1
|
Dexamethasone Attenuates the Expression of MMP-13 in Chondrocytes through MKP-1. Int J Mol Sci 2022; 23:ijms23073880. [PMID: 35409238 PMCID: PMC8998740 DOI: 10.3390/ijms23073880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022] Open
Abstract
Mitogen-activated protein kinase phosphatase-1 (MKP-1) is upregulated in inflammation and reduces the activity of proinflammatory mitogen-activated protein kinases (MAP kinases) by dephosphorylation. MAP kinases are intracellular signaling pathways that mediate the cellular effects of proinflammatory cytokines. In the present study, we investigated the effects of the glucocorticoid dexamethasone on the expression of catabolic enzymes in chondrocytes and tested the hypothesis that these effects are mediated through MKP-1. Dexamethasone was found to significantly attenuate the expression of matrix metalloproteinase (MMP)-13 in human OA chondrocytes as well as in chondrocytes from MKP-1 WT mice, but not in chondrocytes from MKP-1 KO mice. Dexamethasone also increased the expression of MKP-1 in murine and human OA chondrocytes. Furthermore, p38 MAP kinase inhibitors significantly attenuated MMP-13 expression in human OA chondrocytes, while JNK MAP kinase inhibitors had no effect. The results indicate that the effect of dexamethasone on MMP-13 expression in chondrocytes was mediated by an MKP-1 and p38 MAP kinase-dependent manner. These findings, together with previous results, support the concept of MKP-1 as a protective factor in articular chondrocytes in inflammatory conditions and as a potential drug target to treat OA.
Collapse
|
2
|
Canzoneri R, Naipauer J, Stedile M, Rodriguez Peña A, Lacunza E, Gandini NA, Curino AC, Facchinetti MM, Coso OA, Kordon E, Abba MC. Identification of an AP1-ZFP36 Regulatory Network Associated with Breast Cancer Prognosis. J Mammary Gland Biol Neoplasia 2020; 25:163-172. [PMID: 32248342 DOI: 10.1007/s10911-020-09448-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
It has been established that ZFP36 (also known as Tristetraprolin or TTP) promotes mRNA degradation of proteins involved in inflammation, proliferation and tumor invasiveness. In mammary epithelial cells ZFP36 expression is induced by STAT5 activation during lactogenesis, while in breast cancer ZFP36 expression is associated with lower grade and better prognosis. Here, we show that the AP-1 transcription factor components, i.e. JUN, JUNB, FOS, FOSB, in addition to DUSP1, EGR1, NR4A1, IER2 and BTG2, behave as a conserved co-regulated group of genes whose expression is associated to ZFP36 in cancer cells. In fact, a significant down-modulation of this gene network is observed in breast, liver, lung, kidney, and thyroid carcinomas compared to their normal counterparts. In breast cancer, the normal-like and Luminal A, show the highest expression of the ZFP36 gene network among the other intrinsic subtypes and patients with low expression of these genes display poor prognosis. It is also proposed that AP-1 regulates ZFP36 expression through responsive elements detected in the promoter region of this gene. Culture assays show that AP-1 activity induces ZFP36 expression in mammary cells in response to prolactin (PRL) treatment thorough ERK1/2 activation. These results suggest that JUN, JUNB, FOS and FOSB are not only co-expressed, but would also play a relevant role in regulating ZFP36 expression in mammary epithelial cells.
