1
|
Ye X, Gu Y, Bai Y, Xia S, Zhang Y, Lou Y, Zhu Y, Dai Y, Tsoi JKH, Wang S. Does Low-Magnitude High-Frequency Vibration (LMHFV) Worth for Clinical Trial on Dental Implant? A Systematic Review and Meta-Analysis on Animal Studies. Front Bioeng Biotechnol 2021; 9:626892. [PMID: 33987172 PMCID: PMC8111077 DOI: 10.3389/fbioe.2021.626892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
Being as a non-pharmacological medical intervention, low-magnitude high-frequency vibration (LMHFV) has shown a positive effect on bone induction and remodeling for various muscle diseases in animal studies, among which dental implants osteointegration were reported to be improved as well. However, whether LMHFV can be clinically used in dental implant is still unknown. In this study, efficacy, parameters and side effects of LMHFV were analyzed via data before 15th July 2020, collecting from MEDLINE/PubMed, Embase, Ovid and Cochrane Library databases. In the screened 1,742 abstracts and 45 articles, 15 animal studies involving 972 implants were included. SYRCLE's tool was performed to assess the possible risk of bias for each study. The GRADE approach was applied to evaluate the quality of evidence. Random effects meta-analysis detected statistically significant in total BIC (P < 0.0001) and BV/TV (P = 0.001) upon loading LMHFV on implants. To conclude, LMHFV played an active role on BIC and BV/TV data according to the GRADE analysis results (medium and low quality of evidence). This might illustrate LMHFV to be a worthy way in improving osseointegration clinically, especially for osteoporosis. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO, identifier: NCT02612389
Collapse
Affiliation(s)
- Xinjian Ye
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Gu
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yijing Bai
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siqi Xia
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujia Zhang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuwei Lou
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuchi Zhu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuwei Dai
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - James Kit-Hon Tsoi
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shuhua Wang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China.,Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Shobara K, Ogawa T, Shibamoto A, Miyashita M, Ito A, Sitalaksmi RM. Osteogenic effect of low-intensity pulsed ultrasound and whole-body vibration on peri-implant bone. An experimental in vivo study. Clin Oral Implants Res 2021; 32:641-650. [PMID: 33711168 DOI: 10.1111/clr.13738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/24/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aims of this study were (i) to compare the osteogenic impact of low-intensity pulsed ultrasound (LIPUS) and low-magnitude high-frequency (LMHF) loading achieved with whole-body vibration (WBV) on peri-implant bone healing and implant osseointegration in rat tibiae, and (ii) to examine their combined effect on these processes. MATERIAL AND METHODS Titanium implants were inserted in the bilateral tibiae of 28 Wistar rats. Rats were randomly divided into four groups: LIPUS + WBV, LIPUS, WBV, and control. LIPUS was applied to the implant placement site for 20 min/day on 5 days/week (1.5 MHz and 30 mW/cm2 ). WBV was applied for 15 min/day on 5 days/week (50 Hz and 0.5 g). In the LIPUS + WBV group, both stimuli were applied under the same stimulation conditions as in the LIPUS and WBV groups. After 4 weeks of treatment, peri-implant bone healing and implant osseointegration were assessed using removal torque (RT) tests, micro-CT analyses of relative gray (RG) value, and histomorphometrical analyses of bone-to-implant contact (BIC) and peri-implant bone formation (BV/TV). RESULTS The LIPUS + WBV group had significantly greater BIC than the WBV and control groups. Although there were no significant intergroup differences in RT, RG value, and BV/TV, these variables tended to be greater in the LIPUS + WBV group than the other groups. CONCLUSIONS The combination of LIPUS and LMHF loading may promote osteogenic activity around the implant. However, further study of the stimulation conditions of LIPUS and LMHF loading is necessary to better understand the osteogenic effects and the relationship between the two stimuli.
Collapse
Affiliation(s)
- Kenta Shobara
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Shibamoto
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Makiko Miyashita
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Akiyo Ito
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ratri M Sitalaksmi
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Faculty of Dental Medicine, Department of Prosthodontics, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
Effects of different vibration frequencies on muscle strength, bone turnover and walking endurance in chronic stroke. Sci Rep 2021; 11:121. [PMID: 33420277 PMCID: PMC7794423 DOI: 10.1038/s41598-020-80526-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
This randomized controlled trial aimed to evaluate the effects of different whole body vibration (WBV) frequencies on concentric and eccentric leg muscle strength, bone turnover and walking endurance after stroke. The study involved eighty-four individuals with chronic stroke (mean age = 59.7 years, SD = 6.5) with mild to moderate motor impairment (Fugl-Meyer Assessment lower limb motor score: mean = 24.0, SD = 3.5) randomly assigned to either a 20 Hz or 30 Hz WBV intervention program. Both programs involved 3 training sessions per week for 8 weeks. Isokinetic knee concentric and eccentric extension strength, serum level of cross-linked N-telopeptides of type I collagen (NTx), and walking endurance (6-min walk test; 6MWT) were assessed at baseline and post-intervention. An intention-to-treat analysis revealed a significant time effect for all muscle strength outcomes and NTx, but not for 6MWT. The time-by-group interaction was only significant for the paretic eccentric knee extensor work, with a medium effect size (0.44; 95% CI: 0.01, 0.87). Both WBV protocols were effective in improving leg muscle strength and reducing bone resorption. Comparatively greater improvement in paretic eccentric leg strength was observed for the 30 Hz protocol.
Collapse
|
4
|
Steppe L, Liedert A, Ignatius A, Haffner-Luntzer M. Influence of Low-Magnitude High-Frequency Vibration on Bone Cells and Bone Regeneration. Front Bioeng Biotechnol 2020; 8:595139. [PMID: 33195165 PMCID: PMC7609921 DOI: 10.3389/fbioe.2020.595139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Bone is a mechanosensitive tissue for which mechanical stimuli are crucial in maintaining its structure and function. Bone cells react to their biomechanical environment by activating molecular signaling pathways, which regulate their proliferation, differentiation, and matrix production. Bone implants influence the mechanical conditions in the adjacent bone tissue. Optimizing their mechanical properties can support bone regeneration. Furthermore, external biomechanical stimulation can be applied to improve implant osseointegration and accelerate bone regeneration. One promising anabolic therapy is vertical whole-body low-magnitude high-frequency vibration (LMHFV). This form of vibration is currently extensively investigated to serve as an easy-to-apply, cost-effective, and efficient treatment for bone disorders and regeneration. This review aims to provide an overview of LMHFV effects on bone cells in vitro and on implant integration and bone fracture healing in vivo. In particular, we review the current knowledge on cellular signaling pathways which are influenced by LMHFV within bone tissue. Most of the in vitro experiments showed that LMHFV is able to enhance mesenchymal stem cell (MSC) and osteoblast proliferation. Furthermore, osteogenic differentiation of MSCs and osteoblasts was shown to be accelerated by LMHFV, whereas osteoclastogenic differentiation was inhibited. Furthermore, LMHFV increased bone regeneration during osteoporotic fracture healing and osseointegration of orthopedic implants. Important mechanosensitive pathways mediating the effects of LMHFV might be the Wnt/beta-catenin signaling pathway, the estrogen receptor (ER) signaling pathway, and cytoskeletal remodeling.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
5
|
Jeuken RM, Roth AK, Peters MJM, Welting TJM, van Rhijn LW, Koenen J, Peters RJRW, Thies JC, Emans PJ. In vitro and in vivo study on the osseointegration of BCP-coated versus uncoated nondegradable thermoplastic polyurethane focal knee resurfacing implants. J Biomed Mater Res B Appl Biomater 2020; 108:3370-3382. [PMID: 32614486 PMCID: PMC7586808 DOI: 10.1002/jbm.b.34672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 04/18/2020] [Accepted: 06/03/2020] [Indexed: 11/10/2022]
Abstract
Focal knee resurfacing implants (FKRIs) are intended to treat cartilage defects in middle-aged patients. Most FKRIs are metal-based, which hampers follow-up of the joint using magnetic resonance imaging and potentially leads to damage of the opposing cartilage. The purpose of this study was to develop a nondegradable thermoplastic polyurethane (TPU) FKRI and investigate its osseointegration. Different surface roughness modifications and biphasic calcium phosphate (BCP) coating densities were first tested in vitro on TPU discs. The in vivo osseointegration of BCP-coated TPU implants was subsequently compared to uncoated TPU implants and the titanium bottom layer of metal control implants in a caprine model. Implants were implanted bilaterally in stifle joints and animals were followed for 12 weeks, after which the bone-to-implant contact area (BIC) was assessed. Additionally, 18F-sodium-fluoride (18F-NaF) positron emission tomography PET/CT-scans were obtained at 3 and 12 weeks to visualize the bone metabolism over time. The BIC was significantly higher for the BCP-coated TPU implants compared to the uncoated TPU implants (p = .03), and did not significantly differ from titanium (p = .68). Similar 18F-NaF tracer uptake patterns were observed between 3 and 12 weeks for the BCP-coated TPU and titanium implants, but not for the uncoated implants. TPU FKRIs with surface modifications could provide the answer to the drawbacks of metal FKRIs.
