for glioblastoma, the prognosis remains poor. Progress in breaching the blood-brain barrier with nanomaterials and novel avenues for targeted and combination treatments hold promise for the future development of efficacious glioblastoma therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Megan Keniry
- School of Integrative Biological and Chemical Sciences, College of Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (S.A.R.); (D.U.); (A.M.R.)
| |
Collapse
|
3
|
Begagić E, Pugonja R, Bečulić H, Čeliković A, Tandir Lihić L, Kadić Vukas S, Čejvan L, Skomorac R, Selimović E, Jaganjac B, Juković-Bihorac F, Jusić A, Pojskić M. Molecular Targeted Therapies in Glioblastoma Multiforme: A Systematic Overview of Global Trends and Findings. Brain Sci 2023; 13:1602. [PMID: 38002561 PMCID: PMC10669565 DOI: 10.3390/brainsci13111602] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
This systematic review assesses current molecular targeted therapies for glioblastoma multiforme (GBM), a challenging condition with limited treatment options. Using PRISMA methodology, 166 eligible studies, involving 2526 patients (61.49% male, 38.51% female, with a male-to-female ratio of 1.59/1), were analyzed. In laboratory studies, 52.52% primarily used human glioblastoma cell cultures (HCC), and 43.17% employed animal samples (mainly mice). Clinical participants ranged from 18 to 100 years, with 60.2% using combined therapies and 39.8% monotherapies. Mechanistic categories included Protein Kinase Phosphorylation (41.6%), Cell Cycle-Related Mechanisms (18.1%), Microenvironmental Targets (19.9%), Immunological Targets (4.2%), and Other Mechanisms (16.3%). Key molecular targets included Epidermal Growth Factor Receptor (EGFR) (10.8%), Mammalian Target of Rapamycin (mTOR) (7.2%), Vascular Endothelial Growth Factor (VEGF) (6.6%), and Mitogen-Activated Protein Kinase (MEK) (5.4%). This review provides a comprehensive assessment of molecular therapies for GBM, highlighting their varied efficacy in clinical and laboratory settings, ultimately impacting overall and progression-free survival in GBM management.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Ragib Pugonja
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
- Department of General Medicine, Primary Health Care Center, Nikole Šubića Zrinjskog bb., 72260 Busovača, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of General Medicine, Primary Health Care Center, Nikole Šubića Zrinjskog bb., 72260 Busovača, Bosnia and Herzegovina
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Amila Čeliković
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Lejla Tandir Lihić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Lejla Čejvan
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Rasim Skomorac
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Edin Selimović
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Belma Jaganjac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (B.J.)
| | - Fatima Juković-Bihorac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (B.J.)
- Department of Pathology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
- Department of Pathology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Aldin Jusić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| |
Collapse
|
4
|
Giotta Lucifero A, Luzzi S, Brambilla I, Schena L, Mosconi M, Foiadelli T, Savasta S. Potential roads for reaching the summit: an overview on target therapies for high-grade gliomas. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:61-78. [PMID: 32608376 PMCID: PMC7975828 DOI: 10.23750/abm.v91i7-s.9956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
UNLABELLED The tailored targeting of specific oncogenes represents a new frontier in the treatment of high-grade glioma in the pursuit of innovative and personalized approaches. The present study consists in a wide-ranging overview of the target therapies and related translational challenges in neuro-oncology. METHODS A review of the literature on PubMed/MEDLINE on recent advances concerning the target therapies for treatment of central nervous system malignancies was carried out. In the Medical Subject Headings, the terms "Target Therapy", "Target drug" and "Tailored Therapy" were combined with the terms "High-grade gliomas", "Malignant brain tumor" and "Glioblastoma". Articles published in the last five years were further sorted, based on the best match and relevance. The ClinicalTrials.gov website was used as a source of the main trials, where the search terms were "Central Nervous System Tumor", "Malignant Brain Tumor", "Brain Cancer", "Brain Neoplasms" and "High-grade gliomas". RESULTS A total of 137 relevant articles and 79 trials were selected. Target therapies entailed inhibitors of tyrosine kinases, PI3K/AKT/mTOR pathway, farnesyl transferase enzymes, p53 and pRB proteins, isocitrate dehydrogenases, histone deacetylases, integrins and proteasome complexes. The clinical trials mostly involved combined approaches. They were phase I, II, I/II and III in 33%, 42%, 16%, and 9% of the cases, respectively. CONCLUSION Tyrosine kinase and angiogenesis inhibitors, in combination with standard of care, have shown most evidence of the effectiveness in glioblastoma. Resistance remains an issue. A deeper understanding of the molecular pathways involved in gliomagenesis is the key aspect on which the translational research is focusing, in order to optimize the target therapies of newly diagnosed and recurrent brain gliomas.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Ilaria Brambilla