Collapse
Affiliation(s)
- R Canzoneri
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - J Naipauer
- Laboratorio de Expresión Génica en Mama y Apoptosis, LEGMA, IFIBYNE-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Stedile
- Laboratorio de Expresión Génica en Mama y Apoptosis, LEGMA, IFIBYNE-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A Rodriguez Peña
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - E Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - N A Gandini
- Laboratorio de Biología del Cáncer, INIBIBB, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - A C Curino
- Laboratorio de Biología del Cáncer, INIBIBB, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - M M Facchinetti
- Laboratorio de Biología del Cáncer, INIBIBB, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - O A Coso
- Laboratorio de Expresión Génica en Mama y Apoptosis, LEGMA, IFIBYNE-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - E Kordon
- Laboratorio de Expresión Génica en Mama y Apoptosis, LEGMA, IFIBYNE-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, CINIBA, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
3
|
Astakhova AA, Chistyakov DV, Sergeeva MG, Reiser G. Regulation of the ARE-binding proteins, TTP (tristetraprolin) and HuR (human antigen R), in inflammatory response in astrocytes. Neurochem Int 2018; 118:82-90. [DOI: 10.1016/j.neuint.2018.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 01/06/2023]
|
4
|
Abstract
Glucocorticoids (GCs; referred to clinically as corticosteroids) are steroid hormones with potent anti-inflammatory and immune modulatory profiles. Depending on the context, these hormones can also mediate pro-inflammatory activities, thereby serving as primers of the immune system. Their target receptor, the GC receptor (GR), is a multi-tasking transcription factor, changing its role and function depending on cellular and organismal needs. To get a clearer idea of how to improve the safety profile of GCs, recent studies have investigated the complex mechanisms underlying GR functions. One of the key findings includes both pro- and anti-inflammatory roles of GR, and a future challenge will be to understand how such paradoxical findings can be reconciled and how GR ultimately shifts the balance to a net anti-inflammatory profile. As such, there is consensus that GR deserves a second life as a drug target, with either refined classic GCs or a novel generation of nonsteroidal GR-targeting molecules, to meet the increasing clinical needs of today to treat inflammation and cancer.
Collapse
|
5
|
Newton R, Shah S, Altonsy MO, Gerber AN. Glucocorticoid and cytokine crosstalk: Feedback, feedforward, and co-regulatory interactions determine repression or resistance. J Biol Chem 2017; 292:7163-7172. [PMID: 28283576 DOI: 10.1074/jbc.r117.777318] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammatory signals induce feedback and feedforward systems that provide temporal control. Although glucocorticoids can repress inflammatory gene expression, glucocorticoid receptor recruitment increases expression of negative feedback and feedforward regulators, including the phosphatase, DUSP1, the ubiquitin-modifying enzyme, TNFAIP3, or the mRNA-destabilizing protein, ZFP36. Moreover, glucocorticoid receptor cooperativity with factors, including nuclear factor-κB (NF-κB), may enhance regulator expression to promote repression. Conversely, MAPKs, which are inhibited by glucocorticoids, provide feedforward control to limit expression of the transcription factor IRF1, and the chemokine, CXCL10. We propose that modulation of feedback and feedforward control can determine repression or resistance of inflammatory gene expression toglucocorticoid.
Collapse
Affiliation(s)
- Robert Newton
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Alberta T2N 4Z6, Canada,
| | - Suharsh Shah
- the Arnie Charbonneau Cancer Institute, Department of Oncology, University of Calgary, Alberta T2N 4Z6, Canada
| | - Mohammed O Altonsy
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Alberta T2N 4Z6, Canada.,the Faculty of Science, Sohag University, Sohag 82524, Egypt, and
| | - Antony N Gerber
- the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| |
Collapse
|
6
|
Lloberas J, Valverde-Estrella L, Tur J, Vico T, Celada A. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology. Front Mol Biosci 2016; 3:28. [PMID: 27446931 PMCID: PMC4923182 DOI: 10.3389/fmolb.2016.00028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation.