Collapse
Affiliation(s)
- Ralph M Jeuken
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alex K Roth
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marloes J M Peters
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tim J M Welting
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lodewijk W van Rhijn
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jac Koenen
- DSM Biomedical BV, Geleen, The Netherlands
| | | | | | - Pieter J Emans
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
6
|
Li Z, Betts D, Kuhn G, Schirmer M, Müller R, Ruffoni D. Mechanical regulation of bone formation and resorption around implants in a mouse model of osteopenic bone. J R Soc Interface 2020; 16:20180667. [PMID: 30890053 DOI: 10.1098/rsif.2018.0667] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although mechanical stimulation is considered a promising approach to accelerate implant integration, our understanding of load-driven bone formation and resorption around implants is still limited. This lack of knowledge may delay the development of effective loading protocols to prevent implant loosening, especially in osteoporosis. In healthy bone, formation and resorption are mechanoregulated processes. In the intricate context of peri-implant bone regeneration, it is not clear whether bone (re)modelling can still be load-driven. Here, we investigated the mechanical control of peri-implant bone (re)modelling with a well-controlled mechanobiological experiment. We applied cyclic mechanical loading after implant insertion in tail vertebrae of oestrogen depleted mice and we monitored peri-implant bone response by in vivo micro-CT. Experimental data were combined with micro-finite element simulations to estimate local tissue strains in (re)modelling locations. We demonstrated that a substantial increase in bone mass around the implant could be obtained by loading the entire bone. This augmentation could be attributed to a large reduction in bone resorption rather than to an increase in bone formation. We also showed that following implantation, mechanical regulation of bone (re)modelling was transiently lost. Our findings should help to clarify the role of mechanical stimulation on the maintenance of peri-implant bone mass.
Collapse
Affiliation(s)
- Zihui Li
- 1 Institute for Biomechanics, ETH Zurich , Zurich , Switzerland
| | - Duncan Betts
- 1 Institute for Biomechanics, ETH Zurich , Zurich , Switzerland
| | - Gisela Kuhn
- 1 Institute for Biomechanics, ETH Zurich , Zurich , Switzerland
| | | | - Ralph Müller
- 1 Institute for Biomechanics, ETH Zurich , Zurich , Switzerland
| | - Davide Ruffoni
- 1 Institute for Biomechanics, ETH Zurich , Zurich , Switzerland.,3 Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège , Liège , Belgium
| |
Collapse
|
7
|
AbuMoussa S, Ruppert DS, Lindsay C, Dahners L, Weinhold P. Local delivery of a zoledronate solution improves osseointegration of titanium implants in a rat distal femur model. J Orthop Res 2018; 36:3294-3298. [PMID: 30117189 DOI: 10.1002/jor.24125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/06/2018] [Indexed: 02/04/2023]
Abstract
This study aimed to determine whether locally applied anti-resorptive agents acetazolamide or zoledronic acid would improve mechanical stability in implant osseointegration when applied as a solution within the medullary canal. Thirty-three rats received titanium-implants bilaterally in their intramedullary femoral canals. Prior to implantation, animals received 0.1 ml saline, 1 mM acetazolamide solution, or 0.7 mM zoledronic acid solution directly into the medullary cavity. The control group only received saline within the medullary canal while the treatment groups only received the respective treatment to which they were randomized. Animals were allowed to heal 4 weeks, at which time they were euthanized and femurs isolated for mechanical and radiographic evaluation. Push-out force to failure increased 152% in the zoledronic acid group relative to the control. There was no significant difference in push-out force with acetazolamide relative to control. Also, zoledronic acid increased metaphyseal bone volume fraction 46% and increased metaphyseal bone-implant contact 58% relative to the control. Recent research exploring local injection of medications to improve implant osseointegration and minimize systemic-effects has failed to quantitatively evaluate implant fixation strength on non-hydroxyapatite coated implants or implants without previous bone compaction. This study demonstrated that a simple injection of zoledronic acid into the medullary canal, rather than coatings or commercial gels, can increase fixation strength of an uncoated titanium-implant. Our findings indicate simple injection of zoledronic acid in saline solution has the potential for improving fixation of uncemented joint implants. Clinical Significance: Intramedullary injection of local bisphosphonate solutions could be implemented to improve osseointegration in cementless arthroplasty. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3294-3298, 2018.
Collapse
Affiliation(s)
- Samuel AbuMoussa
- University of North Carolina School of Medicine, CB# 7546, 134 Glaxo Bldg 101A Mason Farm Rd, Chapel Hill 27599, North Carolina.,Department of Orthopaedic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - David S Ruppert
- Department of Biomedical Engineering, UNC/NCSU, Chapel Hill, North Carolina
| | - Christopher Lindsay
- University of North Carolina School of Medicine, CB# 7546, 134 Glaxo Bldg 101A Mason Farm Rd, Chapel Hill 27599, North Carolina.,Department of Orthopaedic Surgery, University of Iowa, Iowa City, Iowa
| | - Laurence Dahners
- Department of Orthopaedic Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Paul Weinhold
- Department of Orthopaedic Surgery, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Wang S, Ogawa T, Zheng S, Miyashita M, Tenkumo T, Gu Z, Lian W, Sasaki K. The effect of low-magnitude high-frequency loading on peri-implant bone healing and implant osseointegration in Beagle dogs. J Prosthodont Res 2018; 62:497-502. [PMID: 30139715 DOI: 10.1016/j.jpor.2018.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/04/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Low-magnitude, high-frequency (LMHF) loading plays an important role in bone healing. The present study aimed to evaluate the effect of LMHF loading applied directly to titanium dental implants on peri-implant bone healing and implant osseointegration. METHODS The mandibular premolars and molars were extracted from six male Beagle dogs. Three months post-extraction, each of the six dogs had three titanium implants (Aadva Standard Implant Narrow, Φ3.3×8mm) inserted into the mandibular premolar and molar area (three implants per side). In each animal, one side was randomly selected to undergo daily LMHF loading (treatment group), while the other side had no further intervention (control). The loading was applied directly to the implant abutment using an individual jig and a custom-made loading device (8μm, 100Hz). The implant stability quotient (ISQ) was tested every week. Three dogs were euthanized after 2 weeks, and three were euthanized after 8 weeks. Tissue samples were fixed and stained for micro-computed tomography (micro-CT) and histomorphometric analyses. Data were analyzed statistically, with significance set at p<0.05. RESULTS The treatment group had significantly increased peri-implant bone volume relative to tissue volume in region of interest 2 (100-500μm) compared with the control group after 2 weeks of loading (p<0.05); however, there was no significant difference between groups after 8 weeks. The ISQ value and the micro-CT results did not differ between groups during the study period. CONCLUSIONS LMHF loading positively influenced peri-implant bone healing in the early healing period.
