1
|
Blanc-Sylvestre N, Bouchard P, Chaussain C, Bardet C. Pre-Clinical Models in Implant Dentistry: Past, Present, Future. Biomedicines 2021; 9:1538. [PMID: 34829765 PMCID: PMC8615291 DOI: 10.3390/biomedicines9111538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Biomedical research seeks to generate experimental results for translation to clinical settings. In order to improve the transition from bench to bedside, researchers must draw justifiable conclusions based on data from an appropriate model. Animal testing, as a prerequisite to human clinical exposure, is performed in a range of species, from laboratory mice to larger animals (such as dogs or non-human primates). Minipigs appear to be the animal of choice for studying bone surgery around intraoral dental implants. Dog models, well-known in the field of dental implant research, tend now to be used for studies conducted under compromised oral conditions (biofilm). Regarding small animal models, research studies mostly use rodents, with interest in rabbit models declining. Mouse models remain a reference for genetic studies. On the other hand, over the last decade, scientific advances and government guidelines have led to the replacement, reduction, and refinement of the use of all animal models in dental implant research. In new development strategies, some in vivo experiments are being progressively replaced by in vitro or biomaterial approaches. In this review, we summarize the key information on the animal models currently available for dental implant research and highlight (i) the pros and cons of each type, (ii) new levels of decisional procedures regarding study objectives, and (iii) the outlook for animal research, discussing possible non-animal options.
Collapse
Affiliation(s)
- Nicolas Blanc-Sylvestre
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Philippe Bouchard
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Catherine Chaussain
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université de Paris, 75018 Paris, France
| | - Claire Bardet
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
| |
Collapse
|
2
|
Murakami K, Yamamoto K, Ishida J, Tsutsumi S, Kirita T. Analysis of implant stability changes in immediate loading using a laser displacement sensor in vivo and comparison of its sensitivity with that of resonance frequency analysis. Clin Oral Implants Res 2021; 32:1341-1356. [PMID: 34403162 DOI: 10.1111/clr.13835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/07/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this study was to analyze the stability changes in immediately loaded implants by using an in vivo quantitative measurement of micromotion under functional dynamic loading and to verify the sensitivity of Resonance Frequency Analysis (RFA) as compared to that of actual micromotion. MATERIALS AND METHODS The micromotions of immediately loaded implants placed in the tibia of 11 rabbits were monitored using a laser displacement sensor. Functional dynamic loading forces were applied 5 days a week for 6 weeks. The implant stability quotient (ISQ) was monitored using RFA. RESULTS The micromotion of the almost-loaded implants increased to peak values the day after loading was started and subsequently reached a plateau gradually. The ISQ changes in the loaded implants closely correlated with the alterations of the actual micromotion (r = -0.98, p < .01). Although the ISQ value itself correlated with the measured micromotion at the time of initial fixation (r = 0.73, p < .05), it did not correlate with the micromotion of the implant that acquired integration. No close correlation was observed between the ISQ and the histomorphometrical data. CONCLUSION The immediately loaded implants showed the lowest stability immediately after the start of loading, which gradually increased thereafter. RFA is considered a useful method for examining stability changes and initial stability; however, it cannot determine the absolute magnitude of the stability after integration.
Collapse
Affiliation(s)
- Kazuhiro Murakami
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara City, Nara, Japan
| | - Kazuhiko Yamamoto
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara City, Nara, Japan
| | - Junichi Ishida
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara City, Nara, Japan
| | - Sadami Tsutsumi
- Applied Electronics Laboratory, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara City, Nara, Japan
| |
Collapse
|
3
|
Piccinini M, Cugnoni J, Botsis J, Ammann P, Wiskott A. Numerical prediction of peri-implant bone adaptation: Comparison of mechanical stimuli and sensitivity to modeling parameters. Med Eng Phys 2016; 38:1348-1359. [DOI: 10.1016/j.medengphy.2016.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/05/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022]
|
4
|
Piccinini M, Cugnoni J, Botsis J, Ammann P, Wiskott A. Peri-implant bone adaptations to overloading in rat tibiae: experimental investigations and numerical predictions. Clin Oral Implants Res 2016; 27:1444-1453. [DOI: 10.1111/clr.12760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Marco Piccinini
- Laboratory of applied mechanics and reliability analysis; École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Joel Cugnoni
- Laboratory of applied mechanics and reliability analysis; École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - John Botsis
- Laboratory of applied mechanics and reliability analysis; École Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| | - Patrick Ammann
- Division of bone diseases; Department of internal medicine specialities; Geneva University Hospitals and Faculty of Medicine; Geneva Switzerland
| | - Anselm Wiskott
- Division of fixed prosthodontics and biomaterials; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| |
Collapse
|
5
|
External mechanical microstimuli modulate the osseointegration of titanium implants in rat tibiae. BIOMED RESEARCH INTERNATIONAL 2013; 2013:234093. [PMID: 24369009 PMCID: PMC3866820 DOI: 10.1155/2013/234093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 11/24/2022]
Abstract
Purpose. To assess the effect of external mechanical microstimuli of controlled magnitude on the microarchitecture of the peri-implant bone beds in rat tibiae. Materials and Methods. Tibiae of forty rats were fitted with two transcutaneous titanium cylinders. After healing, the implants were loaded to 1 to 3 N, five days/week for four weeks. These force levels translated into intraosseous strains of 700 ± 200 με, 1400 ± 400 με, and 2100 ± 600 με. After sacrifice, the implants' pullout strength was assessed. Second, the bone's microarchitecture was analyzed by microcomputed tomography (μCT) in three discrete regions of interest (ROIs). Third, the effect of loading on bone material properties was determined by nanoindentation. Results. The trabecular BV/TV significantly increased in an ROI of 0.98 mm away from the test implant in the 1 N versus the 3 N group with an opposite trend for cortical thickness. Pull-out strength significantly increased in the 2 N relatively to the nonstimulated group. Higher values of E-modulus and hardness were observed in the trabecular bone of the 2 N group. Conclusion. The in vivo mechanical loading of implants induces load-dependent modifications in bone microarchitecture and bone material properties in rat tibiae. In pull-out strength measurements, implant osseointegration was maximized at 2 N (1400 ± 400 με).
Collapse
|