Collapse
Affiliation(s)
- Jorge Lloberas
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Lorena Valverde-Estrella
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Juan Tur
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Tania Vico
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Antonio Celada
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
7
|
Shah S, Mostafa MM, McWhae A, Traves SL, Newton R. Negative Feed-forward Control of Tumor Necrosis Factor (TNF) by Tristetraprolin (ZFP36) Is Limited by the Mitogen-activated Protein Kinase Phosphatase, Dual-specificity Phosphatase 1 (DUSP1): IMPLICATIONS FOR REGULATION BY GLUCOCORTICOIDS. J Biol Chem 2015; 291:110-25. [PMID: 26546680 DOI: 10.1074/jbc.m115.697599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/20/2022] Open
Abstract
TNF is central to inflammation and may play a role in the pathogenesis of asthma. The 3'-untranslated region of the TNF transcript contains AU-rich elements (AREs) that are targeted by the RNA-binding protein, tristetraprolin (also known as zinc finger protein 36 (ZFP36)), which is itself up-regulated by inflammatory stimuli, to promote mRNA degradation. Using primary human bronchial epithelial and pulmonary epithelial A549 cells, we confirm that interleukin-1β (IL1B) induces expression of dual-specificity phosphatase 1 (DUSP1), ZFP36, and TNF. Whereas IL1B-induced DUSP1 is involved in feedback control of MAPK pathways, ZFP36 exerts negative (incoherent) feed-forward control of TNF mRNA and protein expression. DUSP1 silencing increased IL1B-induced ZFP36 expression at 2 h and profoundly repressed TNF mRNA at 6 h. This was partly due to increased TNF mRNA degradation, an effect that was reduced by ZFP36 silencing. This confirms a regulatory network, whereby DUSP1-dependent negative feedback control reduces feed-forward control by ZFP36. Conversely, whereas DUSP1 overexpression and inhibition of MAPKs prevented IL1B-induced expression of ZFP36, this was associated with increased TNF mRNA expression at 6 h, an effect that was predominantly due to elevated transcription. This points to MAPK-dependent feed-forward control of TNF involving ZFP36-dependent and -independent mechanisms. In terms of repression by dexamethasone, neither silencing of DUSP1, silencing of ZFP36, nor silencing of both together prevented the repression of IL1B-induced TNF expression, thereby demonstrating the need for further repressive mechanisms by anti-inflammatory glucocorticoids. In summary, these data illustrate why understanding the competing effects of feedback and feed-forward control is relevant to the development of novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Suharsh Shah
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Mahmoud M Mostafa
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Andrew McWhae
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Suzanne L Traves
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Robert Newton
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
8
|
Vindry C, Vo Ngoc L, Kruys V, Gueydan C. RNA-binding protein-mediated post-transcriptional controls of gene expression: integration of molecular mechanisms at the 3' end of mRNAs? Biochem Pharmacol 2014; 89:431-40. [PMID: 24735612 DOI: 10.1016/j.bcp.2014.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/17/2023]
Abstract
Initially identified as an occasional and peculiar mode of gene regulation in eukaryotes, RNA-binding protein-mediated post-transcriptional control of gene expression has emerged, over the last two decades, as a major contributor in the control of gene expression. A large variety of RNA-binding proteins (RBPs) allows the recognition of very diverse messenger RNA sequences and participates in the regulation of basically all cellular processes. Nevertheless, the rapid outcome of post-transcriptional regulations on the level of gene expression has favored the expansion of this type of regulation in cellular processes prone to rapid and frequent modulations such as the control of the inflammatory response. At the molecular level, the 3'untranslated region (3'UTR) of mRNA is a favored site of RBP recruitment. RBPs binding to these regions control gene expression through two major modes of regulation, namely mRNA decay and modulation of translational activity. Recent progresses suggest that these two mechanisms are often interdependent and might result one from the other. Therefore, different RBPs binding distinct RNA subsets could share similar modes of action at the molecular level. RBPs are frequent targets of post-translational modifications, thereby disclosing numerous possibilities for pharmacological interventions. However, redundancies of the transduction pathways controlling these modifications have limited the perspectives to define RBPs as new therapeutic targets. Through the analysis of several examples of RBPs binding to 3'untranslated region of mRNA, we present here recent progress and perspectives regarding this rapidly evolving field of molecular biology.