Collapse
Affiliation(s)
- Shuhua Wang
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan; School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | - Sheng Zheng
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan; School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Makiko Miyashita
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Taichi Tenkumo
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Zhiyuan Gu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenhai Lian
- School of Stomatology, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
9
|
Ruppert DS, Harrysson OLA, Marcellin-Little DJ, Dahners LE, Weinhold PS. Improved osseointegration with as-built electron beam melted textured implants and improved peri‑implant bone volume with whole body vibration. Med Eng Phys 2018; 58:S1350-4533(18)30088-2. [PMID: 29903535 DOI: 10.1016/j.medengphy.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/28/2018] [Indexed: 11/19/2022]
Abstract
Transcutaneous osseointegrated prostheses provide stable connections to the skeleton while eliminating skin lesions experienced with socket prosthetics. Additive manufacturing can create custom textured implants capable of interfacing with amputees' residual bones. Our objective was to compare osseointegration of textured surface implants made by electron beam melting (EBM), an additive manufacturing process, to machine threaded implants. Whole body vibration was investigated to accelerate osseointegration. Two cohorts of Sprague-Dawley rats received bilateral, titanium implants (EBM vs. threaded) in their tibiae. One cohort comprising five groups vibrated at 45 Hz: 0.0 (control), 0.15, 0.3, 0.6 or 1.2 g was followed for six weeks. Osseointegration was evaluated through torsional testing and bone volume fraction (BV/TV). A second cohort, divided into two groups (control and 0.6 g), was followed for 24 days and evaluated for resonant frequency, bone-implant contact (BIC) and fluorochrome labeling. The EBM textured implants exhibited significantly improved mechanical stability independent of vibration, highlighting the benefits of using EBM to produce custom textured surfaces. Bone formation on and around the EBM textured implants increased compared to machined implants, as seen by BIC and fluorescence. No difference in torque, BIC or fluorescence among vibration levels was detected. BV/TV significantly increased at 0.6 g compared to control for both implant types.
Collapse
Affiliation(s)
- David S Ruppert
- Department of Biomedical Engineering, UNC-NCSU, United States.
| | - Ola L A Harrysson
- Department of Biomedical Engineering, UNC-NCSU, United States; Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, United States
| | - Denis J Marcellin-Little
- Department of Biomedical Engineering, UNC-NCSU, United States; Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, United States; Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Laurence E Dahners
- Department of Orthopaedics School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Paul S Weinhold
- Department of Biomedical Engineering, UNC-NCSU, United States; Department of Orthopaedics School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| |
Collapse
|
10
|
Shibamoto A, Ogawa T, Duyck J, Vandamme K, Naert I, Sasaki K. Effect of high-frequency loading and parathyroid hormone administration on peri-implant bone healing and osseointegration. Int J Oral Sci 2018. [PMID: 29531334 PMCID: PMC5944597 DOI: 10.1038/s41368-018-0009-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The objective of this study is to examine the effect of low-magnitude, high-frequency (LMHF) loading, and anti-osteoporosis medications such as parathyroid hormone (PTH) and bisphosphonates on peri-implant bone healing in an osteoporosis model, and to assess their combined effects on these processes. Thirteen-week-old ovariectomized rats (n = 44) were divided into three groups: PTH, alendronate, and saline. After 3 weeks of drug administration, titanium implants were inserted into the tibiae. Each group was subdivided into two groups: with or without LMHF loading via whole-body vibration (50 Hz at 0.5 g, 15 min per day, 5 days per week). Rats were killed 4 weeks following implantation. Removal torque test, micro-CT analyses (relative gray (RG) value, water = 0, and implant = 100), and histomorphometric analyses (bone-to-implant contact (BIC) and peri-implant bone formation (bone volume/tissue volume (BV/TV))) were performed. Removal torque values and BIC were significantly differed by loading and drug administration (ANOVA). Post hoc analysis showed that PTH-treated groups were significantly higher than the other drug-treated groups. BV/TV was significantly enhanced by PTH administration. In cortical bone, RG values were significantly increased by loading. In trabecular bone, however, RG values were significantly increased by PTH administration. These findings suggest that LMHF loading and PTH can act locally and additively on the bone healing process, improving the condition of implant osseointegration. Whole-body vibration and administration of a hormone used to treat osteoporosis can enhance bone healing at the site of a titanium implant. Toru Ogawa of Tohoku University Graduate School of Dentistry in Sendai, Japan, and colleagues gave anti-osteoporosis medications, either parathyroid hormone or the bisphosphonate drug alendronate, to female rat models of osteoporosis. After three weeks of drug administration or a saline control, the researchers inserted titanium implants into the rats’ leg bones. Half the rats were then exposed to whole-body vibration, which applies low-magnitude, high-frequency mechanical forces. A multitude of tests showed that parathyroid hormone improved bone healing at the implant more than alendronate or saline did. The vibrational stimulus further increased the healing. The findings suggest that these treatments could aid in oral bone healing for patients receiving dental implants.
Collapse
Affiliation(s)
- Aya Shibamoto
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | - Joke Duyck
- Department of Oral Health Sciences, Prosthetic Dentistry, BIOMAT-Biomaterials, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Department of Oral Health Sciences, Prosthetic Dentistry, BIOMAT-Biomaterials, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ignace Naert
- Department of Oral Health Sciences, Prosthetic Dentistry, BIOMAT-Biomaterials, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
11
|
Li Z, Müller R, Ruffoni D. Bone remodeling and mechanobiology around implants: Insights from small animal imaging. J Orthop Res 2018; 36:584-593. [PMID: 28975660 DOI: 10.1002/jor.23758] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/27/2017] [Indexed: 02/04/2023]
Abstract
Anchorage of orthopedic implants depends on the interfacial bonding between the implant and the host bone as well as on the mass and microstructure of peri-implant bone, with all these factors being continuously regulated by the biological process of bone (re)modeling. In osteoporotic bone, implant integration may be jeopardized not only by lower peri-implant bone quality but also by reduced intrinsic regeneration ability. The first aim of this review is to provide a critical overview of the influence of osteoporosis on bone regeneration post-implantation. Mechanical stimulation can trigger bone formation and inhibit bone resorption; thus, judicious administration of mechanical loading can be used as an effective non-pharmacological treatment to enhance implant anchorage. Our second aim is to report recent achievements on the application of external mechanical stimulation to improve the quantity of peri-implant bone. The review focuses on peri-implant bone changes in osteoporotic conditions and following mechanical loading, prevalently using small animals and in vivo monitoring approaches. We intend to demonstrate the necessity to reveal new biological information on peri-implant bone mechanobiology to better target implant anchorage and fracture fixation in osteoporotic conditions. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:584-593, 2018.