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Lucia Schena
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Mario Mosconi
- Orthopaedic and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Thomas Foiadelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Salvatore Savasta
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| |
Collapse
|
5
|
Molecular profiling of short-term and long-term surviving patients identifies CD34 mRNA level as prognostic for glioblastoma survival. J Neurooncol 2018; 137:533-542. [DOI: 10.1007/s11060-017-2739-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
|
6
|
Superselective intraarterial cerebral infusion of cetuximab after osmotic blood/brain barrier disruption for recurrent malignant glioma: phase I study. J Neurooncol 2016; 128:405-15. [DOI: 10.1007/s11060-016-2099-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
|
7
|
Lu-Emerson C, Duda DG, Emblem KE, Taylor JW, Gerstner ER, Loeffler JS, Batchelor TT, Jain RK. Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J Clin Oncol 2015; 33:1197-213. [PMID: 25713439 PMCID: PMC4517055 DOI: 10.1200/jco.2014.55.9575] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Treatment of glioblastoma (GBM), the most common primary malignant brain tumor in adults, remains a significant unmet need in oncology. Historically, cytotoxic treatments provided little durable benefit, and tumors recurred within several months. This has spurred a substantial research effort to establish more effective therapies for both newly diagnosed and recurrent GBM. In this context, antiangiogenic therapy emerged as a promising treatment strategy because GBMs are highly vascular tumors. In particular, GBMs overexpress vascular endothelial growth factor (VEGF), a proangiogenic cytokine. Indeed, many studies have demonstrated promising radiographic response rates, delayed tumor progression, and a relatively safe profile for anti-VEGF agents. However, randomized phase III trials conducted to date have failed to show an overall survival benefit for antiangiogenic agents alone or in combination with chemoradiotherapy. These results indicate that antiangiogenic agents may not be beneficial in unselected populations of patients with GBM. Unfortunately, biomarker development has lagged behind in the process of drug development, and no validated biomarker exists for patient stratification. However, hypothesis-generating data from phase II trials that reveal an association between increased perfusion and/or oxygenation (ie, consequences of vascular normalization) and survival suggest that early imaging biomarkers could help identify the subset of patients who most likely will benefit from anti-VEGF agents. In this article, we discuss the lessons learned from the trials conducted to date and how we could potentially use recent advances in GBM biology and imaging to improve outcomes of patients with GBM who receive antiangiogenic therapy.
Collapse
Affiliation(s)
- Christine Lu-Emerson
- All authors, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Dan G Duda
- All authors, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Kyrre E Emblem
- All authors, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Jennie W Taylor
- All authors, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Elizabeth R Gerstner
- All authors, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Jay S Loeffler
- All authors, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Tracy T Batchelor
- All authors, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Rakesh K Jain
- All authors, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA.
| |
Collapse
|
8
|
Incorporation of biomarkers in phase II studies of recurrent glioblastoma. Tumour Biol 2014; 36:153-62. [PMID: 25534238 DOI: 10.1007/s13277-014-2960-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/05/2014] [Indexed: 01/15/2023] Open
Abstract
The survival trends for glioblastoma (GBM) patients have remained largely static, reflecting a lack of improvement in the therapeutic options for patients. Less than 5 % of newly diagnosed GBM survives more than 5 years. Tumor relapse is nearly universal and the majority of patients do not respond to further systemic therapy. The results from phase II studies conducted with recurrent GBM patients have not translated to successful confirmatory studies and thus we have reached a significant roadblock in the development of new treatments for patients with recurrent GBM. The development of new, active, and potentially targeted drugs for the treatment of recurrent GBM represents a major unmet need. The incorporation of diagnostic/companion biomarker combinations into the phase II studies and appropriate stratification of the patients is lagging significantly behind other larger cancer groups such as breast, non-small cell lung cancer, and melanoma. We herein carried out a systematic review of the phase II clinical studies conducted in patients with recurrent GBM (2010-2013 inclusive) to assess the degree of biomarker incorporation within the clinical trial design.