Collapse
Affiliation(s)
- Caroline Vindry
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Long Vo Ngoc
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium.
| |
Collapse
|
9
|
Hahn RT, Hoppstädter J, Hirschfelder K, Hachenthal N, Diesel B, Kessler SM, Huwer H, Kiemer AK. Downregulation of the glucocorticoid-induced leucine zipper (GILZ) promotes vascular inflammation. Atherosclerosis 2014; 234:391-400. [PMID: 24747114 DOI: 10.1016/j.atherosclerosis.2014.03.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/28/2014] [Accepted: 03/23/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Glucocorticoid-induced leucine zipper (GILZ) represents an anti-inflammatory mediator, whose downregulation has been described in various inflammatory processes. Aim of our study was to decipher the regulation of GILZ in vascular inflammation. APPROACH AND RESULTS Degenerated aortocoronary saphenous vein bypass grafts (n = 15), which exhibited inflammatory cell activation as determined by enhanced monocyte chemoattractrant protein 1 (MCP-1, CCL2) and Toll-like receptor 2 (TLR2) expression, showed significantly diminished GILZ protein and mRNA levels compared to healthy veins (n = 23). GILZ was also downregulated in human umbilical vein endothelial cells (HUVEC) and macrophages upon treatment with the inflammatory cytokine TNF-α in a tristetraprolin (ZFP36, TTP)- and p38 MAPK-dependent manner. To assess the functional implications of decreased GILZ expression, we determined NF-κB activation after GILZ knockdown by siRNA and found that NF-κB activity and inflammatory gene expression were significantly enhanced. Importantly, ZFP36 is induced in TNF-α-activated HUVEC as well as in degenerated vein bypasses. When atheroprotective laminar shear stress was employed, GILZ levels in HUVEC increased on mRNA and protein level. Laminar flow also counteracted TNF-α-induced ZFP36 expression and GILZ downregulation. MAP kinase phosphatase 1 (MKP-1, DUSP1), a negative regulator of ZFP36 expression, was distinctly upregulated under laminar shear stress conditions and downregulated in degenerated vein bypasses. CONCLUSION Our data show a diminished expression of the anti-inflammatory mediator GILZ in the inflamed vasculature and indicate that GILZ downregulation requires the mRNA binding protein ZFP36. We suggest that reduced GILZ levels play a role in cardiovascular disease.
Collapse
Affiliation(s)
- Rebecca T Hahn
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - Kerstin Hirschfelder
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - Nina Hachenthal
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - Britta Diesel
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Völklingen Heart Centre, Völklingen, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbruecken, Germany.
| |
Collapse
|
10
|
Shah S, King EM, Chandrasekhar A, Newton R. Roles for the mitogen-activated protein kinase (MAPK) phosphatase, DUSP1, in feedback control of inflammatory gene expression and repression by dexamethasone. J Biol Chem 2014; 289:13667-79. [PMID: 24692548 DOI: 10.1074/jbc.m113.540799] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glucocorticoids act on the glucocorticoid receptor (NR3C1) to repress inflammatory gene expression. This is central to their anti-inflammatory effectiveness and rational improvements in therapeutic index depend on understanding the mechanism. Human pulmonary epithelial A549 cells were used to study the role of the mitogen-activated protein kinase (MAPK) phosphatase, dual-specificity phosphatase 1 (DUSP1), in the dexamethasone repression of 11 inflammatory genes induced, in a MAPK-dependent manner, by interleukin-1β (IL1B). Adenoviral over-expression of DUSP1 inactivated MAPK pathways and reduced expression of all 11 inflammatory genes. IL1B rapidly induced DUSP1 expression and RNA silencing revealed a transient role in feedback inhibition of MAPKs and inflammatory gene expression. With dexamethasone, which induced DUSP1 expression, plus IL1B (co-treatment), DUSP1 expression was further enhanced. At 1 h, this was responsible for the dexamethasone inhibition of IL1B-induced MAPK activation and CXCL1 and CXCL2 mRNA expression, with a similar trend for CSF2. Whereas, CCL20 mRNA was not repressed by dexamethasone at 1 h, repression of CCL2, CXCL3, IL6, and IL8 was unaffected, and PTGS2 repression was partially affected by DUSP1 knockdown. At later times, dexamethasone repression of MAPKs was unaffected by DUSP1 silencing. Likewise, 6 h post-IL1B, dexamethasone repression of all 11 mRNAs was essentially unaffected by DUSP1 knockdown. Qualitatively similar data were obtained for CSF2, CXCL1, IL6, and IL8 release. Thus, despite general roles in feedback inhibition, DUSP1 plays a transient, often partial, role in the dexamethasone-dependent repression of certain inflammatory genes. Therefore this also illustrates key roles for DUSP1-independent effectors in mediating glucocorticoid-dependent repression.