Collapse
Affiliation(s)
- Zihui Li
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Davide Ruffoni
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospaceand Mechanical Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Yamamoto M, Ogawa T, Yokoyama M, Funaki Y, Shobara K, Shibamoto A, Vanegas Sáenz JR, Sasaki K. Na18F accumulates on the compressive side of peri-implant bone under immediate loading. Odontology 2017; 106:232-237. [DOI: 10.1007/s10266-017-0327-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/20/2017] [Indexed: 11/25/2022]
|
13
|
Ruppert DS, Harrysson OL, Marcellin-Little DJ, Abumoussa S, Dahners LE, Weinhold PS. Osseointegration of Coarse and Fine Textured Implants Manufactured by Electron Beam Melting and Direct Metal Laser Sintering. 3D PRINTING AND ADDITIVE MANUFACTURING 2017; 4:91-97. [PMID: 30191161 PMCID: PMC6114714 DOI: 10.1089/3dp.2017.0008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Osseointegrated implants transfer loads from native bone to a synthetic joint and can also function transdermally to provide a stable connection between the skeleton and the prostheses, eliminating many problems associated with socket prostheses. Additive manufacturing provides a cost-effective means to create patient-specific implants and allows for customized textures for integration with bone and other tissues. Our objective was to compare the osseointegration strength of two primary additive manufacturing methods of producing textured implants: electron beam melting (EBM) (mean Ra = 23 μm) and direct metal laser sintering (DMLS) (mean Ra = 10 μm). Due to spatial resolution, DMLS can produce surfaces with a roughness comparable to EBM. Two cohorts of Sprague-Dawley rats received bilateral, titanium implants in their distal femurs and were followed for 4 weeks. The first-cohort animals received EBM implants transcortically in one femur and a DMLS implant in the contralateral femur. The second cohort received DMLS implants (either fine textured or coarse textured to mimic EBM) in the intramedullary canal of each femur. Osseointegration was evaluated through mechanical testing and micro-computed tomography (bone volume fraction [BV/TV] and bone-implant contact [BIC]). The fixation strength of coarse textured implants provided superior interlocking relative to fine textured implants without affecting BV/TV or BIC in both cohorts. Coarse EBM implants in a transcortical model demonstrated an 85% increase in removal torque relative to the fine DMLS textured implants. The thrust load in the intramedullary model saw a 35% increase from fine to coarse DMLS implants.
Collapse
Affiliation(s)
- David S. Ruppert
- Department of Biomedical Engineering, University of North Carolina-NC State University, Chapel Hill-Raleigh, North Carolina
| | - Ola L.A. Harrysson
- Department of Biomedical Engineering, University of North Carolina-NC State University, Chapel Hill-Raleigh, North Carolina
- Edward P. Fitts Department of Industrial and Systems Engineering, NC State University, Raleigh, North Carolina
| | - Denis J. Marcellin-Little
- Department of Biomedical Engineering, University of North Carolina-NC State University, Chapel Hill-Raleigh, North Carolina
- Edward P. Fitts Department of Industrial and Systems Engineering, NC State University, Raleigh, North Carolina
- Department of Clinical Sciences, College of Veterinary Medicine, NC State University, Raleigh, North Carolina
| | - Sam Abumoussa
- Department of Orthopaedics School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Laurence E. Dahners
- Department of Orthopaedics School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Paul S. Weinhold
- Department of Biomedical Engineering, University of North Carolina-NC State University, Chapel Hill-Raleigh, North Carolina
- Department of Orthopaedics School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
14
|
Pham MH, Buser Z, Wang JC, Acosta FL. Low-magnitude mechanical signals and the spine: A review of current and future applications. J Clin Neurosci 2017; 40:18-23. [DOI: 10.1016/j.jocn.2016.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/27/2016] [Indexed: 01/17/2023]
|
15
|
Evaluation of peri-implant bone metabolism under immediate loading using high-resolution Na18F-PET. Clin Oral Investig 2016; 21:2029-2037. [DOI: 10.1007/s00784-016-1992-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
|
16
|
Chen B, Lin T, Yang X, Li Y, Xie D, Zheng W, Cui H, Deng W, Tan X. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/β-catenin signaling pathway activation. Int J Mol Med 2016; 38:1531-1540. [PMID: 28026000 DOI: 10.3892/ijmm.2016.2757] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/07/2016] [Indexed: 11/05/2022] Open
Abstract
The positive effect of low-magnitude, high‑frequency (LMHF) vibration on implant osseointegration has been demonstrated; however, the underlying cellular and molecular mechanisms remain unknown. The aim of this study was to explore the effect of LMHF vibration on the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) cultured on hydroxyapatite (HA)-coated surfaces in an in vitro model as well as to elucidate the molecular mechanism responsible for the effects of LMHF vibration on osteogenesis. LMHF vibration resulted in the increased expression of fibronectin, which was measured by immunostaining and RT-qPCR. Stimulation of BMSCs by LMHF vibration resulted in the rearrangement of the actin cytoskeleton with more prominent F-actin. Moreover, the expression of β1 integrin, vinculin and paxillin was notably increased following LMHF stimulation. Scanning electron microscope observations revealed that there were higher cell numbers and more extracellular matrix attached to the HA-coated surface in the LMHF group. Alkaline phosphatase activity as well as the expression of osteogenic-specific genes, namely Runx2, osterix, collagen I and osteocalcin, were significantly elevated in the LMHF group. In addition, the protein expression of Wnt10B, β-catenin, Runx2 and osterix was increased following exposure to LMHF vibration. Taken together, the findings of this study indicate that LMHF vibration promotes the adhesion and the osteogenic differentiation of BMSCs on HA-coated surfaces in vitro, and LMHF vibration may directly induce osteogenesis by activating the Wnt/β‑catenin signaling pathway. These data suggest that LMHF vibration enhances the osseointegration of bone to a HA-coated implant, and provide a scientific foundation for improving bone-implant osseointegration through the application of LMHF vibration.
Collapse
Affiliation(s)
- Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Lin
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoxi Yang
- Department of Spine Surgery, Chinese PLA General Hospital (301 Hospital), Beijing 100853, P.R. China
| | - Yiqiang Li
- Department of Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Denghui Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics), Guangzhou, Guangdong 510630, P.R. China
| | - Wenhui Zheng
- Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Haowen Cui
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weimin Deng
- Department of Rehabilitation, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510000, P.R. China
| | - Xin Tan
- Department of Rehabilitation, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
17
|
Takahashi T, Watanabe T, Nakada H, Tanimoto Y, Kimoto S, Mijares DQ, Zhang Y, Kawai Y. Effect of a dietary supplement on peri-implant bone strength in a rat model of osteoporosis. J Prosthodont Res 2016; 60:131-7. [PMID: 26787534 DOI: 10.1016/j.jpor.2015.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/26/2015] [Accepted: 12/24/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE Osteoporosis contributes to impaired bone regeneration and remodeling through an imbalance of osteoblastic and osteoclastic activity, and can delay peri-implant bone formation after dental implant surgery, resulting in a prolonged treatment period. It poses several difficulties for individuals with large edentulous areas, and decreases their quality of life. Consequently, prompt postoperative placement of the final prosthesis is very important clinically. Peri-implant bone formation may be enhanced by systemic approaches, such as the use of osteoporosis supplements, to promote bone metabolism. We aimed to confirm whether intake of synthetic bone mineral (SBM), a supplement developed for osteoporosis, could effectively accelerate peri-implant bone formation in a rat model of osteoporosis. METHODS Thirty-six 7-week-old ovariectomized female Wistar rats were randomly assigned to receive a standardized diet with or without SBM (Diet with SBM group and Diet without SBM group, respectively; n=18 for both). The rats underwent implant surgery at 9 weeks of age under general anesthesia. The main outcome measures, bone mineral density (BMD) and pull-out strength of the implant from the femur, were compared at 2 and 4 weeks after implantation using the Mann-Whitney U test. RESULTS Pull-out strength and BMD in the Diet with SBM group were significantly greater than those in the Diet without SBM group at 2 and 4 weeks after implantation. CONCLUSIONS This study demonstrated that SBM could be effective in accelerating peri-implant bone formation in osteoporosis.