Collapse
|
9
|
Batchelor TT, Reardon DA, de Groot JF, Wick W, Weller M. Antiangiogenic therapy for glioblastoma: current status and future prospects. Clin Cancer Res 2014; 20:5612-9. [PMID: 25398844 PMCID: PMC4234180 DOI: 10.1158/1078-0432.ccr-14-0834] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma is characterized by high expression levels of proangiogenic cytokines and microvascular proliferation, highlighting the potential value of treatments targeting angiogenesis. Antiangiogenic treatment likely achieves a beneficial impact through multiple mechanisms of action. Ultimately, however, alternative proangiogenic signal transduction pathways are activated, leading to the development of resistance, even in tumors that initially respond. The identification of biomarkers or imaging parameters to predict response and to herald resistance is of high priority. Despite promising phase II clinical trial results and patient benefit in terms of clinical improvement and longer progression-free survival, an overall survival benefit has not been demonstrated in four randomized phase III trials of bevacizumab or cilengitide in newly diagnosed glioblastoma or cediranib or enzastaurin in recurrent glioblastoma. However, future studies are warranted. Predictive markers may allow appropriate patient enrichment, combination with chemotherapy may ultimately prove successful in improving overall survival, and novel agents targeting multiple proangiogenic pathways may prove effective.
Collapse
Affiliation(s)
- Tracy T Batchelor
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts.
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wolfgang Wick
- Neurooncology, University Clinic Heidelberg and German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Poulsen HS, Urup T, Michaelsen SR, Staberg M, Villingshøj M, Lassen U. The impact of bevacizumab treatment on survival and quality of life in newly diagnosed glioblastoma patients. Cancer Manag Res 2014; 6:373-87. [PMID: 25298738 PMCID: PMC4186574 DOI: 10.2147/cmar.s39306] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) remains one of the most devastating tumors, and patients have a median survival of 15 months despite aggressive local and systemic therapy, including maximal surgical resection, radiation therapy, and concomitant and adjuvant temozolomide. The purpose of antineoplastic treatment is therefore to prolong life, with a maintenance or improvement of quality of life. GBM is a highly vascular tumor and overexpresses the vascular endothelial growth factor A, which promotes angiogenesis. Preclinical data have suggested that anti-angiogenic treatment efficiently inhibits tumor growth. Bevacizumab is a humanized monoclonal antibody against vascular endothelial growth factor A, and treatment has shown impressive response rates in recurrent GBM. In addition, it has been shown that response is correlated to prolonged survival and improved quality of life. Several investigations in newly diagnosed GBM patients have been performed during recent years to test the hypothesis that newly diagnosed GBM patients should be treated with standard multimodality treatment, in combination with bevacizumab, in order to prolong life and maintain or improve quality of life. The results of these studies along with relevant preclinical data will be described, and pitfalls in clinical and paraclinical endpoints will be discussed.