Collapse
Affiliation(s)
- Suharsh Shah
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | | | | | | |
Collapse
|
11
|
Teixeira-Coelho M, Guedes J, Ferreirinha P, Howes A, Pedrosa J, Rodrigues F, Lai WS, Blackshear PJ, O'Garra A, Castro AG, Saraiva M. Differential post-transcriptional regulation of IL-10 by TLR2 and TLR4-activated macrophages. Eur J Immunol 2013; 44:856-66. [PMID: 24227629 PMCID: PMC4623319 DOI: 10.1002/eji.201343734] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/16/2013] [Accepted: 11/08/2013] [Indexed: 01/08/2023]
Abstract
The activation of TLRs by microbial molecules triggers intracellular-signaling cascades and the expression of cytokines such as IL-10. Il10 expression is tightly controlled to ensure effective immune responses, while preventing pathology. Maximal TLR-induction of Il10 transcription in macrophages requires signaling through the MAPKs, ERK, and p38. Signals via p38 downstream of TLR4 activation also regulate IL-10 at the post-transcriptional level, but whether this mechanism operates downstream of other TLRs is not clear. We compared the regulation of IL-10 production in TLR2 and TLR4-stimulated BM-derived macrophages and found different stability profiles for the Il10 mRNA. TLR2 signals promoted a rapid induction and degradation of Il10 mRNA, whereas TLR4 signals protected Il10 mRNA from rapid degradation, due to the activation of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) and enhanced p38 signaling. This differential post-transcriptional mechanism contributes to a stronger induction of IL-10 secretion via TLR4. Our study provides a molecular mechanism for the differential IL-10 production by TLR2- or TLR4-stimulated BMMs, showing that p38-induced stability is not common to all TLR-signaling pathways. This mechanism is also observed upon bacterial activation of TLR2 or TLR4 in BMMs, contributing to IL-10 modulation in these cells in an infection setting.
Collapse
Affiliation(s)
- Maria Teixeira-Coelho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yaping Z, Ying W, Luqin D, Ning T, Xuemei A, Xixian Y. Mechanism of interleukin-1β-induced proliferation in rat hepatic stellate cells from different levels of signal transduction. APMIS 2013; 122:392-8. [PMID: 23992404 DOI: 10.1111/apm.12155] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/04/2013] [Indexed: 12/18/2022]
Abstract
Hepatic stellate cells (HSCs) are the major producers of collagen in the liver. Their conversion from resting cells to proliferative, contractile, and activated cells is a critical step leading to liver fibrosis that is characterized by the deposition of excessive extracellular matrix. Interleukin-1 (IL-1) may play a role in maintaining HSC in a proliferative state that is responsible for hepatic fibrogenesis. The aim of this study was to study the roles of the IL-1 type I receptor (IL-1R1), c-Jun N-terminal kinase (JNK), and activation protein-1 (AP-1) in IL-1β-mediated proliferation in rat HSCs. We showed that IL-1β can upregulate proliferation in rat HSCs; however, inhibition of the JNK pathway could inhibit HSCs proliferation. Furthermore, IL-1β activated IL-1R1 expression, the JNK signaling pathway, and AP-1 activity in a time-dependent manner in rat HSCs. These data demonstrate that IL-1β could promote the proliferation of rat HSCs and that the IL-1R1, JNK, and AP-1 pathways were involved in this process. In summary, IL-1β-induced proliferation is possibly mediated by the IL-1R1, JNK, and AP-1 pathways in rat HSCs. Therefore, drugs that block these pathways may inhibit the proliferation of HSCs and suppress liver fibrosis.
Collapse
Affiliation(s)
- Zhang Yaping
- Department of Pediatrics, Third Hospital of Hebei Medical University
| | | | | | | | | | | |
Collapse
|