Collapse
Affiliation(s)
- Takahiro Takahashi
- Nihon University Graduate School of Dentistry at Matsudo, Removable Prosthodontics, Matsudo, Japan
| | - Takehiro Watanabe
- Department of Removable Prosthodontics, Nihon University of Dentistry at Matsudo, Japan.
| | - Hiroshi Nakada
- Department of Removable Prosthodontics, Nihon University of Dentistry at Matsudo, Japan
| | - Yasuhiro Tanimoto
- Department of Dental Biomaterials, Nihon University of Dentistry at Matsudo, Japan
| | - Suguru Kimoto
- Department of Removable Prosthodontics, Nihon University of Dentistry at Matsudo, Japan
| | - Dindo Q Mijares
- Department of Biomaterials & Biomimetics, New York University College of Dentistry, USA
| | - Yu Zhang
- Department of Biomaterials & Biomimetics, New York University College of Dentistry, USA
| | - Yasuhiko Kawai
- Department of Removable Prosthodontics, Nihon University of Dentistry at Matsudo, Japan
| |
Collapse
|
18
|
Zhou Y, Guan X, Liu T, Wang X, Yu M, Yang G, Wang H. Whole body vibration improves osseointegration by up-regulating osteoblastic activity but down-regulating osteoblast-mediated osteoclastogenesis via ERK1/2 pathway. Bone 2015; 71:17-24. [PMID: 25304090 DOI: 10.1016/j.bone.2014.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
Due to the reduction in bone mass and deterioration in bone microarchitecture, osteoporosis is an important risk factor for impairing implant osseointegration. Recently, low-magnitude, high-frequency (LMHF) vibration (LM: <1×g; HF: 20-90Hz) has been shown to exhibit anabolic, but anti-resorptive effects on skeletal homeostasis. Therefore, we hypothesized that LMHF loading, in terms of whole body vibration (WBV), may improve implant fixation under osteoporotic status. In the in vivo study, WBV treatment (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h, 5days/week) was applied after hydroxyapatite-coated titanium implants were inserted in the bilateral tibiae of ovariectomized rats. The bone mass and the osteospecific gene expressions were measured at 12weeks post implantation. In the in vitro study, the cellular and molecular mechanisms underlying osteoblastic and osteoclastic activities were fully investigated using various experimental assays. Micro-CT examination showed that WBV could enhance osseointegration by improving microstructure parameters surrounding implants. WBV-regulated gene levels in favor of bone formation over resorption may be the reason for the favorable adaptive bone remolding on bone-implant surface. The in vitro study showed that vibration (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h) up-regulated osteoblast differentiation, matrix synthesis and mineralization. However, mechanically regulated osteoclastic activity was mainly through the effect on osteoblastic cells producing osteoclastogenesis-associated key soluble factors, including RANKL and M-CSF. Osteoblasts were therefore the direct target cells during the mechanotransduction process. The ERK1/2 pathway was demonstrated to play an essential role in vibration-induced enhancement of bone formation and decreased bone resorption. Our data suggests that WBV was a helpful non-pharmacological intervention for improving osseointegration under osteoporosis.
Collapse
Affiliation(s)
- Yi Zhou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Xiaoxu Guan
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Tie Liu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Xinhua Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Mengfei Yu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Guoli Yang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Huiming Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China.
| |
Collapse
|
19
|
Watanabe T, Nakada H, Takahashi T, Fujita K, Tanimoto Y, Sakae T, Kimoto S, Kawai Y. Potential for acceleration of bone formation after implant surgery by using a dietary supplement: an animal study. J Oral Rehabil 2015; 42:447-53. [PMID: 25572652 DOI: 10.1111/joor.12270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Dental implant treatment is an effective modality to restore lost aesthetic and masticatory functions. However, healing after implant surgery takes at least 3-6 months. This prolonged healing period poses several difficulties for individuals with a large edentulous area and decreases their quality of life. Consequently, shortening the healing period and accelerating final prosthesis placement after surgery is very clinically important. Peri-implant bone formation may be enhanced by systemic approaches, such as the use of osteoporosis supplements, to promote bone metabolism. To confirm whether intake of a supplement developed for osteoporosis, synthetic bone mineral (SBM), was effective in accelerating peri-implant bone formation as part of the healing process after implantation. Twenty-four 5-week-old female Wistar rats were randomly assigned to receive a standardised diet without (control group, n = 12) or with SBM (n = 12). The rats had implant surgery at 8 weeks of age under general anaesthesia. The main outcome measures were bone mineral density (BMD) and pull-out strength in the implant and femur, which were compared between the groups at 2 and 4 weeks after implantation using the Mann-Whitney U test. BMD was significantly greater in the SBM group at 2 and 4 weeks after implantation compared to the control group. Pull-out strength was significantly greater in the SBM groups at 2 and 4 weeks after implantation compared to the control group. This study demonstrated that SBM could be effective in accelerating peri-implant bone formation during the healing period after implantation.
Collapse
Affiliation(s)
- T Watanabe
- Department of Removable Prosthodontics, Nihon University of Dentistry at Matsudo, Matsudo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hatori K, Camargos GV, Chatterjee M, Faot F, Sasaki K, Duyck J, Vandamme K. Single and combined effect of high-frequency loading and bisphosphonate treatment on the bone micro-architecture of ovariectomized rats. Osteoporos Int 2015; 26:303-13. [PMID: 25236876 DOI: 10.1007/s00198-014-2857-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 08/13/2014] [Indexed: 01/23/2023]
Abstract
UNLABELLED Mechanical loading at high frequency affects bone. Whether this also applies to osteoporotic bone, combined or not with bisphosphonate therapy, was investigated in this animal study through imaging. An anabolic effect of high-frequency loading on osteoporotic bone, however non-synergistic with bisphosphonates, was found, thereby revealing its potential for treatment of osteoporosis. INTRODUCTION In an effort to elucidate the effect of high-frequency (HF) loading on bone and to optimize its potential for treatment osteoporosis, this study aimed to investigate the effect of HF loading via whole body vibration (WBV), alone or in association with bisphosphonate treatment (alendronate--ALN), on the micro-architecture of ovariectomy (OVX)-induced compromised bone. METHODS Eighty-four female Wistar rats were ovariectomized (OVX) or sham-operated (shOVX). OVX animals were treated either with ALN (3 days/week at a dose of 2 mg/kg) or with saline solution. Each group (shOVX, OVX, ALN) was further divided into subgroups relative to the loading status (sham-WBV versus WBV) and the duration of experimental period (4 days versus 14 days). (Sham)WBV loading was applied for 10 min/day using 10 consecutive steps of HF loading (130, 135, 140, 145, 150, 130, 135, 140, 145, 150 Hz). Tibial bone structural responses to WBV and/or ALN treatment were analyzed using ex vivo micro-computed tomography. RESULTS The animal's hormonal status displayed a major impact on the trabecular and cortical bone structural parameters. Furthermore, mechanical treatment with HF WBV increased the cortical thickness and reduced the medullar area in OVX rats. However, OVX trabecular bone was not affected by HF stimuli. Finally, ALN prevented OVX-associated bone loss, but the association of ALN with WBV did not lead to a synergistic bone response in OVX bone. CONCLUSIONS HF WBV mechanical stimulation displayed an anabolic effect on osteoporotic cortical bone, confirming its therapeutic properties for enhancing compromised bone. Additionally, its association with bisphosphonates' administration did not produce any additive effect on the bone micro-architecture in the present study.