Collapse
Affiliation(s)
- Hans Skovgaard Poulsen
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark ; Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Urup
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark ; Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Signe Regner Michaelsen
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark ; Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mikkel Staberg
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark ; Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Villingshøj
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark ; Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark ; Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark ; Phase I Unit, The Finsencenter, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
11
|
Klempner SJ, Myers AP, Mills GB, Westin SN. Clinical investigation of receptor and non-receptor tyrosine kinase inhibitors for the treatment of epithelial ovarian cancer. Expert Opin Pharmacother 2013; 14:2171-82. [PMID: 23937415 PMCID: PMC4103698 DOI: 10.1517/14656566.2013.826650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) is the second most common gynecologic malignancy and the leading cause of death from gynecologic cancer in the USA. EOC is an exquisitely chemo-sensitive disease with response rates of over 75% in the upfront setting. Despite this, due to high rates of recurrence and development of chemo-resistance, the overall survival of EOC remains about 25%. Thus, there is a great need for new therapeutic approaches to render more durable responses. Based on preclinical and early phase clinical studies, key targeted pathways include targets that drive angiogenesis and chemo-resistance. Receptor tyrosine kinases and non-receptor tyrosine kinases play important roles in these processes and several small molecule tyrosine kinase inhibitors (TKIs) are in clinical development. AREAS COVERED This review summarizes clinical rationale, mechanisms of action and clinical data for the TKIs under evaluation in the Phase III setting for EOC. EXPERT OPINION Despite reasonable preclinical activity, small molecule TKIs are unlikely to improve patient survival as single agent therapies in an unselected EOC population. Incorporation of tissue evaluation during ongoing clinical trials is required to identify molecularly defined groups that respond to single agents and direct rational combination strategies based on mechanisms of resistance to improve outcomes in EOC.
Collapse
Affiliation(s)
- Samuel J. Klempner
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Andrea P. Myers
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Department of Gynecologic Oncology, Dana Farber Cancer Institute, Boston, MA, 02215
| | - Gordon B. Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston TX, 77030
| | - Shannon N. Westin
- Departments of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| |
Collapse
|
12
|
Sze CI, Su WP, Chiang MF, Lu CY, Chen YA, Chang NS. Assessing current therapeutic approaches to decode potential resistance mechanisms in glioblastomas. Front Oncol 2013; 3:59. [PMID: 23516171 PMCID: PMC3601334 DOI: 10.3389/fonc.2013.00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/04/2013] [Indexed: 12/12/2022] Open
Abstract
Unique astrocytic cell infiltrating growth and glial tumor growth in the confined skull make human glioblastoma (GBM) one of the most difficult cancers to treat in modern medicine. Prognosis for patients is very poor, as they die more or less within 12 months. Patients either die of the cancer itself, or secondary complications such as cerebral edema, herniations, or hemorrhages. GBMs rarely metastasize to other organs. However, GBM recurrence associated with resistance to therapeutic drugs is common. Patients die shortly after relapse. GBM is indeed an outstanding cancer model to search for potential mechanisms for drug resistance. Here, we reviewed the current cancer biology of gliomas and their pathophysiological events that contribute to the development of therapeutic resistance. We have addressed the potential roles of cancer stem cells, epigenetic modifications, and epithelial mesenchymal transition (EMT) in the development of resistance to inhibitor drugs in GBMs. The potential role of TIAF1 (TGF-β-induced antiapoptotic factor) overexpression and generation of intratumor amyloid fibrils for conferring drug resistance in GBMs is discussed.
Collapse
Affiliation(s)
- Chun-I Sze
- Department of Anatomy and Cell Biology, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Lupo JM, Essock-Burns E, Molinaro AM, Cha S, Chang SM, Butowski N, Nelson SJ. Using susceptibility-weighted imaging to determine response to combined anti-angiogenic, cytotoxic, and radiation therapy in patients with glioblastoma multiforme. Neuro Oncol 2013; 15:480-9. [PMID: 23393208 DOI: 10.1093/neuonc/nos325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The goal of this study was to investigate whether the amount of hypointense signal on susceptibility-weighted imaging within the contrast-enhancing lesion (%SWI-h) on the pretreatment scan could determine response in patients with newly diagnosed glioblastoma multiforme who received external beam radiation therapy with concomitant anti-angiogenic therapy (enzastaurin) and cytotoxic chemotherapy (temozolomide). METHODS Twenty-five patients were imaged before therapy (postsurgical resection) and scanned serially every 2 months until progression. Standard clinical MR imaging and SWI were performed on a 3T scanner. %SWI-h was quantified for each patient's pretreatment scan. Time to progression and death were used to characterize patients into non-, immediate-, and sustained-response groups for both events. Cox proportional hazards models were used to assess the association between %SWI-h and both progression-free survival (PFS) and overall survival (OS). Classification and regression tree analysis were used to determine optimal cutoffs on which to split %SWI-h. RESULTS For both death- and progression-based response categories, %SWI-h was significantly higher in sustained responders than in nonresponders. Cox model coefficients showed an association between %SWI-h and PFS and OS, both in univariate analysis (PFS: hazard ratio [HR] = 0.966, 95% confidence interval [CI] = 0.942-0.988; and OS: HR = 0.945, 95% CI = 0.915-0.976) and when adjusting for baseline KPS, age, sex, and resection extent (PFS: HR = 0.968, 95% CI = 0.940 -0.994; and OS: HR = 0.943, 95% CI = 0.908 -0.976). A cutoff value of 38.1% significantly differentiated patients into 2 groups based on censored OS and into non- and intermediate-response categories based on time to progression. CONCLUSIONS These early differences suggest that SWI may be able to predict which patients would benefit most from similar combination therapies and may assist clinicians in making important decisions about patient care.