Collapse
Affiliation(s)
- K Hatori
- Department of Oral Health Sciences, BIOMAT Research Group, KU Leuven & University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Ogawa T, Vandamme K, Zhang X, Naert I, Possemiers T, Chaudhari A, Sasaki K, Duyck J. Stimulation of titanium implant osseointegration through high-frequency vibration loading is enhanced when applied at high acceleration. Calcif Tissue Int 2014; 95:467-75. [PMID: 25209971 DOI: 10.1007/s00223-014-9896-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
Low-magnitude high-frequency loading, applied by means of whole body vibration (WBV), affects the bone. Deconstructing a WBV loading stimulus into its constituent elements and investigating the effects of frequency and acceleration individually on bone tissue kinetics around titanium implants were aimed for in this study. A titanium implant was inserted in the tibia of 120 rats. The rats were divided into 1 control group (no loading) and 5 test groups with low (L), medium (M) or high (H) frequency ranges and accelerations [12-30 Hz at 0.3×g (F(L)A(H)); 70-90 Hz at 0.075×g (F(M)A(M)); 70-90 Hz at 0.3×g (F(M)A(H)); 130-150 Hz at 0.043×g (F(H)A(L)); 130-150 Hz at 0.3×g (F H A H)]. WBV was applied for 1 or 4 weeks. Implant osseointegration was evaluated by quantitative histology (bone-to-implant contact (BIC) and peri-implant bone formation (BV/TV)). A 2-way ANOVA (duration of experimental period; loading mode) with α = 0.05 was performed. BIC significantly increased over time and under load (p < 0.0001). The highest BICs were found for loading regimes at high acceleration with medium or high frequency (F(M)A(H) and F(H)A(H)), and significantly differing from F(L)A(H) and F(M)A(M) (p < 0.02 and p < 0.005 respectively). BV/TV significantly decreased over time (p < 0.0001). Loading led to a site-specific BV/TV increase (p < 0.001). The highest BV/TV responses were found for F(M)A(H) and F(H)A(H), significantly differing from F(M)A(M) (p < 0.005). The findings reveal the potential of high-frequency vibration loading to accelerate and enhance implant osseointegration, in particular when applied at high acceleration. Such mechanical signals hold great, though untapped, potential to be used as non-pharmacologic treatment for improving implant osseointegration in compromised bone.
Collapse
Affiliation(s)
- Toru Ogawa
- BIOMAT KU Leuven, Department of Oral Health Sciences & Dental Clinic, KU Leuven & University Hospitals Leuven, Kapucijnenvoer 7, P.O. Box 7001, 3000, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Liang YQ, Qi MC, Xu J, Xu J, Liu HW, Dong W, Li JY, Hu M. Low-magnitude high-frequency loading, by whole-body vibration, accelerates early implant osseointegration in ovariectomized rats. Mol Med Rep 2014; 10:2835-42. [PMID: 25270245 PMCID: PMC4227418 DOI: 10.3892/mmr.2014.2597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 07/04/2014] [Indexed: 01/12/2023] Open
Abstract
Osteoporosis deteriorates jaw bone quality and may compromise early implant osseointegration and early implant loading. The influence of low-magnitude, high-frequency (LMHF) vibration on peri-implant bone healing and implant integration in osteoporotic bones remains poorly understood. LMHF loading via whole-body vibration (WBV) for 8 weeks has previously been demonstrated to significantly enhance bone-to-implant contact, peri-implant bone fraction and implant mechanical properties in osteoporotic rats. In the present study, LMHF loading by WBV was performed in osteoporotic rats, with a loading duration of 4 weeks during the early stages of bone healing. The results indicated that 4-week LMHF loading by WBV partly reversed the negative effects of osteoporosis and accelerated early peri-implant osseointegration in ovariectomized rats.
Collapse
Affiliation(s)
- Yong-Qiang Liang
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Meng-Chun Qi
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Jiang Xu
- Department of Stomatology, Tongchuan City People's Hospital, Tongchuan, Shaanxi 727100, P.R. China
| | - Juan Xu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hua-Wei Liu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wei Dong
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Jin-Yuan Li
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Min Hu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
23
|
Wang S, Liu Y, Tang Y, Zhao W, Li J, Yang Y, Du W, Yu H. Direct Radial LMHF Microvibration Induced Bone Formation and Promoted Implant Osseointegration. Clin Implant Dent Relat Res 2014; 18:401-9. [PMID: 24852608 DOI: 10.1111/cid.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Mechanical loading is known to play an important role in bone remodeling. PURPOSE This study aimed to evaluate the effect of direct low-magnitude high-frequency (LMHF) microvibration on dental implant bone formation and osseointegration. MATERIALS AND METHODS Titanium implants were installed in rabbit tibiae. The implants in the left legs were loaded with mechanical vibration (15 μm) at 10, 20, 30, and 40 Hz (10, 20, 30, and 40 Hz groups, respectively) for 30 minutes every day. The implants on the right legs were used as a sham control and did not receive a vibration load. RESULTS After 20 days, the 10, 20, and 30 Hz groups showed significantly greater newly formed bone volume, density, ratio of the bone surface area to the trabecular bone surface area, and ratio of the bone surface area in direct contact with osteoclasts versus the total bone surface area in the region of interest compared with the sham control group, especially the 20 Hz group. However, the 40 Hz group did not. CONCLUSIONS In conclusion, the application of direct LMHF (10, 20, or 30 Hz) vibration on the implants promoted bone formation and osseointegration, especially at 20 Hz; however, the use of 40 Hz did not result in any significant improvement.
Collapse
Affiliation(s)
- Shirui Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junying Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Ventura M, Franssen GM, Oosterwijk E, Boerman OC, Jansen JA, Walboomers XF. SPECT vs. PET monitoring of bone defect healing and biomaterial performancein vivo. J Tissue Eng Regen Med 2014; 10:843-854. [DOI: 10.1002/term.1862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 07/09/2013] [Accepted: 10/20/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Manuela Ventura
- Department of Biomaterials; Radboud University Nijmegen Medical Centre; Nijmegen the Netherlands
| | - Gerben M. Franssen
- Department of Nuclear Medicine; Radboud University Nijmegen Medical Centre; Nijmegen the Netherlands
| | - Egbert Oosterwijk
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen the Netherlands
| | - Otto C. Boerman
- Department of Nuclear Medicine; Radboud University Nijmegen Medical Centre; Nijmegen the Netherlands
| | - John A. Jansen
- Department of Biomaterials; Radboud University Nijmegen Medical Centre; Nijmegen the Netherlands
| | - X. Frank Walboomers
- Department of Biomaterials; Radboud University Nijmegen Medical Centre; Nijmegen the Netherlands
| |
Collapse
|
25
|
Mathieu V, Vayron R, Richard G, Lambert G, Naili S, Meningaud JP, Haiat G. Biomechanical determinants of the stability of dental implants: influence of the bone-implant interface properties. J Biomech 2013; 47:3-13. [PMID: 24268798 DOI: 10.1016/j.jbiomech.2013.09.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
Abstract
Dental implants are now widely used for the replacement of missing teeth in fully or partially edentulous patients and for cranial reconstructions. However, risks of failure, which may have dramatic consequences, are still experienced and remain difficult to anticipate. The stability of biomaterials inserted in bone tissue depends on multiscale phenomena of biomechanical (bone-implant interlocking) and of biological (mechanotransduction) natures. The objective of this review is to provide an overview of the biomechanical behavior of the bone-dental implant interface as a function of its environment by considering in silico, ex vivo and in vivo studies including animal models as well as clinical studies. The biomechanical determinants of osseointegration phenomena are related to bone remodeling in the vicinity of the implants (adaptation of the bone structure to accommodate the presence of a biomaterial). Aspects related to the description of the interface and to its space-time multiscale nature will first be reviewed. Then, the various approaches used in the literature to measure implant stability and the bone-implant interface properties in vitro and in vivo will be described. Quantitative ultrasound methods are promising because they are cheap, non invasive and because of their lower spatial resolution around the implant compared to other biomechanical approaches.
Collapse
Affiliation(s)
- Vincent Mathieu
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Romain Vayron
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Gilles Richard
- Septodont, 58 Rue Pont de Créteil, 94100 Saint-Maur-des-Fossés, France
| | - Grégory Lambert
- Septodont, 58 Rue Pont de Créteil, 94100 Saint-Maur-des-Fossés, France
| | - Salah Naili
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Jean-Paul Meningaud
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, CHU H. Mondor, 94017 Créteil cedex, France
| | - Guillaume Haiat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France.
| |
Collapse
|
26
|
Yamamoto M, Ogawa T, Yokoyama M, Koyama S, Sasaki K. Influence of immediate and early loading on bone metabolic activity around dental implants in rat tibiae. Clin Oral Implants Res 2013; 25:1084-90. [PMID: 23802506 DOI: 10.1111/clr.12218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 01/28/2023]
Abstract
OBJECTIVES The aim of this study was to examine the influence of immediate and early loading on dynamic changes in bone metabolism around dental implants using bone scintigraphy. MATERIAL AND METHODS Two titanium implants were inserted in the right tibiae of 21 rats. Closed coil springs with 4.0-N loads were applied parallel to the upper portion of the implants for 35 days. According to the load application timing, rats were divided into three groups: immediate loading (IL) group, early loading 1 day after implant insertion (1-D early loading [EL]) group, and loading 3 days after implant insertion (3-D EL) group. Rats were intravenously injected with technetium-99 m-methylene diphosphonate (Tc99 m-MDP) (74 MBq/rat) and scanned by bone scintigraphy at 1, 4, 7, 11, 14, 21, 28, and 35 days after load application. The ratio of accumulation of Tc99 m-MDP around the implants to that of a reference site (uptake ratio) was calculated to evaluate bone metabolism. RESULTS In every group, the uptake ratio increased until 7 days after load application and then gradually decreased. It was significantly higher than baseline at 4, 7, 11, and 14 days (P < 0.001). The uptake ratio in the 1-D EL and 3-D EL groups were significantly higher than that in the control group and also that in the IL group (P < 0.001). CONCLUSIONS Bone metabolism initially increased and then gradually decreased to baseline despite differences in load timing. Increases in bone metabolic activity differed according to load application timing; the later the load application, the more enhanced the bone metabolism.
Collapse
Affiliation(s)
- Miou Yamamoto
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | | | | | |
Collapse
|
27
|
Huang Y, Van Dessel J, Liang X, Depypere M, Zhong W, Ma G, Lambrichts I, Maes F, Jacobs R. Effects of immediate and delayed loading on peri-implant trabecular structures: a cone beam CT evaluation. Clin Implant Dent Relat Res 2013; 16:873-83. [PMID: 23551564 DOI: 10.1111/cid.12063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To develop a method for characterizing trabecular bone microarchitecture using cone beam computed tomography (CBCT) and to evaluate trabecular bone changes after rehabilitation using immediate versus delayed implant protocols. MATERIALS AND METHODS Six mongrel dogs randomly received 27 titanium implants in the maxillary incisor or mandibular premolar areas, following one of four protocols: (1) normal extraction socket healing; (2) immediate implant placement and immediate loading; (3) delayed implant placement and delayed loading; (4) delayed implant placement and immediate loading. The animals were euthanized at 8 weeks, and block biopsies were scanned using high resolution CBCT. Standard bone structural variables were assessed in coronal, middle, and apical levels. RESULTS Coronal and middle regions had more compact, more platelike, and thicker trabeculae. Protocols (2), (3), and (4) had significantly higher values (p < 0.001) than protocol (1) for bone surface density, bone surface volume ratio, and connectivity density, while significantly lower values (p < 0.001) were found for trabecular separation and fractal dimension. However, protocols (2), (3), and (4) did not show significantly different bone remodeling. CONCLUSIONS Compared with normal extraction healing, the implant protocols have an improved bone structural integration. Results do not suggest a different bone remodeling pattern when a delayed versus an immediate implant protocol is used.
Collapse
Affiliation(s)
- Yan Huang
- Oral Imaging Center, Department of Oral Health Science, KU Leuven, Leuven, Belgium; Oral Implant Center, West China College of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kono T, Ayukawa Y, Moriyama Y, Kurata K, Takamatsu H, Koyano K. The Effect of Low-Magnitude, High-Frequency Vibration Stimuli on the Bone Healing of Rat Incisor Extraction Socket. J Biomech Eng 2012; 134:091001. [DOI: 10.1115/1.4007247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Effects of small vibration stimuli on bone formation have been reported. In the present study, we used morphological and morphometric procedures to elucidate whether low-magnitude, high-frequency (LMHF) vibration stimuli could enhance the bone healing of rat incisor extraction sockets. After extraction of incisors from six-week-old rats, animals were assigned into a control group and two experimental groups to receive 50 Hz stimuli at either 0.05 mm or 0.2 mm peak-to-peak for an hour/day. LMHF vibration stimuli were generated by placing the mandibles of the animals onto a vibration generator. All groups were subdivided into two, according to the study periods (1 and 3 weeks). After the study period, undecalcified ground sections were taken and morphological and morphometric analyses performed. At both 1 and 3 weeks, newly formed bone was observed mainly in the upper wall of the extraction socket in all groups. Morphometric analyses revealed that the trabecular thickness in both experimental groups at 1 week was significantly greater than that in the control. LMHF vibration stimuli had a positive effect on bone at the early stage of bone healing, particularly in trabecular thickness, at the incisor extraction socket.
Collapse
Affiliation(s)
- Takashi Kono
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasuko Moriyama
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kosaku Kurata
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Hiroshi Takamatsu
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Pereira MDO, Pinto NDS, Monteiro MDOB, Santos-Filho SD, Carmo FS, Diniz CL, Marin PJ, Bernardo-Filho M. Influence of whole-body vibration on biodistribution of the radiopharmaceutical [99mTc]methylene diphosphonate in Wistar rats. Int J Radiat Biol 2012; 89:668-72. [PMID: 22849312 DOI: 10.3109/09553002.2012.715790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE The radionuclide bone scan is the basis of skeletal nuclear medicine imaging. Bone scintigraphy is a highly sensitive method for indicating disease in bone. Mechanical stimulation in the manner of whole-body vibration (WBV) appears beneficial to the maintenance and/or enhancement of skeletal mass in individuals. The aim of this work was to evaluate the effect of WBV on the biodistribution of the radiopharmaceutical [99mTc]methylene diphosphonate (99mTc-MDP) in Wistar rats. MATERIALS AND METHODS In the biodistribution analysis, animals were anesthetized with sodium thiopental, the radiopharmaceutical (99m)Tc-MDP was administered via ocular plexus and after 10 min the animals were submitted to vibration of 20 Hz (1 min) in an oscillatory platform. Following, the animals were sacrificed, the organs were isolated, the radioactivity determined in a well counter, and the percentages of radioactivity per gram (%ATI/g) in the organs were calculated. An unpaired t-test following Welch test (p < 0.05) was done for statistical analysis of the results. RESULTS The biodistribution was significantly (p < 0.05) decreased in kidney, bone, lung, stomach, prostate and bowel. CONCLUSION The analysis of the results indicates that the vibration could produce metabolic alterations with influence in the uptake of the radiopharmaceutical 99mTc-MDP in bone, stomach, bowel, prostate, kidney and bladder.