Collapse
Affiliation(s)
- Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158.
| | | | | | | | | | | | | |
Collapse
|
14
|
van de Water JAJM, Bagci-Onder T, Agarwal AS, Wakimoto H, Roovers RC, Zhu Y, Kasmieh R, Bhere D, Van Bergen en Henegouwen PMP, Shah K. Therapeutic stem cells expressing variants of EGFR-specific nanobodies have antitumor effects. Proc Natl Acad Sci U S A 2012; 109:16642-7. [PMID: 23012408 PMCID: PMC3478609 DOI: 10.1073/pnas.1202832109] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The deregulation of the epidermal growth factor receptor (EGFR) has a significant role in the progression of tumors. Despite the development of a number of EGFR-targeting agents that can arrest tumor growth, their success in the clinic is limited in several tumor types, particularly in the highly malignant glioblastoma multiforme (GBM). In this study, we generated and characterized EGFR-specific nanobodies (ENb) and imageable and proapoptotic ENb immunoconjugates released from stem cells (SC) to ultimately develop a unique EGFR-targeted therapy for GBM. We show that ENbs released from SCs specifically localize to tumors, inhibit EGFR signaling resulting in reduced GBM growth and invasiveness in vitro and in vivo in both established and primary GBM cell lines. We also show that ENb primes GBM cells for proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Furthermore, SC-delivered immunoconjugates of ENb and TRAIL target a wide spectrum of GBM cell types with varying degrees of TRAIL resistance and significantly reduce GBM growth and invasion in both established and primary invasive GBM in mice. This study demonstrates the efficacy of SC-based EGFR targeted therapy in GBMs and provides a unique approach with clinical implications.
Collapse
Affiliation(s)
- Jeroen A. J. M. van de Water
- Molecular Neurotherapy and Imaging Laboratory, and
- Departments of Radiology
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, 3508, Utrecht, The Netherlands; and
| | - Tugba Bagci-Onder
- Molecular Neurotherapy and Imaging Laboratory, and
- Departments of Radiology
| | - Aayush S. Agarwal
- Molecular Neurotherapy and Imaging Laboratory, and
- Departments of Radiology
| | - Hiroaki Wakimoto
- Molecular Neurotherapy and Imaging Laboratory, and
- Departments of Radiology
- Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129
| | - Rob C. Roovers
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, 3508, Utrecht, The Netherlands; and
| | - Yanni Zhu
- Molecular Neurotherapy and Imaging Laboratory, and
- Departments of Radiology
| | - Randa Kasmieh
- Molecular Neurotherapy and Imaging Laboratory, and
- Departments of Radiology
| | - Deepak Bhere
- Molecular Neurotherapy and Imaging Laboratory, and
- Departments of Radiology
| | | | - Khalid Shah
- Molecular Neurotherapy and Imaging Laboratory, and
- Departments of Radiology
- Neurology, and
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| |
Collapse
|
15
|
Mayer A, Schneider F, Vaupel P, Sommer C, Schmidberger H. Differential expression of HIF-1 in glioblastoma multiforme and anaplastic astrocytoma. Int J Oncol 2012; 41:1260-70. [PMID: 22825389 PMCID: PMC3583842 DOI: 10.3892/ijo.2012.1555] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/01/2012] [Indexed: 12/31/2022] Open
Abstract