Collapse
|
30
|
Zhang X, Torcasio A, Vandamme K, Ogawa T, van Lenthe GH, Naert I, Duyck J. Enhancement of implant osseointegration by high-frequency low-magnitude loading. PLoS One 2012; 7:e40488. [PMID: 22808172 PMCID: PMC3393711 DOI: 10.1371/journal.pone.0040488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
Background Mechanical loading is known to play an important role in bone remodelling. This study aimed to evaluate the effect of high- and low-frequency axial loading, applied directly to the implant, on peri-implant bone healing and implant osseointegration. Methodology Titanium implants were bilaterally installed in rat tibiae. For every animal, one implant was loaded (test) while the other one was not (control). The test implants were randomly divided into 8 groups according to 4 loading regimes and 2 experimental periods (1 and 4 weeks). The loaded implants were subject to an axial displacement. Within the high- (HF, 40 Hz) or low-frequency (LF, 8 Hz) loading category, the displacements varied 2-fold and were ranked as low- or high-magnitude (LM, HM), respectively. The strain rate amplitudes were kept constant between the two frequency groups. This resulted in the following 4 loading regimes: 1) HF-LM, 40 Hz-8 µm; 2) HF-HM, 40 Hz-16 µm; 3) LF-LM, 8 Hz-41 µm; 4) LF-HM, 8 Hz-82 µm. The tissue samples were processed for resin embedding and subjected to histological and histomorphometrical analyses. Data were analyzed statistically with the significance set at p<0.05. Principal Findings After loading for 4 weeks, HF-LM loading (40 Hz-8 µm) induced more bone-to-implant contact (BIC) at the level of the cortex compared to its unloaded control. No significant effect of the four loading regimes on the peri-implant bone fraction (BF) was found in the 2 experimental periods. Conclusions The stimulatory effect of immediate implant loading on bone-to-implant contact was only observed in case of high-frequency (40 Hz) low-magnitude (8 µm) loading. The applied load regimes failed to influence the peri-implant bone mass.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Antonia Torcasio
- Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, University of Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Toru Ogawa
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - G. Harry van Lenthe
- Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, University of Leuven, Leuven, Belgium
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ignace Naert
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Joke Duyck
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
31
|
Chen B, Li Y, Xie D, Yang X. Low-magnitude high-frequency loading via whole body vibration enhances bone-implant osseointegration in ovariectomized rats. J Orthop Res 2012; 30:733-9. [PMID: 22058045 DOI: 10.1002/jor.22004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 10/14/2011] [Indexed: 02/04/2023]
Abstract
Osseointegration is vital to avoid long-time implants loosening after implantation surgery. This study investigated the effect of low-magnitude high-frequency (LMHF) loading via whole body vibration on bone-implant osseointegration in osteoporotic rats, and a comparison was made between LMHF vibration and alendronate on their effects. Thirty rats were ovariectomized to induce osteoporosis, and then treated with LMHF vibration (VIB) or alendronate (ALN) or a control treatment (OVX). Another 10 rats underwent sham operation to establish Sham control group. Prior to treatment, hydroxyapatite (HA)-coated titanium implants were inserted into proximal tibiae bilaterally. Both LMHF vibration and alendronate treatment lasted for 8 weeks. Histomorphometrical assess showed that both group VIB, ALN and Sham significantly increased bone-to-implant contact and peri-implant bone fraction (p < 0.05) when compared with group OVX. Nevertheless the bone-to-implant contact and peri-implant bone fraction of group VIB were inferior to group ALN and Sham (p < 0.05). Biomechanical tests also revealed similar results in maximum push out force and interfacial shear strength. Accordingly, it is concluded that LMHF loading via whole body vibration enhances bone-to-implant osseointegration in ovariectomized rats, but its effectiveness is weaker than alendronate.
Collapse
Affiliation(s)
- BaiLing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | | | | | | |
Collapse
|
32
|
Zhang X, Vandamme K, Torcasio A, Ogawa T, van Lenthe GH, Naert I, Duyck J. In vivo assessment of the effect of controlled high- and low-frequency mechanical loading on peri-implant bone healing. J R Soc Interface 2012; 9:1697-704. [PMID: 22279157 DOI: 10.1098/rsif.2011.0820] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to investigate the effect of controlled high- (HF) and low-frequency (LF) mechanical loading on peri-implant bone healing. Custom-made titanium implants were inserted in both tibiae of 69 adult Wistar rats. For every animal, one implant was loaded by compression through the axis of tibia (test), whereas the other one was unloaded (control). The test implants were randomly distributed among four groups receiving different loading regimes, which were determined by ex vivo calibration. Within the HF (40 Hz) or LF (2 Hz) loading category, the magnitudes were chosen as low- (LM) and high-magnitude (HM), respectively, leading to constant strain rate amplitudes for the two frequency groups. This resulted in the four loading regimes: (i) HF-LM (40 Hz-0.5 N); (ii) HF-HM (40 Hz-1 N); (iii) LF-LM (2 Hz-10 N); and (iv) LF-HM (2 Hz-20 N) loading. Loading was performed five times per week and lasted for one or four weeks. Tissue samples were processed for histology and histomorphometry (bone-to-implant contact, BIC; and peri-implant bone fraction, BF) at the cortical and medullar level. Data were analysed statistically with ANOVA and paired t-tests with the significance level set at 0.05. For the one-week experiments, an increased BF adjacent to the implant surface at the cortical level was exclusively induced by the LF-HM loading regime (2 Hz-20 N). Four weeks of loading resulted in a significant effect on BIC (and not on BF) in case of HF-LM loading (40 Hz-0.5 N) and LF-HM loading (2 Hz-20 N): BIC at the cortical level significantly increased under both loading regimes, whereas BIC at the medullar level was positively influenced only in case of HF-LM loading. Mechanical loading at both HF and LF affects osseointegration and peri-implant BF. Higher loading magnitudes (and accompanying elevated tissue strains) are required under LF loading to provoke a positive peri-implant bone response, compared with HF loading. A sustained period of loading at HF is needed to result in an overall enhanced osseointegration.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, Biomechanics Section, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
33
|
Use of micro-CT-based finite element analysis to accurately quantify peri-implant bone strains: a validation in rat tibiae. Biomech Model Mechanobiol 2011; 11:743-50. [DOI: 10.1007/s10237-011-0347-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
34
|
Ogawa T, Possemiers T, Zhang X, Naert I, Chaudhari A, Sasaki K, Duyck J. Influence of whole-body vibration time on peri-implant bone healing: a histomorphometrical animal study. J Clin Periodontol 2010; 38:180-5. [DOI: 10.1111/j.1600-051x.2010.01637.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|