Hypoxia is an important factor mediating tumor progression and therapeutic resistance, in part through proteome changes mediated by the transcription factor hypoxia-inducible factor (HIF)-1. Since glioblastoma multiforme is the epitome of a highly aggressive tumor entity, while lower-grade astrocytomas often show a prolonged clinical course, a profound difference in the extent of hypoxic tissue areas and corresponding magnitude of HIF-1 activity may exist between these entities. In this study, to address this question, serial sections of 11 glioblastomas and 10 anaplastic astrocytomas were immunostained for HIF-1α, glucose transporter (GLUT)-1, carbonic anhydrase (CA) IX (i.e., hypoxia-related markers), Ki67 (proliferation), phosphorylated ribosomal protein S6 [p-rpS6; mammalian target of rapamycin (mTOR) activity] and CD34 (microvascular endothelium). Digital scans of whole tumor sections were registered to achieve geometric correspondence for subsequent morphometric operations. HIF-1α-, GLUT-1- and CA IX-positive staining was found in all 11 glioblastomas, showing a preferential expression in tissue areas adjacent to necroses. A considerable spatial overlap between GLUT-1 and CA IX, and a colocalization of these proteins with areas of enlarged mean diffusion distances were observed. Conversely, 8 of the 10 anaplastic astrocytomas were completely negative for hypoxia-related markers. The glioblastomas also showed significantly greater heterogeneity of intercapillary distances, larger diffusion-limited tissue fractions, significantly higher mTOR activity and a trend for higher proliferation rates. Microregionally, mTOR and proliferation showed a significant spatial overlap with areas of shorter mean diffusion distances. In conclusion, diffusion-limited hypoxia, leading to the expression of hypoxia-related markers is a pivotal element of the glioblastoma phenotype and may be driven by dysregulated growth and proliferation in normoxic subregions.
Collapse
Affiliation(s)
- Arnulf Mayer
- Department of Radiooncology and Radiotherapy, University Medical Center, D-55131 Mainz, Germany.
| | | | | | | | | |
Collapse
|
16
|
Zhang N, Zhang L, Qiu B, Meng L, Wang X, Hou BL. Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas. J Magn Reson Imaging 2012; 36:355-63. [PMID: 22581762 DOI: 10.1002/jmri.23675] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/09/2012] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To evaluate the roles of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and optimum tracer kinetic parameters in the noninvasive grading of the glial brain tumors with histopathological grades (I-IV). MATERIALS AND METHODS Twenty-eight patients with histopathologically graded gliomas were imaged. Images with five flip angles were acquired before injection of gadolinium-DTPA and were processed to calculate the T(1) value of each region of interest (ROI). All the DCE-MRI data acquired during the injection were processed based on the MRI signal and pharmacokinetic models to establish concentration-time curves in the ROIs drawn within the tumors, contralateral normal areas, and area of the individual artery input functions (iAIF) of each patient. A nonlinear least-square-fitting method was used to obtain tracer kinetic parameters. Kruskal-Wallis H-test and Mann-Whitney U-test were applied to these parameters in different histopathological grade groups for statistical differences (P < 0.05). RESULTS Volume transfer coefficient (K(trans) ) and extravascular extracellular space volume fraction (V(e) ) calculated using iAIFs can be used not only to distinguish the low (ie, I and II) from the high (ie, III and IV) grade gliomas (P( Ktrans) < 0.001 and P(Ve) < 0.001), but also grade II from III (P( Ktrans) = 0.016 and P(Ve) = 0.033). CONCLUSION K(trans) is the most sensitive and specific parameter in noninvasive grading, distinguishing the high (III and IV) from the low (I and II) grade and high grade III from low grade II gliomas.
Collapse
Affiliation(s)
- Na Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key laboratory for MRI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | | | | | | | | |
Collapse
|
17
|
Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A 2012; 109:3041-6. [PMID: 22323597 DOI: 10.1073/pnas.1114033109] [Citation(s) in RCA: 397] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma (GBM) is distinguished by a high degree of intratumoral heterogeneity, which extends to the pattern of expression and amplification of receptor tyrosine kinases (RTKs). Although most GBMs harbor RTK amplifications, clinical trials of small-molecule inhibitors targeting individual RTKs have been disappointing to date. Activation of multiple RTKs within individual GBMs provides a theoretical mechanism of resistance; however, the spectrum of functional RTK dependence among tumor cell subpopulations in actual tumors is unknown. We investigated the pattern of heterogeneity of RTK amplification and functional RTK dependence in GBM tumor cell subpopulations. Analysis of The Cancer Genome Atlas GBM dataset identified 34 of 463 cases showing independent focal amplification of two or more RTKs, most commonly platelet-derived growth factor receptor α (PDGFRA) and epidermal growth factor receptor (EGFR). Dual-color fluorescence in situ hybridization was performed on eight samples with EGFR and PDGFRA amplification, revealing distinct tumor cell subpopulations amplified for only one RTK; in all cases these predominated over cells amplified for both. Cell lines derived from coamplified tumors exhibited genotype selection under RTK-targeted ligand stimulation or pharmacologic inhibition in vitro. Simultaneous inhibition of both EGFR and PDGFR was necessary for abrogation of PI3 kinase pathway activity in the mixed population. DNA sequencing of isolated subpopulations establishes a common clonal origin consistent with late or ongoing divergence of RTK genotype. This phenomenon is especially common among tumors with PDGFRA amplification: overall, 43% of PDGFRA-amplified GBM were found to have amplification of EGFR or the hepatocyte growth factor receptor gene (MET) as well.
Collapse
|
18
|
Westin SN, Broaddus RR. Personalized therapy in endometrial cancer: challenges and opportunities. Cancer Biol Ther 2012; 13:1-13. [PMID: 22198566 PMCID: PMC3335980 DOI: 10.4161/cbt.13.1.18438] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/13/2011] [Accepted: 10/16/2011] [Indexed: 12/11/2022] Open
Abstract
Early stage endometrial cancer is generally curable. However, progress in the treatment of advanced and recurrent endometrial cancer has been limited. This has led to a shift from the use of traditional chemotherapeutic agents and radiotherapy regimens to the promising area of targeted therapy, given the large number of druggable molecular alterations found in endometrial cancer. To maximize the effects of directed targeted therapy, careful molecular characterization of the endometrial tumor is necessary. This represents an important difference in the use of targeted therapy vs. traditional chemotherapy or radiation treatment. This review will discuss relevant pathways to target in endometrial cancer as well as the challenges that arise during development of a personalized oncology approach.
Collapse
Affiliation(s)
- Shannon N Westin
- Department of Gynecologic Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
19
|
Reardon DA, Turner S, Peters KB, Desjardins A, Gururangan S, Sampson JH, McLendon RE, Herndon JE, Jones LW, Kirkpatrick JP, Friedman AH, Vredenburgh JJ, Bigner DD, Friedman HS. A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J Natl Compr Canc Netw 2011; 9:414-27. [PMID: 21464146 DOI: 10.6004/jnccn.2011.0038] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glioblastoma, the most common primary malignant brain tumor among adults, is a highly angiogenic and deadly tumor. Angiogenesis in glioblastoma, driven by hypoxia-dependent and independent mechanisms, is primarily mediated by vascular endothelial growth factor (VEGF), and generates blood vessels with distinctive features. The outcome for patients with recurrent glioblastoma is poor because of ineffective therapies. However, recent encouraging rates of radiographic response and progression-free survival, and adequate safety, led the FDA to grant accelerated approval of bevacizumab, a humanized monoclonal antibody against VEGF, for the treatment of recurrent glioblastoma in May 2009. These results have triggered significant interest in additional antiangiogenic agents and therapeutic strategies for patients with both recurrent and newly diagnosed glioblastoma. Given the potent antipermeability effect of VEGF inhibitors, the Radiologic Assessment in Neuro-Oncology (RANO) criteria were recently implemented to better assess response among patients with glioblastoma. Although bevacizumab improves survival and quality of life, eventual tumor progression is the norm. Better understanding of resistance mechanisms to VEGF inhibitors and identification of effective therapy after bevacizumab progression are currently a critical need for patients with glioblastoma.
Collapse
Affiliation(s)
- David A Reardon
- Department of Surgery, The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|